1
|
Zhang SS, He Y, Wei MX. Novel coumarin-piperazine-2(5H)-furanone hybrids as potential anti-lung cancer agents: Synthesis, biological evaluation and molecular docking studies. Fitoterapia 2024; 177:106105. [PMID: 38969273 DOI: 10.1016/j.fitote.2024.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Novel coumarin-piperazine-2(5H)-furanone hybrids 5a-l were efficiently synthesized by introducing a furanone scaffold into coumarin using piperazine as a linker. The cytotoxicity of all hybrids 5a-l were evaluated by MTT assay on human lung cancer A549 cells and normal human lung fibroblast WI-38 cells with cytarabine (CAR) as a positive control. Hybrid 5l (IC50 = 11.28 μM) was the most toxic to A549 cells, 18-fold more toxic than the reference CAR (IC50 = 202.57 μM). Moreover, hybrid 5l (IC50 = 411.93 μM) was less toxic to WI-38 cells, with a much higher selectivity (5l, SI ≈ 37, WI-38/A549) than CAR (SI ≈ 2). Structure-activity relationship analysis showed that both the cytotoxicity against A549 cells and selectivity (WI-38/A549) were greatly improved when the bornyl group was incorporated in the hybrids (5c, 5f, 5i and 5l). Further, hybrid 5l was more toxic and selective against four types of human lung cancer cells (A549, Calu-1, PC-9 and H460; IC50 = 5.72-45.46 μM; SI ≈ 9-72) than three other types of human cancer cells (SK-BR-3, 786-O and SK-OV-3, IC50 = 39.07-130.82 μM; SI ≈ 0-2), showing remarkable specificity. In particular, hybrid 5l (IC50 = 5.72 μM) showed the highest cytotoxicity against H460 cells with the highest selectivity of up to 72 (WI-38/H460). Flow cytometric analysis showed that hybrid 5l induced apoptosis in H460 cells in a concentration-dependent manner. Molecular docking studies revealed a high binding affinity of hybrid 5l with CDK2 protein. Hybrid 5l is expected to be a leading candidate for anti-lung cancer agents.
Collapse
Affiliation(s)
- Si-Si Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu He
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Meng-Xue Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Lefin N, Herrera-Belén L, Farias JG, Beltrán JF. Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides. Mol Divers 2024; 28:2365-2374. [PMID: 37626205 DOI: 10.1007/s11030-023-10718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Viruses constitute a constant threat to global health and have caused millions of human and animal deaths throughout human history. Despite advances in the discovery of antiviral compounds that help fight these pathogens, finding a solution to this problem continues to be a task that consumes time and financial resources. Currently, artificial intelligence (AI) has revolutionized many areas of the biological sciences, making it possible to decipher patterns in amino acid sequences that encode different functions and activities. Within the field of AI, machine learning, and deep learning algorithms have been used to discover antimicrobial peptides. Due to their effectiveness and specificity, antimicrobial peptides (AMPs) hold excellent promise for treating various infections caused by pathogens. Antiviral peptides (AVPs) are a specific type of AMPs that have activity against certain viruses. Unlike the research focused on the development of tools and methods for the prediction of antimicrobial peptides, those related to the prediction of AVPs are still scarce. Given the significance of AVPs as potential pharmaceutical options for human and animal health and the ongoing AI revolution, we have reviewed and summarized the current machine learning and deep learning-based tools and methods available for predicting these types of peptides.
Collapse
Affiliation(s)
- Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Lisandra Herrera-Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Temuco, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
3
|
Schumann PG, Chang D, Mayasich S, Vliet S, Brown T, LaLone CA. Cross-Species Molecular Docking Method to Support Predictions of Species Susceptibility to Chemical Effects. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 30:100319. [PMID: 39381055 PMCID: PMC11457042 DOI: 10.1016/j.comtox.2024.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Affiliation(s)
- Peter G. Schumann
- Oak Ridge Institute for Science and Education, Duluth, Minnesota, USA
| | - Daniel Chang
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, Research Triangle Park, North Carolina, USA
| | - Sally Mayasich
- Aquatic Sciences Center, University of Wisconsin‐Madison, Madison, Wisconsin, USA
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Sara Vliet
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Terry Brown
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, Duluth, Minnesota, USA
| | - Carlie A. LaLone
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| |
Collapse
|
4
|
Ullah W, Wu WF, Malak N, Nasreen N, Swelum AA, Marcelino LA, Niaz S, Khan A, Ben Said M, Chen CC. Computational investigation of turmeric phytochemicals targeting PTR1 enzyme of Leishmania species. Heliyon 2024; 10:e27907. [PMID: 38533011 PMCID: PMC10963314 DOI: 10.1016/j.heliyon.2024.e27907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
In this study, we used in silico techniques to identify available parasite treatments, representing a promising therapeutic avenue. Building upon our computational initiatives aimed at discovering natural inhibitors for various target enzymes from parasites causing neglected tropical diseases (NTDs), we present novel findings on three turmeric-derived phytochemicals as inhibitors of Leishmania pteridine reductase I (PTR1) through in silico methodologies. PTR1, a crucial enzyme in the unique folate metabolism of trypanosomatid parasites, holds established therapeutic significance. Employing MOE software, a molecular docking analysis assesses the efficacy of turmeric phytochemicals against Leishmania PTR1. Validation of the docking protocol is confirmed with an RMSD value of 2. Post-docking, compounds displaying notable interactions with critical residues and binding affinities ranging between -6 and -8 kcal/mol are selected for interaction pattern exploration. Testing twelve turmeric phytochemicals, including curcumin, zingiberene, curcumol, curcumenol, eugenol, bisdemethoxycurcumin, tetrahydrocurcumin, tryethylcurcumin, turmerones, turmerin, demethoxycurcumin, and turmeronols, revealed binding affinities ranging from -5.5 to -8 kcal/mol. Notably, curcumin, demethoxycurcumin, and bisdemethoxycurcumin exhibit binding affinities within -6.5 to -8 kcal/mol and establish substantial interactions with catalytic residues. These phytochemicals hold promise as lead structures for rational drug design targeting Leishmania spp. PTR in future applications. This work underscores the potential of these identified phytochemicals in the development of more effective inhibitors, demonstrating their relevance in addressing neglected tropical diseases caused by parasites.
Collapse
Affiliation(s)
- Wasia Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Wen-Feng Wu
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan
| | - Nosheen Malak
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Nasreen Nasreen
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 1451, Saudi Arabia
| | - Liliana Aguilar Marcelino
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, 62550, Jiutepec, Morelos, Mexico
| | - Sadaf Niaz
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Adil Khan
- Department of Zoology, Bacha Khan University Charsadda, Charsadda, 24420, Pakistan
- Department of Biology, Mount Allison University, Sackville, E4L 1G7, New Brunswick, Canada
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
| | - Chien-Chin Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
5
|
Khurshid R, Schulz JM, Hu J, Snowden TS, Reynolds RC, Schürer SC. Targeted degrader technologies as prospective SARS-CoV-2 therapies. Drug Discov Today 2024; 29:103847. [PMID: 38029836 PMCID: PMC10836335 DOI: 10.1016/j.drudis.2023.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
COVID-19 remains a severe public health threat despite the WHO declaring an end to the public health emergency in May 2023. Continual development of SARS-CoV-2 variants with resistance to vaccine-induced or natural immunity necessitates constant vigilance as well as new vaccines and therapeutics. Targeted protein degradation (TPD) remains relatively untapped in antiviral drug discovery and holds the promise of attenuating viral resistance development. From a unique structural design perspective, this review covers antiviral degrader merits and challenges by highlighting key coronavirus protein targets and their co-crystal structures, specifically illustrating how TPD strategies can refine existing SARS-CoV-2 3CL protease inhibitors to potentially produce superior protease-degrading agents.
Collapse
Affiliation(s)
- Rabia Khurshid
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Joseph M Schulz
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jiaming Hu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Timothy S Snowden
- The University of Alabama, Department of Chemistry and Biochemistry and Center for Convergent Bioscience and Medicine, 250 Hackberry Lane, Tuscaloosa, AL 35487-0336, USA
| | - Robert C Reynolds
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Stephan C Schürer
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
6
|
Mehta NV, Degani MS. The expanding repertoire of covalent warheads for drug discovery. Drug Discov Today 2023; 28:103799. [PMID: 37839776 DOI: 10.1016/j.drudis.2023.103799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The reactive functionalities of drugs that engage in covalent interactions with the enzyme/receptor residue in either a reversible or an irreversible manner are called 'warheads'. Covalent warheads that were previously neglected because of safety concerns have recently gained center stage as a result of their various advantages over noncovalent drugs, including increased selectivity, increased residence time, and higher potency. With the approval of several covalent inhibitors over the past decade, research in this area has accelerated. Various strategies are being continuously developed to tune the characteristics of warheads to improve their potency and mitigate toxicity. Here, we review research progress in warhead discovery over the past 5 years to provide valuable insights for future drug discovery.
Collapse
Affiliation(s)
- Namrashee V Mehta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
7
|
Hasan MN, Ray M, Saha A. Landscape of In Silico Tools for Modeling Covalent Modification of Proteins: A Review on Computational Covalent Drug Discovery. J Phys Chem B 2023; 127:9663-9684. [PMID: 37921534 DOI: 10.1021/acs.jpcb.3c04710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Covalent drug discovery has been a challenging research area given the struggle of finding a sweet balance between selectivity and reactivity for these drugs, the lack of which often leads to off-target activities and hence undesirable side effects. However, there has been a resurgence in covalent drug design following the success of several covalent drugs such as boceprevir (2011), ibrutinib (2013), neratinib (2017), dacomitinib (2018), zanubrutinib (2019), and many others. Design of covalent drugs includes many crucial factors, where "evaluation of the binding affinity" and "a detailed mechanistic understanding on covalent inhibition" are at the top of the list. Well-defined experimental techniques are available to elucidate these factors; however, often they are expensive and/or time-consuming and hence not suitable for high throughput screens. Recent developments in in silico methods provide promise in this direction. In this report, we review a set of recent publications that focused on developing and/or implementing novel in silico techniques in "Computational Covalent Drug Discovery (CCDD)". We also discuss the advantages and disadvantages of these approaches along with what improvements are required to make it a great tool in medicinal chemistry in the near future.
Collapse
Affiliation(s)
- Md Nazmul Hasan
- Department of Chemistry and Biochemistry, University of Wisconsin─Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Manisha Ray
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Arjun Saha
- Department of Chemistry and Biochemistry, University of Wisconsin─Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
8
|
Bhowmik R, Kant R, Manaithiya A, Saluja D, Vyas B, Nath R, Qureshi KA, Parkkila S, Aspatwar A. Navigating bioactivity space in anti-tubercular drug discovery through the deployment of advanced machine learning models and cheminformatics tools: a molecular modeling based retrospective study. Front Pharmacol 2023; 14:1265573. [PMID: 37705534 PMCID: PMC10495588 DOI: 10.3389/fphar.2023.1265573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023] Open
Abstract
Mycobacterium tuberculosis is the bacterial strain that causes tuberculosis (TB). However, multidrug-resistant and extensively drug-resistant tuberculosis are significant obstacles to effective treatment. As a result, novel therapies against various strains of M. tuberculosis have been developed. Drug development is a lengthy procedure that includes identifying target protein and isolation, preclinical testing of the drug, and various phases of a clinical trial, etc., can take decades for a molecule to reach the market. Computational approaches such as QSAR, molecular docking techniques, and pharmacophore modeling have aided drug development. In this review article, we have discussed the various techniques in tuberculosis drug discovery by briefly introducing them and their importance. Also, the different databases, methods, approaches, and software used in conducting QSAR, pharmacophore modeling, and molecular docking have been discussed. The other targets targeted by these techniques in tuberculosis drug discovery have also been discussed, with important molecules discovered using these computational approaches. This review article also presents the list of drugs in a clinical trial for tuberculosis found drugs. Finally, we concluded with the challenges and future perspectives of these techniques in drug discovery.
Collapse
Affiliation(s)
- Ratul Bhowmik
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ravi Kant
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, Delhi School of Public Health, IoE, University of Delhi, Delhi, India
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, Delhi School of Public Health, IoE, University of Delhi, Delhi, India
| | - Bharti Vyas
- Department of Bioinformatics, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Ranajit Nath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Al-Qassim, Saudi Arabia
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
9
|
Yu W, Weber DJ, MacKerell AD. Integrated Covalent Drug Design Workflow Using Site Identification by Ligand Competitive Saturation. J Chem Theory Comput 2023; 19:3007-3021. [PMID: 37115781 PMCID: PMC10205696 DOI: 10.1021/acs.jctc.3c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Covalent drug design is an important component in drug discovery. Traditional drugs interact with their target in a reversible equilibrium, while irreversible covalent drugs increase the drug-target interaction duration by forming a covalent bond with targeted residues and thus may offer a more effective therapeutic approach. To facilitate the design of this class of ligands, computational methods can be used to help identify reactive nucleophilic residues, frequently cysteines, on a target protein for covalent binding, to test various warhead groups for their potential reactivities, and to predict noncovalent contributions to binding that can facilitate drug-target interactions that are important for binding specificity. To further aid covalent drug design, we extended a functional group mapping approach based on explicit solvent all-atom molecular simulations (SILCS: site identification by ligand competitive saturation) that intrinsically considers protein flexibility, functional group, and protein desolvation along with functional group-protein interactions. Through docking of a library of representative warhead fragments using SILCS-Monte Carlo (SILCS-MC), reactive cysteines can be correctly identified for proteins being tested. Furthermore, a machine learning model was trained to quantify the effectiveness of various warhead groups for proteins using metrics from SILCS-MC as well as experimental model compound warhead reactivity data. The ability to rank covalent molecular binders with similar warheads using SILCS ligand grid free energy (LGFE) ranking was also tested for several proteins. Based on these tools, an integrated SILCS-based workflow was developed, named SILCS-Covalent, which can both qualitatively and quantitatively inform covalent drug discovery.
Collapse
Affiliation(s)
- Wenbo Yu
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - David J. Weber
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Alexander D. MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| |
Collapse
|
10
|
Schaefer D, Cheng X. Recent Advances in Covalent Drug Discovery. Pharmaceuticals (Basel) 2023; 16:ph16050663. [PMID: 37242447 DOI: 10.3390/ph16050663] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
In spite of the increasing number of biologics license applications, the development of covalent inhibitors is still a growing field within drug discovery. The successful approval of some covalent protein kinase inhibitors, such as ibrutinib (BTK covalent inhibitor) and dacomitinib (EGFR covalent inhibitor), and the very recent discovery of covalent inhibitors for viral proteases, such as boceprevir, narlaprevir, and nirmatrelvir, represent a new milestone in covalent drug development. Generally, the formation of covalent bonds that target proteins can offer drugs diverse advantages in terms of target selectivity, drug resistance, and administration concentration. The most important factor for covalent inhibitors is the electrophile (warhead), which dictates selectivity, reactivity, and the type of protein binding (i.e., reversible or irreversible) and can be modified/optimized through rational designs. Furthermore, covalent inhibitors are becoming more and more common in proteolysis, targeting chimeras (PROTACs) for degrading proteins, including those that are currently considered to be 'undruggable'. The aim of this review is to highlight the current state of covalent inhibitor development, including a short historical overview and some examples of applications of PROTAC technologies and treatment of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Daniel Schaefer
- Buchmann Institute for Molecular Life Sciences, Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, 60438 Frankfurt am Main, Germany
- Pharmaceutical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Xinlai Cheng
- Buchmann Institute for Molecular Life Sciences, Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, 60438 Frankfurt am Main, Germany
- Pharmaceutical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Mons E, Kim RQ, Mulder MPC. Technologies for Direct Detection of Covalent Protein-Drug Adducts. Pharmaceuticals (Basel) 2023; 16:547. [PMID: 37111304 PMCID: PMC10146396 DOI: 10.3390/ph16040547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
In the past two decades, drug candidates with a covalent binding mode have gained the interest of medicinal chemists, as several covalent anticancer drugs have successfully reached the clinic. As a covalent binding mode changes the relevant parameters to rank inhibitor potency and investigate structure-activity relationship (SAR), it is important to gather experimental evidence on the existence of a covalent protein-drug adduct. In this work, we review established methods and technologies for the direct detection of a covalent protein-drug adduct, illustrated with examples from (recent) drug development endeavors. These technologies include subjecting covalent drug candidates to mass spectrometric (MS) analysis, protein crystallography, or monitoring intrinsic spectroscopic properties of the ligand upon covalent adduct formation. Alternatively, chemical modification of the covalent ligand is required to detect covalent adducts by NMR analysis or activity-based protein profiling (ABPP). Some techniques are more informative than others and can also elucidate the modified amino acid residue or bond layout. We will discuss the compatibility of these techniques with reversible covalent binding modes and the possibilities to evaluate reversibility or obtain kinetic parameters. Finally, we expand upon current challenges and future applications. Overall, these analytical techniques present an integral part of covalent drug development in this exciting new era of drug discovery.
Collapse
Affiliation(s)
- Elma Mons
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Robbert Q. Kim
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| | - Monique P. C. Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| |
Collapse
|
12
|
Sahre MJ, von Rudorff GF, von Lilienfeld OA. Quantum Alchemy Based Bonding Trends and Their Link to Hammett's Equation and Pauling's Electronegativity Model. J Am Chem Soc 2023; 145:5899-5908. [PMID: 36862462 DOI: 10.1021/jacs.2c13393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
We present an intuitive and general analytical approximation estimating the energy of covalent single and double bonds between participating atoms in terms of their respective nuclear charges with just three parameters, [EAB ≈ a - bZAZB + c(ZA7/3 + ZB7/3) ]. The functional form of our expression models an alchemical atomic energy decomposition between participating atoms A and B. After calibration, reasonably accurate bond dissociation energy estimates are obtained for hydrogen-saturated diatomics composed of p-block elements coming from the same row 2 ≤ n ≤ 4 in the periodic table. Corresponding changes in bond dissociation energies due to substitution of atom B by C can be obtained via simple formulas. While being of different functional form and origin, our model is as simple and accurate as Pauling's well-known electronegativity model. Analysis indicates that the model's response in covalent bonding to variation in nuclear charge is near-linear, which is consistent with Hammett's equation.
Collapse
Affiliation(s)
- Michael J Sahre
- Faculty of Physics, University of Vienna, Vienna, 1090, Austria.,Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, 1090, Austria
| | | | - O Anatole von Lilienfeld
- Vector Institute for Artificial Intelligence, Toronto, M5S 1M1, Canada.,Departments of Chemistry, Materials Science and Engineering, and Physics, University of Toronto, St. George Campus, Toronto, M5R 0A3, Canada.,Machine Learning Group, Technische Universität Berlin and Institute for the Foundations of Learning and Data, Berlin, 10587, Germany
| |
Collapse
|
13
|
Kumar S, Choudhary N, Faruq M, Kumar A, Saran RK, Indercanti PK, Singh V, Sait H, Jaitley S, Valis M, Kuca K, Polipalli SK, Kumar M, Singh T, Suravajhala P, Sharma R, Kapoor S. Anastrozole-mediated modulation of mitochondrial activity by inhibition of mitochondrial permeability transition pore opening: an initial perspective. J Biomol Struct Dyn 2023; 41:14063-14079. [PMID: 36815262 DOI: 10.1080/07391102.2023.2176927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023]
Abstract
The mitochondrial permeability transition pore (mtPTP) plays a vital role in altering the structure and function of mitochondria. Cyclophilin D (CypD) is a mitochondrial protein that regulates mtPTP function and a known drug target for therapeutic studies involving mitochondria. While the effect of aromatase inhibition on the mtPTP has been studied previously, the effect of anastrozole on the mtPTP has not been completely elucidated. The role of anastrozole in modulating the mtPTP was evaluated by docking, molecular dynamics and network-guided studies using human CypD data. The peripheral blood mononuclear cells (PBMCs) of patients with mitochondrial disorders and healthy controls were treated with anastrozole and evaluated for mitochondrial permeability transition pore (mtPTP) function and apoptosis using a flow cytometer. Spectrophotometry was employed for estimating total ATP levels. The anastrozole-CypD complex is more stable than cyclosporin A (CsA)-CypD. Anastrozole performed better than cyclosporine in inhibiting mtPTP. Additional effects included inducing mitochondrial membrane depolarization and a reduction in mitochondrial swelling and superoxide generation, intrinsic caspase-3 activity and cellular apoptosis, along with an increase in ATP levels. Anastrozole may serve as a potential therapeutic agent for mitochondrial disorders and ameliorate the clinical phenotype by regulating the activity of mtPTP. However, further studies are required to substantiate our preliminary findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Somesh Kumar
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| | - Neha Choudhary
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamsala, India
| | - Mohammed Faruq
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Arun Kumar
- Department of Emergency Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi, India
| | - Ravindra K Saran
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, Delhi, India
| | | | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamsala, India
| | - Haseena Sait
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| | - Sunita Jaitley
- Department of Biomedical Sciences, Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Martin Valis
- Department of Neurology of the Medical Faculty of Charles University and University Hospital in Hradec Králové, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Sunil K Polipalli
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| | - Manoj Kumar
- Department of Emergency Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Department of Microbiology, World College of Medical Science and Research, Jhajjar, Haryana, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | | | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Seema Kapoor
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| |
Collapse
|
14
|
Schuurs ZP, McDonald JP, Croft LV, Richard DJ, Woodgate R, Gandhi NS. Integration of molecular modelling and in vitro studies to inhibit LexA proteolysis. Front Cell Infect Microbiol 2023; 13:1051602. [PMID: 36936756 PMCID: PMC10020695 DOI: 10.3389/fcimb.2023.1051602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction As antibiotic resistance has become more prevalent, the social and economic impacts are increasingly pressing. Indeed, bacteria have developed the SOS response which facilitates the evolution of resistance under genotoxic stress. The transcriptional repressor, LexA, plays a key role in this response. Mutation of LexA to a non-cleavable form that prevents the induction of the SOS response sensitizes bacteria to antibiotics. Achieving the same inhibition of proteolysis with small molecules also increases antibiotic susceptibility and reduces drug resistance acquisition. The availability of multiple LexA crystal structures, and the unique Ser-119 and Lys-156 catalytic dyad in the protein enables the rational design of inhibitors. Methods We pursued a binary approach to inhibit proteolysis; we first investigated β-turn mimetics, and in the second approach we tested covalent warheads targeting the Ser-119 residue. We found that the cleavage site region (CSR) of the LexA protein is a classical Type II β-turn, and that published 1,2,3-triazole compounds mimic the β-turn. Generic covalent molecule libraries and a β-turn mimetic library were docked to the LexA C-terminal domain using molecular modelling methods in FlexX and CovDock respectively. The 133 highest-scoring molecules were screened for their ability to inhibit LexA cleavage under alkaline conditions. The top molecules were then tested using a RecA-mediated cleavage assay. Results The β-turn library screen did not produce any hit compounds that inhibited RecA-mediated cleavage. The covalent screen discovered an electrophilic serine warhead that can inhibit LexA proteolysis, reacting with Ser-119 via a nitrile moiety. Discussion This research presents a starting point for hit-to-lead optimisation, which could lead to inhibition of the SOS response and prevent the acquisition of antibiotic resistance.
Collapse
Affiliation(s)
- Zachariah P. Schuurs
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - John P. McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Laura V. Croft
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Neha S. Gandhi, ; Roger Woodgate,
| | - Neha S. Gandhi
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- *Correspondence: Neha S. Gandhi, ; Roger Woodgate,
| |
Collapse
|
15
|
Ghosh S, Bhattacherjee D, Satpati P, Bhabak KP. Venetoclax: a promising repurposed drug against SARS-CoV-2 main protease. J Biomol Struct Dyn 2022; 40:12088-12099. [PMID: 34424151 DOI: 10.1080/07391102.2021.1967786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Global health care emergency caused by a new coronavirus (severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2) demands urgent need to repurpose the approved pharmaceutical drugs. Main protease, Mpro of SARS-CoV-2 draws significant attention as a drug target. Herein, we have screened FDA approved organosulfur drugs (till 2016) and our laboratory synthesized organosulfur and organoselenium compounds (L1-L306) against Mpro-apo using docking followed by classical MD simulations. Additionally, a series of compounds (L307-L364) were chosen from previous experimental studies, which were reported to exhibit inhibitory potentials towards Mpro. We found several organosulfur drugs, particularly Venetoclax (FDA approved organosulfur drug for Leukemia) to be a high-affinity binders to the Mpro of SARS-CoV-2. The results reveal that organosulfur compounds including Venetoclax preferentially bind (non-covalently) to the non-catalytic pocket of the protein located in the dimer interface. We found that the ligand binding is primarily favoured by ligand-protein van der Waals interaction and penalized by desolvation effect. Interestingly, Venetoclax binding alters the local flexibility of Mpro and exerts pronounced effect in the C-terminal as well as two loop regions (Loop-A and Loop-B) that play important roles in catalysis. These findings highlighted the importance of drug repurposing and explored the non-catalytic pockets of Mpro in combating COVID-19 infection in addition to the importance of catalytic binding pocket of the protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suvankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Debojit Bhattacherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India.,Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Krishna Pada Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India.,Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
16
|
Gai C, Harnor SJ, Zhang S, Cano C, Zhuang C, Zhao Q. Advanced approaches of developing targeted covalent drugs. RSC Med Chem 2022; 13:1460-1475. [PMID: 36561076 PMCID: PMC9749957 DOI: 10.1039/d2md00216g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
In recent years, the development of targeted covalent inhibitors has gained popularity around the world. Specific groups (electrophilic warheads) form irreversible bonds with the side chain of nucleophilic amino acid residues, thus changing the function of biological targets such as proteins. Since the first targeted covalent inhibitor was disclosed in the 1990s, great efforts have been made to develop covalent ligands from known reversible leads or drugs by addition of tolerated electrophilic warheads. However, high reactivity and "off-target" toxicity remain challenging issues. This review covers the concept of targeted covalent inhibition to diseases, discusses traditional and interdisciplinary strategies of cysteine-focused covalent drug discovery, and exhibits newly disclosed electrophilic warheads majorly targeting the cysteine residue. Successful applications to address the challenges of designing effective covalent drugs are also introduced.
Collapse
Affiliation(s)
- Conghao Gai
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Suzannah J Harnor
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Shihao Zhang
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Céline Cano
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Chunlin Zhuang
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Qingjie Zhao
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| |
Collapse
|
17
|
Abstract
Covalent inhibition has emerged as a promising orthogonal approach for drug discovery, despite the significant challenge in achieving target specificity. To facilitate the structure-based rational design of target-specific covalent modulators, we developed an integrated computational protocol to curate covalent binders from the RCSB Protein Data Bank (PDB). Starting from the macromolecular crystallographic information files (mmCIF) in the PDB archive, covalent bond records, which indicate the side chain modification of amino acid residue by a covalent binder, were collected and cleaned. Then, residue-binder adducts, which are products of chemical reactions between targeted residues and covalent binders, were recovered with the help of the Chemical Component Dictionary in PDB. Finally, several strategies were employed to curate the pre-reaction forms of covalent binders from the adducts. Our curated CovBinderInPDB database contains 7375 covalent modifications in which 2189 unique covalent binders target nine types of amino acid residues (Cys, Lys, Ser, Asp, Glu, His, Met, Thr, and Tyr) from 3555 complex structures of 1170 unique protein chains. This database would set a solid foundation for developing and benchmarking computational strategies for covalent modulator design and is freely accessible at https://yzhang.hpc.nyu.edu/CovBinderInPDB.
Collapse
Affiliation(s)
- Xiao-Kang Guo
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, New York 10003, United States, Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China,
| |
Collapse
|
18
|
McAulay K, Bilsland A, Bon M. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. Pharmaceuticals (Basel) 2022; 15:1366. [PMID: 36355538 PMCID: PMC9694498 DOI: 10.3390/ph15111366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 09/27/2023] Open
Abstract
Fragment based drug discovery has long been used for the identification of new ligands and interest in targeted covalent inhibitors has continued to grow in recent years, with high profile drugs such as osimertinib and sotorasib gaining FDA approval. It is therefore unsurprising that covalent fragment-based approaches have become popular and have recently led to the identification of novel targets and binding sites, as well as ligands for targets previously thought to be 'undruggable'. Understanding the properties of such covalent fragments is important, and characterizing and/or predicting reactivity can be highly useful. This review aims to discuss the requirements for an electrophilic fragment library and the importance of differing warhead reactivity. Successful case studies from the world of drug discovery are then be examined.
Collapse
Affiliation(s)
- Kirsten McAulay
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Centre for Targeted Protein Degradation, University of Dundee, Nethergate, Dundee DD1 4HN, UK
| | - Alan Bilsland
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Marta Bon
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, UK
| |
Collapse
|
19
|
Bresinsky M, Strasser JM, Hubmann A, Vallaster B, McCue WM, Fuller J, Singh G, Nelson KM, Cuellar ME, Finzel BC, Ashe KH, Walters MA, Pockes S. Characterization of caspase-2 inhibitors based on specific sites of caspase-2-mediated proteolysis. Arch Pharm (Weinheim) 2022; 355:e2200095. [PMID: 35642311 PMCID: PMC9616052 DOI: 10.1002/ardp.202200095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023]
Abstract
Since the discovery of the caspase-2 (Casp2)-mediated ∆tau314 cleavage product and its associated impact on tauopathies such as Alzheimer's disease, the design of selective Casp2 inhibitors has become a focus in medicinal chemistry research. In the search for new lead structures with respect to Casp2 selectivity and drug-likeness, we have taken an approach by looking more closely at the specific sites of Casp2-mediated proteolysis. Using seven selected protein cleavage sequences, we synthesized a peptide series of 53 novel molecules and studied them using in vitro pharmacology, molecular modeling, and crystallography. Regarding Casp2 selectivity, AcITV(Dab)D-CHO (23) and AcITV(Dap)D-CHO (26) demonstrated the best selectivity (1-6-fold), although these trends were only moderate. However, some analogous tetrapeptides, most notably AcDKVD-CHO (45), showed significantly increased Casp3 selectivities (>100-fold). Tetra- and tripeptides display decreased or no Casp2 affinity, supporting the assumption that a motif of five amino acids is required for efficient Casp2 inhibition. Overall, the results provide a reasonable basis for the development of both selective Casp2 and Casp3 inhibitors.
Collapse
Affiliation(s)
- Merlin Bresinsky
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Jessica M. Strasser
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Alexander Hubmann
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Bernadette Vallaster
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - William M. McCue
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Jessica Fuller
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Gurpreet Singh
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Kathryn M. Nelson
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Matthew E. Cuellar
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Barry C. Finzel
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Karen H. Ashe
- Department of Neurology, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA
- GRECC, Minneapolis VA Hospital, 1 Veterans Drive, Minneapolis, MN 55417, USA
| | - Michael A. Walters
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
- Department of Neurology, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Abstract
Targeted covalent inhibitors (TCIs) are considered to be an important component in the toolbox of drug discovery and about 30% of currently marketed drugs are TCIs. Although these drugs raise concerns about toxicity, their high potencies and prolonged effects result in less-frequent drug dosing and wide therapeutic margins for patients. This leads to increased interests in developing new computational methods to identify novel covalent inhibitors. The implementation of successful in silico docking algorithms have the potential to provide significant savings of time and money in the discovery of lead compounds. In this paper, we describe the implementation and testing of a covalent docking methodology in Rigid CDOCKER and the optimization of the corresponding physics-based scoring function with an additional customizable covalent bond grid potential which represents the free energy change of bond formation between the ligand and the receptor. We optimize the covalent bond grid potential for different common covalent bond formation reaction in TCIs. The average runtime for docking one covalent compound is 15 minutes which is comparable or faster than other well-established covalent docking methods. We demonstrate comparable top rank accuracy compared with other covalent docking algorithms using the pose prediction benchmark dataset for covalent docking algorithms developed by the Keserű group. Finally, we construct a retrospective virtual screening benchmark dataset containing 8 different receptor targets with different covalent bond formation reactions. To our knowledge, this is the largest dataset for benchmarking covalent docking methods. We show that our new covalent docking algorithm has the ability to identify lead compounds among a large chemical space. The largest AUC value is 0.909 for the target receptor CATK and the warhead chemistry of the covalent inhibitors is addition to the aldehyde functionality.
Collapse
Affiliation(s)
- Yujin Wu
- Department of Chemistry, University of Michigan, Ann Arbor, 500 S State St, Ann Arbor, Michigan, 48109, USA
| | - Charles L Brooks Iii
- Department of Chemistry, University of Michigan, Ann Arbor, 500 S State St, Ann Arbor, Michigan, 48109, USA.
- Biophysics Program, University of Michigan, Ann Arbor, 500 S State St, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
21
|
Olawale F, Ogunyemi O, Folorunso IM. Repurposing clinically approved drugs as Wee1 checkpoint kinase inhibitors: an in silico investigation integrating molecular docking, ensemble QSAR modelling and molecular dynamics simulation. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Femi Olawale
- Nano-Gene and Drug Delivery Group, Department of Biochemistry, School of life science, University of KwaZulu Natal, Durban, South Africa
| | - Oludare Ogunyemi
- Human Nutraceuticals and Bioinformatics Research Unit, Department of Biochemistry, Salem University, Lokoja, Nigeria
| | - Ibukun Mary Folorunso
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| |
Collapse
|
22
|
Abdelfattah MAO, Dmirieh M, Ben Bakrim W, Mouhtady O, Ghareeb MA, Wink M, Sobeh M. Antioxidant and anti-aging effects of Warburgia salutaris bark aqueous extract: Evidences from in silico, in vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115187. [PMID: 35288287 DOI: 10.1016/j.jep.2022.115187] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Warburgia (family Canellaceae) is widely distributed over Afrotropical and Neotropical realms. Traditionally, W. salutaris (G. Bertol.) Chiov., and other Warburgia species are used as anti-inflammatory, antimalarial, antimicrobial, and for wound healing, and treating several skin complaints as well. Specifically, different extracts from W. salutaris were reported to possess diuretic, anti-inflammatory, and cytotoxic effects. AIM OF THE STUDY This work aimed to investigate the phytochemical composition of an aqueous extract from W. salutaris bark, and evaluate its antioxidant and anti-aging activities in silico, in vitro, and in vivo. MATERIALS AND METHODS HPLC-PDA-MS/MS was used to investigate the phytochemical components of the extract. The antioxidant potential of the extract was evaluated in vitro using DPPH and FRAP assays. The Caenorhabditis elegans nematodes model was adopted to investigate the antioxidant and the anti-aging effects in vivo by determining the worms' survival rate, level of ROS, HSP16 expression, and nuclear translocation of the transcription factor DAF16. Molecular operating environment (MOE) software was utilized for in silico molecular docking of the extract's components into different enzymes involved in the aging process. Anti-collagenase, anti-elastase, anti-tyrosinase, and anti-hyaluronidase assays were used to evaluate the anti-aging effects in vitro. RESULTS HPLC-MS analysis furnished 30 compounds, among them catechin, 11α-hydroxy muzigadiolide, mukaadial, pereniporin B, and 11α-hydroxycinnamosmolide. The major components of the extract showed appropriate fitting in the binding site of the target enzymes adopted in the study with considerable minimum free binding energy relative to the standard inhibitors. The extract showed substantial in vitro antioxidant activity in DPPH and FRAP assays and in vitro anti-aging assays against collagenase, elastase, tyrosinase, and hyaluronidase with comparable IC50 values to the reference standards. Moreover, it attenuated oxidative stress in vivo as it significantly increased the survival rate of ROS stressed C. elegans worms, decreased intracellular ROS, decreased the juglone-induced HSP16 expression and enhanced the nuclear localization of DAF16 in a dose-dependent manner. CONCLUSION Our results support the traditional use of W. salutaris to counteract inflammation and oxidative stress associated with several pathological conditions. In addition, W. salutaris bark extract can be considered as a substantial source for bioactive metabolites with strong potential as anti-aging and antioxidant agents.
Collapse
Affiliation(s)
| | - Malak Dmirieh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Widad Ben Bakrim
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660-Hay MoulayRachid, Ben-Guerir, 43150, Morocco; African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Omar Mouhtady
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mosad A Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornish El-Nile, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660-Hay MoulayRachid, Ben-Guerir, 43150, Morocco.
| |
Collapse
|
23
|
Hamri S, Bouchaour T, Lerari D, Bouberka Z, Supiot P, Maschke U. Cleaning of Wastewater Using Crosslinked Poly(Acrylamide-co-Acrylic Acid) Hydrogels: Analysis of Rotatable Bonds, Binding Energy and Hydrogen Bonding. Gels 2022; 8:gels8030156. [PMID: 35323269 PMCID: PMC8952127 DOI: 10.3390/gels8030156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
The discharge of untreated wastewater, often contaminated by harmful substances, such as industrially used dyes, can provoke environmental and health risks. Among various techniques, the adsorption of dyes, using three-dimensional (3D) networks consisting of hydrophilic polymers (hydrogels), represents a low-cost, clean, and efficient remediation method. Three industrially used dyes, Methylene Blue, Eosin, and Rose Bengal, were selected as models of pollutants. Poly(acrylamide) (poly(AM)) and poly(acrylamide-co-acrylic acid) (poly(AM-co-AA)) networks were chosen as adsorbent materials (hydrogels). These polymers were synthesized by crosslinking the photopolymerization of their respective monomer(s) in an aqueous medium under exposure to UV light. Experimental adsorption measurements revealed substantially higher dye uptakes for poly(AM-co-AA) compared to poly(AM) hydrogels. In this report, a theoretical model based on docking simulations was applied to analyze the conformation of polymers and pollutants in order to investigate some aspects of the adsorption process. In particular, hydrogen and halogen interactions were studied. The presence of strong hydrogen bonding plays a crucial role in the retention of dyes, whereas halogen bonding has a small or negligible effect on adsorption. An evaluation of binding energies allowed us to obtain information about the degree of affinity between polymers and dyes. The number of rotatable bonds in the copolymer exceeds those of poly(AM),meaning that poly(AM-co-AA) is revealed to be more suitable for obtaining a high retention rate for pollutants.
Collapse
Affiliation(s)
- Salah Hamri
- Center for Scientific and Technical Research in Physico-Chemical Analysis (CRAPC), BP 384, Industrial Zone, BouIsmaïl 42004, Algeria; (S.H.); (D.L.)
- Macromolecular Research Laboratory (LRM), Faculty of Sciences, Abou Bekr Belkaid University, BP 119, Tlemcen 13000, Algeria;
| | - Tewfik Bouchaour
- Macromolecular Research Laboratory (LRM), Faculty of Sciences, Abou Bekr Belkaid University, BP 119, Tlemcen 13000, Algeria;
| | - Djahida Lerari
- Center for Scientific and Technical Research in Physico-Chemical Analysis (CRAPC), BP 384, Industrial Zone, BouIsmaïl 42004, Algeria; (S.H.); (D.L.)
| | - Zohra Bouberka
- Laboratoire Physico-Chimie des Matériaux-Catalyse et Environnement (LPCMCE), Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf (USTOMB), Oran 31000, Algeria;
| | - Philippe Supiot
- CNRS, INRAE, Centrale Lille, UMR 8207—UMET—Unité Matériaux et Transformations, Université de Lille, 59000 Lille, France;
| | - Ulrich Maschke
- CNRS, INRAE, Centrale Lille, UMR 8207—UMET—Unité Matériaux et Transformations, Université de Lille, 59000 Lille, France;
- Correspondence:
| |
Collapse
|
24
|
Pichler WJ. The important role of non-covalent drug-protein interactions in drug hypersensitivity reactions. Allergy 2022; 77:404-415. [PMID: 34037262 PMCID: PMC9291849 DOI: 10.1111/all.14962] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Drug hypersensitivity reactions (DHR) are heterogeneous and unusual immune reactions with rather unique clinical presentations. Accumulating evidence indicates that certain non-covalent drug-protein interactions are able to elicit exclusively effector functions of antibody reactions or complete T-cell reactions which contribute substantially to DHR. Here, we discuss three key interactions; (a) mimicry: whereby soluble, non-covalent drug-protein complexes ("fake antigens") mimic covalent drug-protein adducts; (b) increased antibody affinity: for example, in quinine-type immune thrombocytopenia where the drug gets trapped between antibody and membrane-bound glycoprotein; and (c) p-i-stimulation: where naïve and memory T cells are activated by direct binding of drugs to the human leukocyte antigen and/or T-cell receptors. This transient drug-immune receptor interaction initiates a polyclonal T-cell response with mild-to-severe DHR symptoms. Notable complications arising from p-i DHR can include viral reactivations, autoimmunity, and multiple drug hypersensitivity. In conclusion, DHR is characterized by abnormal immune stimulation driven by non-covalent drug-protein interactions. This contrasts DHR from "normal" immunity, which relies on antigen-formation by covalent hapten-protein adducts and predominantly results in asymptomatic immunity.
Collapse
|
25
|
Wang X, Zhang H, Wang Y, Wang Y, Han Q, Yan H, Yang T, Guo Z. Platinum Complexes as Inhibitors of DNA Repair Protein Ku70 and Topoisomerase IIα in Cancer Cells. Dalton Trans 2022; 51:3188-3197. [DOI: 10.1039/d1dt03700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ku70 protein and topoisomerase IIα (Topo IIα) are promising targets of anticancer drugs, which play critical roles in DNA repair and replication processes. Three platinum(II) complexes, [PtCl(NH3)2(9-(pyridin-2-ylmethyl)-9H-carbazole)]NO3 (OPPC), [PtCl(NH3)2(9-(pyridin-3-ylmethyl)-9H-carbazole)]NO3 (MPPC),...
Collapse
|
26
|
Macip G, Garcia-Segura P, Mestres-Truyol J, Saldivar-Espinoza B, Ojeda-Montes MJ, Gimeno A, Cereto-Massagué A, Garcia-Vallvé S, Pujadas G. Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition. Med Res Rev 2021; 42:744-769. [PMID: 34697818 PMCID: PMC8662214 DOI: 10.1002/med.21862] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022]
Abstract
This review makes a critical evaluation of 61 peer‐reviewed manuscripts that use a docking step in a virtual screening (VS) protocol to predict SARS‐CoV‐2 M‐pro (M‐pro) inhibitors in approved or investigational drugs. Various manuscripts predict different compounds, even when they use a similar initial dataset and methodology, and most of them do not validate their methodology or results. In addition, a set of known 150 SARS‐CoV‐2 M‐pro inhibitors extracted from the literature and a second set of 81 M‐pro inhibitors and 113 inactive compounds obtained from the COVID Moonshot project were used to evaluate the reliability of using docking scores as feasible predictors of the potency of a SARS‐CoV‐2 M‐pro inhibitor. Using two SARS‐CoV‐2 M‐pro structures and five protein‐ligand docking programs, we proved that the correlation between the pIC50 and docking scores is not good. Neither was any correlation found between the pIC50 and the ∆G calculated with an MM‐GBSA method. When a group of experimentally known inactive compounds was added, neither the docking scores or the ∆G were able to distinguish between compounds with or without M‐pro experimental inhibitory activity. Performances improved when covalent and noncovalent inhibitors were treated separately, but were not good enough to fully support using a docking score as a cutoff value for selecting new putative M‐pro inhibitors or predicting the relative bioactivity of a compound by comparison with a reference compound. The two sets of known SARS‐CoV‐2 M‐pro inhibitors presented here could be used for validating future VS protocols which aim to predict M‐pro inhibitors.
Collapse
Affiliation(s)
- Guillem Macip
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, Tarragona, Tarragona, Spain
| | - Pol Garcia-Segura
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, Tarragona, Tarragona, Spain
| | - Júlia Mestres-Truyol
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, Tarragona, Tarragona, Spain
| | - Bryan Saldivar-Espinoza
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, Tarragona, Tarragona, Spain
| | | | - Aleix Gimeno
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Adrià Cereto-Massagué
- EURECAT Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Santiago Garcia-Vallvé
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, Tarragona, Tarragona, Spain.,EURECAT, TECNIO, CEICS, Avinguda Universitat 1, Reus, Spain
| | - Gerard Pujadas
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Research group in Cheminformatics & Nutrition, Tarragona, Tarragona, Spain.,EURECAT, TECNIO, CEICS, Avinguda Universitat 1, Reus, Spain
| |
Collapse
|
27
|
Carter-Fenk K, Lao KU, Herbert JM. Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory. Acc Chem Res 2021; 54:3679-3690. [PMID: 34550669 DOI: 10.1021/acs.accounts.1c00387] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although sometimes derided as "weak" interactions, non-covalent forces play a critical role in ligand binding and crystal packing and in determining the conformational landscape of flexible molecules. Symmetry-adapted perturbation theory (SAPT) provides a framework for accurate ab initio calculation of intermolecular interactions and furnishes a natural decomposition of the interaction energy into physically meaningful components: semiclassical electrostatics (rigorously obtained from monomer charge densities), Pauli or steric repulsion, induction (including both polarization and charge transfer), and dispersion. This decomposition helps to foster deeper understanding of non-covalent interactions and can be used to construct transferable, physics-based force fields. Separability of the SAPT interaction energy also provides the flexibility to construct composite methods, a feature that we exploit to improve the description of dispersion interactions. These are challenging to describe accurately because they arise from nonlocal electron correlation effects that appear for the first time at second order in perturbation theory but are not quantitatively described at that level.As with all quantum-chemical methods, a major limitation of SAPT is nonlinear scaling of the computational cost with respect to system size. This cost can be significantly mitigated using "SAPT0(KS)", which incorporates monomer electron correlation by means of Kohn-Sham (KS) molecular orbitals from density functional theory (DFT), as well as by an "extended" theory called XSAPT, developed by the authors. XSAPT generalizes traditional dimer SAPT to many-body systems, so that a ligand-protein interaction (for example) can be separated into contributions from individual amino acids, reducing the cost of the calculation below that of even supramolecular DFT while retaining the accuracy of high-level ab initio quantum chemistry.This Account provides an overview of the SAPT0(KS) approach and the XSAPT family of methods. Several low-cost variants are described that provide accuracy approaching that of the best ab initio benchmarks yet are affordable enough to tackle ligand-protein binding and sizable host-guest complexes. These variants include SAPT+aiD, which uses ab initio atom-atom dispersion potentials ("+aiD") in place of second-order SAPT dispersion, and also SAPT+MBD, which incorporates many-body dispersion (MBD) effects that are important in the description of nanoscale materials. Applications to drug binding highlight the size-extensive nature of dispersion, which is not a weak interaction in large systems. Other applications highlight how a physics-based analysis can sometimes upend conventional wisdom regarding intermolecular forces. In particular, careful reconsideration of π-π interactions makes clear that the quadrupolar electrostatics (or "Hunter-Sanders") model of π-π stacking should be replaced by a "van der Waals model" in which conformational preferences arise from a competition between dispersion and Pauli repulsion. Our analysis also suggests that molecular shape, rather than aromaticity per se, is the key factor driving strong stacking interactions. Looking forward, we anticipate that XSAPT-based methods can play a role in screening of drug candidates and in materials design.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
28
|
Zsidó BZ, Börzsei R, Pintér E, Hetényi C. Prerequisite Binding Modes Determine the Dynamics of Action of Covalent Agonists of Ion Channel TRPA1. Pharmaceuticals (Basel) 2021; 14:988. [PMID: 34681212 PMCID: PMC8540651 DOI: 10.3390/ph14100988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a transmembrane protein channeling the influx of calcium ions. As a polymodal nocisensor, TRPA1 can be activated by thermal, mechanical stimuli and a wide range of chemically damaging molecules including small volatile environmental toxicants and endogenous algogenic lipids. After activation by such compounds, the ion channel opens up, its central pore widens allowing calcium influx into the cytosol inducing signal transduction pathways. Afterwards, the calcium influx desensitizes irritant evoked responses and results in an inactive state of the ion channel. Recent experimental determination of structures of apo and holo forms of TRPA1 opened the way towards the design of new agonists, which can activate the ion channel. The present study is aimed at the elucidation of binding dynamics of agonists using experimental structures of TRPA1-agonist complexes at the atomic level applying molecular docking and dynamics methods accounting for covalent and non-covalent interactions. Following a test of docking methods focused on the final, holo structures, prerequisite binding modes were detected involving the apo forms. It was shown how reversible interactions with prerequisite binding sites contribute to structural changes of TRPA1 leading to covalent bonding of agonists. The proposed dynamics of action allowed a mechanism-based forecast of new, druggable binding sites of potent agonists.
Collapse
Affiliation(s)
- Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (B.Z.Z.); (E.P.)
| | - Rita Börzsei
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary;
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (B.Z.Z.); (E.P.)
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (B.Z.Z.); (E.P.)
| |
Collapse
|
29
|
Yalçın S, Yalçınkaya S, Ercan F. In silico detection of inhibitor potential of Passiflora compounds against SARS-Cov-2(Covid-19) main protease by using molecular docking and dynamic analyses. J Mol Struct 2021; 1240:130556. [PMID: 33967343 PMCID: PMC8096201 DOI: 10.1016/j.molstruc.2021.130556] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/26/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022]
Abstract
SARS-Cov-2(Covid-19) is a new strain of coronavirus and was firstly emerged in December 2019 in Wuhan, China. Now, there is no known specific treatment of Covid-19 available. COVID-19 main protease is a potential drug target and is firstly crystallised by Liu et al (2020). In the study, we investigated the drug potential of molecules that the components of an important medicinal plant Passiflora by using molecular docking, molecular dynamic and drug possibility properties of these molecules. Docking performances were done by Autodock. Chloroquine, hydroxychloroquine were used as standarts for comparison of tested ligands. The molecular docking results showed that the Luteolin, Lucenin, Olealonic acid, Isoorientin, Isochaphoside, Saponarin, Schaftoside etc. ligands was bound with COVID-19 main protease above -8,0 kcal/mol binding energy. Besides, ADME, drug-likeness features of compounds of Passiflora were investigated using the rules of Lipinski, Veber, and Ghose. According to the results obtained, it has been shown that compounds of Passiflora have the potential to be an effective drug in the COVID-19 pandemic. Further studies are needed to reveal the drug potential of these ligands. Our results will be a source for these studies.
Collapse
Affiliation(s)
- Serap Yalçın
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences, Kırsehir Ahi Evran University, Kırsehir 40100, Turkey,Corresponding author
| | - Seda Yalçınkaya
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Fahriye Ercan
- Department of Plant Protection, Faculty of Agriculture, Kırşehir Ahi Evran University, Kırşehir, Turkey
| |
Collapse
|
30
|
Redhead MA, Owen CD, Brewitz L, Collette AH, Lukacik P, Strain-Damerell C, Robinson SW, Collins PM, Schäfer P, Swindells M, Radoux CJ, Hopkins IN, Fearon D, Douangamath A, von Delft F, Malla TR, Vangeel L, Vercruysse T, Thibaut J, Leyssen P, Nguyen TT, Hull M, Tumber A, Hallett DJ, Schofield CJ, Stuart DI, Hopkins AL, Walsh MA. Bispecific repurposed medicines targeting the viral and immunological arms of COVID-19. Sci Rep 2021; 11:13208. [PMID: 34168183 PMCID: PMC8225628 DOI: 10.1038/s41598-021-92416-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Effective agents to treat coronavirus infection are urgently required, not only to treat COVID-19, but to prepare for future outbreaks. Repurposed anti-virals such as remdesivir and human anti-inflammatories such as barcitinib have received emergency approval but their overall benefits remain unclear. Vaccines are the most promising prospect for COVID-19, but will need to be redeveloped for any future coronavirus outbreak. Protecting against future outbreaks requires the identification of targets that are conserved between coronavirus strains and amenable to drug discovery. Two such targets are the main protease (Mpro) and the papain-like protease (PLpro) which are essential for the coronavirus replication cycle. We describe the discovery of two non-antiviral therapeutic agents, the caspase-1 inhibitor SDZ 224015 and Tarloxotinib that target Mpro and PLpro, respectively. These were identified through extensive experimental screens of the drug repurposing ReFRAME library of 12,000 therapeutic agents. The caspase-1 inhibitor SDZ 224015, was found to be a potent irreversible inhibitor of Mpro (IC50 30 nM) while Tarloxotinib, a clinical stage epidermal growth factor receptor inhibitor, is a sub micromolar inhibitor of PLpro (IC50 300 nM, Ki 200 nM) and is the first reported PLpro inhibitor with drug-like properties. SDZ 224015 and Tarloxotinib have both undergone safety evaluation in humans and hence are candidates for COVID-19 clinical evaluation.
Collapse
Affiliation(s)
- Martin A Redhead
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK.
| | - C David Owen
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Lennart Brewitz
- Department of Chemistry, Chemistry Research Laboratory,, The Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Amelia H Collette
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Petra Lukacik
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Claire Strain-Damerell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Sean W Robinson
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Patrick M Collins
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Philipp Schäfer
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Mark Swindells
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Chris J Radoux
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | | | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Tika R Malla
- Department of Chemistry, Chemistry Research Laboratory,, The Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Laura Vangeel
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000, Leuven, Belgium
| | - Thomas Vercruysse
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000, Leuven, Belgium
| | - Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000, Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000, Leuven, Belgium
| | - Tu-Trinh Nguyen
- Calibr, Scripps Research, 11119 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mitchell Hull
- Calibr, Scripps Research, 11119 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anthony Tumber
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - David J Hallett
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory,, The Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - David I Stuart
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford, OX4 2JY, UK
| | - Andrew L Hopkins
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Martin A Walsh
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK.
| |
Collapse
|
31
|
de Araújo RSA, da Silva-Junior EF, de Aquino TM, Scotti MT, Ishiki HM, Scotti L, Mendonça-Junior FJB. Computer-Aided Drug Design Applied to Secondary Metabolites as Anticancer Agents. Curr Top Med Chem 2021; 20:1677-1703. [PMID: 32515312 DOI: 10.2174/1568026620666200607191838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/06/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022]
Abstract
Computer-Aided Drug Design (CADD) techniques have garnered a great deal of attention in academia and industry because of their great versatility, low costs, possibilities of cost reduction in in vitro screening and in the development of synthetic steps; these techniques are compared with highthroughput screening, in particular for candidate drugs. The secondary metabolism of plants and other organisms provide substantial amounts of new chemical structures, many of which have numerous biological and pharmacological properties for virtually every existing disease, including cancer. In oncology, compounds such as vimblastine, vincristine, taxol, podophyllotoxin, captothecin and cytarabine are examples of how important natural products enhance the cancer-fighting therapeutic arsenal. In this context, this review presents an update of Ligand-Based Drug Design and Structure-Based Drug Design techniques applied to flavonoids, alkaloids and coumarins in the search of new compounds or fragments that can be used in oncology. A systematical search using various databases was performed. The search was limited to articles published in the last 10 years. The great diversity of chemical structures (coumarin, flavonoids and alkaloids) with cancer properties, associated with infinite synthetic possibilities for obtaining analogous compounds, creates a huge chemical environment with potential to be explored, and creates a major difficulty, for screening studies to select compounds with more promising activity for a selected target. CADD techniques appear to be the least expensive and most efficient alternatives to perform virtual screening studies, aiming to selected compounds with better activity profiles and better "drugability".
Collapse
Affiliation(s)
| | | | - Thiago Mendonça de Aquino
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Hamilton M Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente- SP, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | | |
Collapse
|
32
|
Toward the Identification of Potential α-Ketoamide Covalent Inhibitors for SARS-CoV-2 Main Protease: Fragment-Based Drug Design and MM-PBSA Calculations. Processes (Basel) 2021. [DOI: 10.3390/pr9061004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Since December 2019, the world has been facing the outbreak of the SARS-CoV-2 pandemic that has infected more than 149 million and killed 3.1 million people by 27 April 2021, according to WHO statistics. Safety measures and precautions taken by many countries seem insufficient, especially with no specific approved drugs against the virus. This has created an urgent need to fast track the development of new medication against the virus in order to alleviate the problem and meet public expectations. The SARS-CoV-2 3CL main protease (Mpro) is one of the most attractive targets in the virus life cycle, which is responsible for the processing of the viral polyprotein and is a key for the ribosomal translation of the SARS-CoV-2 genome. In this work, we targeted this enzyme through a structure-based drug design (SBDD) protocol, which aimed at the design of a new potential inhibitor for Mpro. The protocol involves three major steps: fragment-based drug design (FBDD), covalent docking and molecular dynamics (MD) simulation with the calculation of the designed molecule binding free energy at a high level of theory. The FBDD step identified five molecular fragments, which were linked via a suitable carbon linker, to construct our designed compound RMH148. The mode of binding and initial interactions between RMH148 and the enzyme active site was established in the second step of our protocol via covalent docking. The final step involved the use of MD simulations to test for the stability of the docked RMH148 into the Mpro active site and included precise calculations for potential interactions with active site residues and binding free energies. The results introduced RMH148 as a potential inhibitor for the SARS-CoV-2 Mpro enzyme, which was able to achieve various interactions with the enzyme and forms a highly stable complex at the active site even better than the co-crystalized reference.
Collapse
|
33
|
Sulimov VB, Kutov DC, Taschilova AS, Ilin IS, Tyrtyshnikov EE, Sulimov AV. Docking Paradigm in Drug Design. Curr Top Med Chem 2021; 21:507-546. [PMID: 33292135 DOI: 10.2174/1568026620666201207095626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
Docking is in demand for the rational computer aided structure based drug design. A review of docking methods and programs is presented. Different types of docking programs are described. They include docking of non-covalent small ligands, protein-protein docking, supercomputer docking, quantum docking, the new generation of docking programs and the application of docking for covalent inhibitors discovery. Taking into account the threat of COVID-19, we present here a short review of docking applications to the discovery of inhibitors of SARS-CoV and SARS-CoV-2 target proteins, including our own result of the search for inhibitors of SARS-CoV-2 main protease using docking and quantum chemical post-processing. The conclusion is made that docking is extremely important in the fight against COVID-19 during the process of development of antivirus drugs having a direct action on SARS-CoV-2 target proteins.
Collapse
Affiliation(s)
- Vladimir B Sulimov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Danil C Kutov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anna S Taschilova
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Ivan S Ilin
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Eugene E Tyrtyshnikov
- Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey V Sulimov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
34
|
Soulère L, Barbier T, Queneau Y. Docking-based virtual screening studies aiming at the covalent inhibition of SARS-CoV-2 M Pro by targeting the cysteine 145. Comput Biol Chem 2021; 92:107463. [PMID: 33677227 PMCID: PMC7896498 DOI: 10.1016/j.compbiolchem.2021.107463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 which has infected millions of people worldwide. The main protease of SARS-CoV-2 (MPro) has been recognized as a key target for the development of antiviral compounds. Taking advantage of the X-ray crystal complex with reversible covalent inhibitors interacting with the catalytic cysteine 145 (Cys145), we explored flexible docking studies to select alternative compounds able to target this residue as covalent inhibitors. First, docking studies of three known electrophilic compounds led to results consistent with co-crystallized data validating the method for SARS-CoV-2 MPro covalent inhibition. Then, libraries of soft electrophiles (overall 41 757 compounds) were submitted to docking-based virtual screening resulting in the identification of 17 molecules having their electrophilic group close to the Cys145 residue. We also investigated flexible docking studies of a focused approved covalent drugs library including 32 compounds with various electrophilic functional groups. Among them, the calculations resulted in the identification of four compounds, namely dimethylfumarate, fosfomycin, ibrutinib and saxagliptin, able first, to bind to the active site of the protein and second, to form a covalent bond with the catalytic cysteine.
Collapse
Affiliation(s)
- Laurent Soulère
- Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Chimie Organique et Bioorganique, Bât. E. Lederer, 1 rue Victor Grignard, F-69622, Villeurbanne, France.
| | - Thibaut Barbier
- Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Chimie Organique et Bioorganique, Bât. E. Lederer, 1 rue Victor Grignard, F-69622, Villeurbanne, France
| | - Yves Queneau
- Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Chimie Organique et Bioorganique, Bât. E. Lederer, 1 rue Victor Grignard, F-69622, Villeurbanne, France
| |
Collapse
|
35
|
Lu W, Kostic M, Zhang T, Che J, Patricelli MP, Jones LH, Chouchani ET, Gray NS. Fragment-based covalent ligand discovery. RSC Chem Biol 2021; 2:354-367. [PMID: 34458789 PMCID: PMC8341086 DOI: 10.1039/d0cb00222d] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Targeted covalent inhibitors have regained widespread attention in drug discovery and have emerged as powerful tools for basic biomedical research. Fueled by considerable improvements in mass spectrometry sensitivity and sample processing, chemoproteomic strategies have revealed thousands of proteins that can be covalently modified by reactive small molecules. Fragment-based drug discovery, which has traditionally been used in a target-centric fashion, is now being deployed on a proteome-wide scale thereby expanding its utility to both the discovery of novel covalent ligands and their cognate protein targets. This powerful approach is allowing ‘high-throughput’ serendipitous discovery of cryptic pockets leading to the identification of pharmacological modulators of proteins previously viewed as “undruggable”. The reactive fragment toolkit has been enabled by recent advances in the development of new chemistries that target residues other than cysteine including lysine and tyrosine. Here, we review the emerging area of covalent fragment-based ligand discovery, which integrates the benefits of covalent targeting and fragment-based medicinal chemistry. We discuss how the two strategies synergize to facilitate the efficient discovery of new pharmacological modulators of established and new therapeutic target proteins. Covalent fragment-based ligand discovery greatly facilitates the discovery of useful fragments for drug discovery and helps unveil chemical-tractable biological targets in native biological systems.![]()
Collapse
Affiliation(s)
- Wenchao Lu
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
| | - Milka Kostic
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA.,Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA 02215 USA
| | | | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA 02215 USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Cell Biology, Harvard Medical School Boston MA 02215 USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
| |
Collapse
|
36
|
Modeling Covalent Protein-Ligand Interactions. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Xu C, Ke Z, Liu C, Wang Z, Liu D, Zhang L, Wang J, He W, Xu Z, Li Y, Yang Y, Huang Z, Lv P, Wang X, Han D, Li Y, Qiao N, Liu B. Systemic In Silico Screening in Drug Discovery for Coronavirus Disease (COVID-19) with an Online Interactive Web Server. J Chem Inf Model 2020; 60:5735-5745. [PMID: 32786695 PMCID: PMC7460831 DOI: 10.1021/acs.jcim.0c00821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 01/18/2023]
Abstract
The emergence of the new coronavirus (nCoV-19) has impacted human health on a global scale, while the interaction between the virus and the host is the foundation of the disease. The viral genome codes a cluster of proteins, each with a unique function in the event of host invasion or viral development. Under the current adverse situation, we employ virtual screening tools in searching for drugs and natural products which have been already deposited in DrugBank in an attempt to accelerate the drug discovery process. This study provides an initial evaluation of current drug candidates from various reports using our systemic in silico drug screening based on structures of viral proteins and human ACE2 receptor. Additionally, we have built an interactive online platform (https://shennongproject.ai/) for browsing these results with the visual display of a small molecule docked on its potential target protein, without installing any specialized structural software. With continuous maintenance and incorporation of data from laboratory work, it may serve not only as the assessment tool for the new drug discovery but also an educational web site for the public.
Collapse
Affiliation(s)
- Chi Xu
- Laboratory of Health Intelligence,
Huawei Technologies Co., Ltd,
Shenzhen 518100, China
| | - Zunhui Ke
- Wuhan Children’s Hospital,
Tongji Medical College, Huazhong University of Science
& Technology, Wuhan 430000,
China
| | - Chuandong Liu
- Key Laboratory of Genomic and Precision
Medicine, Beijing Institute of Genomics, Chinese Academy
of Sciences, Beijing 100101,
China
- College of Future Technology,
Sino-Danish College, University of Chinese Academy of
Sciences, Beijing, 100049
China
| | - Zhihao Wang
- BioBank, The First
Affiliated Hospital of Xi’an Jiaotong
University, Shaanxi 710061,
China
- MRC Centre for Molecular Bacteriology and
Infection, Imperial College London, London
SW7 2AZ, U.K.
| | - Denghui Liu
- Laboratory of Health Intelligence,
Huawei Technologies Co., Ltd,
Shenzhen 518100, China
| | - Lei Zhang
- Laboratory of Health Intelligence,
Huawei Technologies Co., Ltd,
Shenzhen 518100, China
| | - Jingning Wang
- Department of Pathogen Biology, School
of Basic Medicine, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan
430030, China
| | - Wenjun He
- Laboratory of Health Intelligence,
Huawei Technologies Co., Ltd,
Shenzhen 518100, China
| | - Zhimeng Xu
- Laboratory of Health Intelligence,
Huawei Technologies Co., Ltd,
Shenzhen 518100, China
| | - Yanqing Li
- BioBank, The First
Affiliated Hospital of Xi’an Jiaotong
University, Shaanxi 710061,
China
| | - Yanan Yang
- BioBank, The First
Affiliated Hospital of Xi’an Jiaotong
University, Shaanxi 710061,
China
| | - Zhaowei Huang
- Laboratory of Health Intelligence,
Huawei Technologies Co., Ltd,
Shenzhen 518100, China
| | - Panjing Lv
- Department of Pathogen Biology, School
of Basic Medicine, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan
430030, China
| | - Xin Wang
- BioBank, The First
Affiliated Hospital of Xi’an Jiaotong
University, Shaanxi 710061,
China
| | - Dali Han
- Key Laboratory of Genomic and Precision
Medicine, Beijing Institute of Genomics, Chinese Academy
of Sciences, Beijing 100101,
China
- College of Future Technology,
Sino-Danish College, University of Chinese Academy of
Sciences, Beijing, 100049
China
- Institute for
Stem Cell and Regeneration, Chinese Academy of
Sciences, Beijing 100101,
China
- China National Center for
Bioinformation, Beijing 100101,
China
| | - Yan Li
- Department of Pathogen Biology, School
of Basic Medicine, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan
430030, China
- Department of Pediatrics, Tongji
Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan 430030,
China
| | - Nan Qiao
- Laboratory of Health Intelligence,
Huawei Technologies Co., Ltd,
Shenzhen 518100, China
| | - Bing Liu
- BioBank, The First
Affiliated Hospital of Xi’an Jiaotong
University, Shaanxi 710061,
China
- MRC Centre for Molecular Bacteriology and
Infection, Imperial College London, London
SW7 2AZ, U.K.
- Instrument Analysis
Centre, of Xi’an Jiaotong University,
Shaanxi 710049, China
| |
Collapse
|
38
|
Abstract
In the first decade of targeted covalent inhibition, scientists have successfully reversed the previous trend that had impeded the use of covalent inhibition in drug development. Successes in the clinic, mainly in the field of kinase inhibitors, are existing proof that safe covalent inhibitors can be designed and employed to develop effective treatments. The case of KRASG12C covalent inhibitors entering clinical trials in 2019 has been among the hottest topics discussed in drug discovery, raising expectations for the future of the field. In this perspective, an overview of the milestones hit with targeted covalent inhibitors, as well as the promise and the needs of current research, are presented. While recent results have confirmed the potential that was foreseen, many questions remain unexplored in this branch of precision medicine.
Collapse
|
39
|
Bianco G, Goodsell DS, Forli S. Selective and Effective: Current Progress in Computational Structure-Based Drug Discovery of Targeted Covalent Inhibitors. Trends Pharmacol Sci 2020; 41:1038-1049. [PMID: 33153778 PMCID: PMC7669701 DOI: 10.1016/j.tips.2020.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022]
Abstract
Targeted covalent inhibitors are currently showing great promise for systems that are normally difficult to target with small molecule therapies. This renewed interest has spurred the refinement of existing computational methods as well as the designof new ones, expanding the toolbox for discovery and optimization of selectiveand effective covalent inhibitors. Commonly applied approaches are covalentdocking methods that predict the conformation of the covalent complex with known residues. More recently, a new predictive method, reactive docking, was developed, building on the growing corpus of data generated by large proteomics experiments. This method was successfully used in several 'inverse drug discovery' programs that use high-throughput techniques to isolate effective compounds based on screening of entire compound libraries based on desired phenotypes.
Collapse
Affiliation(s)
- Giulia Bianco
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Research Collaboratory for Structure Bioinformatics Protein Data Bank, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Covalent Versus Non-covalent Enzyme Inhibition: Which Route Should We Take? A Justification of the Good and Bad from Molecular Modelling Perspective. Protein J 2020; 39:97-105. [PMID: 32072438 DOI: 10.1007/s10930-020-09884-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pace and efficiency of drug target strategies have been emanating debates among researchers in the field of drug development. Covalent inhibitors possess significant advantages over non-covalent inhibitors, such that covalent warheads can target rare residues of a particular target protein, thus leading to the development of highly selective inhibitors. However, toxicity can be a real challenge related to this class of therapeutics. From the challenges of irreversible drug toxicity to the declining reactivity of reversible drugs, herein we provide justifications from the computational point of view. It was evident that both classes had its merits; however, with the increase in drug resistance, covalent inhibition seemed more suitable. There also seems to be enhanced selectivity of the covalent systems, proving its use as a therapeutic regimen worldwide. We believe that this study will assist researchers in making informed decisions on which drug class to choose as lead compounds in the drug discovery pipeline.
Collapse
|
41
|
Shaheen N, Qureshi NA, Ashraf A, Hamid A, Iqbal A, Fatima H. In vitro anti-leishmanial activity of Prunus armeniaca fractions on Leishmania tropica and molecular docking studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112077. [PMID: 33220600 DOI: 10.1016/j.jphotobiol.2020.112077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 11/25/2022]
Abstract
Prunus armeniaca (L.) is a member of the Rosaceae, subfamily Prunoideae, shows anticancer, antitubercular, antimutagenic, antimicrobial, antioxidant, and cardioprotective activities. Here we fractionated the leaves extract of this highly medicinally important plant for antileishmanial activity. In the current study, the leaves extract was fractionated and characterized using column and thin layer chromatography by n-hexane, ethyl acetate, and methanol solvents. Twelve fractions were isolated and subjected for evaluation of their cytotoxicity and in vitro antileishmanial activity against promastigotes and amastigotes of Leishmania tropica. Among all fractions used, the fraction (F7) exhibited the strongest antileishmanial activity. The bioactive fraction was further characterized by spectroscopy (FTIR, UV-Vis), and GC-MS analysis. The in silico docking was carried out to find the active site of PTR1. All derived fractions exhibited toxicity in the safety range IC50 > 100 μg/ml. The fraction (F7) showed significantly the highest antipromastigotes activity with IC5011.48 ± 0.82 μg/ml and antiamastigotes activity with IC50 21.03 ± 0.98 μg/ml compared with control i.e. 11.60 ± 0.70 and 22.03 ± 1.02 μg/ml respectively. The UV-Vis spectroscopic analysis revealed the presence of six absorption peaks and the FTIR spectrum revealed the presence of alkane, aldehyde, carboxylic acid, thiols, alkynes, and carbonyls compounds The GC-MS chromatogram exhibited the presence of nine compounds: (a) benzeneethanol, alpha, beta dimethyl, (b)carbazic acid, 3-(1 propylbutylidene)-, ethyl ester, (c)1, 2-benzenedicarboxylic acid, diisooctyl ester, (d)benzeneethanamine a-methyl, (e)2aminononadecane, (f)2-heptanamine-5-methyl, (g)cyclobutanol, (h)cyclopropyl carbine, and (i)nitric acid, nonyl ester. Among all compounds, the 1, 2-benzenedicarboxylic acid, diisooctyl ester bound well to the PTR1 receptor. Fraction (F7) showed acceptable results with no cytotoxicity. However, in vivo studies are required in the future.
Collapse
Affiliation(s)
- Nargis Shaheen
- Department of Zoology, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Naveeda Akhter Qureshi
- Department of Zoology, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| | - Asma Ashraf
- Department of Zoology, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Aneeqa Hamid
- Deparment of Pharmacy, Quaid-i-Azam University Islamabad, Pakistan
| | - Attiya Iqbal
- Department of Zoology, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Huma Fatima
- Department of Zoology, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| |
Collapse
|
42
|
Tessaro F, Scapozza L. How 'Protein-Docking' Translates into the New Emerging Field of Docking Small Molecules to Nucleic Acids? Molecules 2020; 25:E2749. [PMID: 32545835 PMCID: PMC7355999 DOI: 10.3390/molecules25122749] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
In this review, we retraced the '40-year evolution' of molecular docking algorithms. Over the course of the years, their development allowed to progress from the so-called 'rigid-docking' searching methods to the more sophisticated 'semi-flexible' and 'flexible docking' algorithms. Together with the advancement of computing architecture and power, molecular docking's applications also exponentially increased, from a single-ligand binding calculation to large screening and polypharmacology profiles. Recently targeting nucleic acids with small molecules has emerged as a valuable therapeutic strategy especially for cancer treatment, along with bacterial and viral infections. For example, therapeutic intervention at the mRNA level allows to overcome the problematic of undruggable proteins without modifying the genome. Despite the promising therapeutic potential of nucleic acids, molecular docking programs have been optimized mostly for proteins. Here, we have analyzed literature data on nucleic acid to benchmark some of the widely used docking programs. Finally, the comparison between proteins and nucleic acid targets docking highlighted similarity and differences, which are intrinsically related to their chemical and structural nature.
Collapse
Affiliation(s)
- Francesca Tessaro
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva CMU, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva CMU, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
43
|
Vibrational and Hirshfeld surface analyses, quantum chemical calculations, and molecular docking studies of coumarin derivative 3-(1-m-toluidinoethylidene)-chromane-2,4-dione and its corresponding palladium(II) complex. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127935] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Al-Khafaji K, Al-Duhaidahawi D, Taskin Tok T. Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2. J Biomol Struct Dyn 2020; 39:3387-3395. [PMID: 32364041 PMCID: PMC7232881 DOI: 10.1080/07391102.2020.1764392] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SARS-CoV-2 is a new generation of coronavirus, which was first determined in Wuhan,
China, in December 2019. So far, however, there no effective treatment has been found to
stop this new generation of coronavirus but discovering of the crystal structure of
SARS-CoV-2 main protease (SARS-CoV-2 Mpro) may facilitate searching for new therapies for
SARS-COV-2. The aim was to assess the effectiveness of available FDA approved drugs which
can construct a covalent bond with Cys145 inside binding site SARS-CoV-2 main protease by
using covalent docking screening. We conducted the covdock module MMGBSA module in the
Schrodinger suite 2020-1, to examine the covalent bonding utilizing. Besides, we submitted
the top three drugs to molecular dynamics simulations via Gromacs 2018.1. The covalent
docking showed that saquinavir, ritonavir, remdesivir, delavirdine, cefuroxime axetil,
oseltamivir and prevacid have the highest binding energies MMGBSA of –72.17, −72.02,
−65.19, −57.65, −54.25, −51.8, and −51.14 kcal/mol, respectively. The 50 ns molecular
dynamics simulation was conducted for saquinavir, ritonavir and remdesivir to evaluate the
stability of these drugs inside the binding pocket of SARS-CoV-2 main protease. The
current study provides a powerful in silico results, means for rapid screening of drugs as
anti-protease medications and recommend that the above-mentioned drugs can be used in the
treatment of SARS-CoV-2 in combined or sole therapy. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Khattab Al-Khafaji
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey
| | - Dunya Al-Duhaidahawi
- College of Pharmacy, Pharmaceutical Chemistry, University of Kufa, AL-Najaf, Iraq
| | - Tugba Taskin Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey.,Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
45
|
Cheng SS, Yang GJ, Wang W, Leung CH, Ma DL. The design and development of covalent protein-protein interaction inhibitors for cancer treatment. J Hematol Oncol 2020; 13:26. [PMID: 32228680 PMCID: PMC7106679 DOI: 10.1186/s13045-020-00850-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions (PPIs) are central to a variety of biological processes, and their dysfunction is implicated in the pathogenesis of a range of human diseases, including cancer. Hence, the inhibition of PPIs has attracted significant attention in drug discovery. Covalent inhibitors have been reported to achieve high efficiency through forming covalent bonds with cysteine or other nucleophilic residues in the target protein. Evidence suggests that there is a reduced risk for the development of drug resistance against covalent drugs, which is a major challenge in areas such as oncology and infectious diseases. Recent improvements in structural biology and chemical reactivity have enabled the design and development of potent and selective covalent PPI inhibitors. In this review, we will highlight the design and development of therapeutic agents targeting PPIs for cancer therapy.
Collapse
Affiliation(s)
- Sha-Sha Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China
| | - Guan-Jun Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong, China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chung-Hang Leung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong, China.
| |
Collapse
|
46
|
Mahdizadeh SJ, Carlesso A, Eriksson LA. Deciphering the selectivity of inhibitor MKC9989 towards residue K907 in IRE1α; a multiscale in silico approach. RSC Adv 2020; 10:19720-19729. [PMID: 35515428 PMCID: PMC9054218 DOI: 10.1039/d0ra01895c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 02/05/2023] Open
Abstract
The selectivity of the ligand MKC9989, as inhibitor of the Inositol-Requiring Enzyme 1α (IRE1α) transmembrane kinase/ribonuclease protein, towards the residue K907 in the context of Schiff base formation, has been investigated by employing an array of in silico techniques including Multi-Conformation Continuum Electrostatics (MCCE) simulations, Quantum Mechanics/Molecular Mechanics (QM/MM) calculations, covalent docking, and Molecular Dynamics (MD) simulations. According to the MCCE results, K907 displays the lowest pKa value among all 23 lysine residues in IRE1α. The MMCE simulations also indicate a critical interaction between K907 and D885 within the hydrophobic pocket which increases significantly at low protein dielectric constants. The QM/MM calculations reveal a spontaneous proton transfer from K907 to D885, consistent with the low pKa value of K907. A Potential Energy Surface (PES) scan confirms the lack of energy barrier and transition state associated with this proton transfer reaction. Covalent docking and MD simulations verify that the protein pocket containing K907 can effectively stabilize the inhibitor by strong π–π and hydrogen bonding interactions. In addition, Radial Distribution Function (RDF) analysis shows that the imine group formed in the chemical reaction between MKC9989 and K907 is inaccessible to water molecules and thus the probability of imine hydrolysis is almost zero. The results of the current study explain the high selectivity of the MKC9989 inhibitor towards the K907 residue of IRE1α. The high selectivity of inhibitor MKC9989 towards Lys907 of IRE1α is explained by the unique pKa properties of the lysine.![]()
Collapse
Affiliation(s)
| | - Antonio Carlesso
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- 405 30 Göteborg
- Sweden
| | - Leif A. Eriksson
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- 405 30 Göteborg
- Sweden
| |
Collapse
|
47
|
Opoku F, Govender PP, Pooe OJ, Simelane MB. Evaluating Iso-Mukaadial Acetate and Ursolic Acid Acetate as Plasmodium falciparum Hypoxanthine-Guanine-Xanthine Phosphoribosyltransferase Inhibitors. Biomolecules 2019; 9:E861. [PMID: 31835879 PMCID: PMC6995562 DOI: 10.3390/biom9120861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
To date, Plasmodium falciparum is one of the most lethal strains of the malaria parasite. P. falciparum lacks the required enzymes to create its own purines via the de novo pathway, thereby making Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPT) a crucial enzyme in the malaria life cycle. Recently, studies have described iso-mukaadial acetate and ursolic acid acetate as promising antimalarials. However, the mode of action is still unknown, thus, the current study sought to investigate the selective inhibitory and binding actions of iso-mukaadial acetate and ursolic acid acetate against recombinant PfHGXPT using in-silico and experimental approaches. Recombinant PfHGXPT protein was expressed using E. coli BL21 cells and homogeneously purified by affinity chromatography. Experimentally, iso-mukaadial acetate and ursolic acid acetate, respectively, demonstrated direct inhibitory activity towards PfHGXPT in a dose-dependent manner. The binding affinity of iso-mukaadial acetate and ursolic acid acetate on the PfHGXPT dissociation constant (KD), where it was found that 0.0833 µM and 2.8396 µM, respectively, are indicative of strong binding. The mode of action for the observed antimalarial activity was further established by a molecular docking study. The molecular docking and dynamics simulations show specific interactions and high affinity within the binding pocket of Plasmodium falciparum and human hypoxanthine-guanine phosphoribosyl transferases. The predicted in silico absorption, distribution, metabolism and excretion/toxicity (ADME/T) properties predicted that the iso-mukaadial acetate ligand may follow the criteria for orally active drugs. The theoretical calculation derived from ADME, molecular docking and dynamics provide in-depth information into the structural basis, specific bonding and non-bonding interactions governing the inhibition of malarial. Taken together, these findings provide a basis for the recommendation of iso-mukaadial acetate and ursolic acid acetate as high-affinity ligands and drug candidates against PfHGXPT.
Collapse
Affiliation(s)
- Francis Opoku
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg 2028, South Africa;
| | - Penny P. Govender
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg 2028, South Africa;
| | - Ofentse J. Pooe
- Discipline of Biochemistry, School of Life Science, University of KwaZulu-Natal, Westville 4000, South Africa;
| | - Mthokozisi B.C. Simelane
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
48
|
Kumi RO, Issahaku AR, Soremekun OS, Agoni C, Olotu FA, Soliman MES. From the Explored to the Unexplored: Computer-Tailored Drug Design Attempts in the Discovery of Selective Caspase Inhibitors. Comb Chem High Throughput Screen 2019; 22:432-444. [PMID: 31560284 DOI: 10.2174/1386207322666190927143026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 08/01/2019] [Indexed: 01/09/2023]
Abstract
The pathophysiological roles of caspases have made them attractive targets in the treatment and amelioration of neurologic diseases. In normal conditions, the expression of caspases is regulated in the brain, while at the onset of neurodegeneration, such as in Alzheimer's disease, they are typically overexpressed. Till date, several therapeutic efforts that include the use of small endogenous binders have been put forward to curtail dysfunctionalities that drive aberrant death in neuronal cells. Caspases are highly homologous, both in structure and in sequence, which leaves us with the question: is it possible to specifically and individually target caspases, while multiple therapeutic attempts to achieve selective targeting have failed! Based on antecedent events, the use of Computer-Aided Drug Design (CADD) methods has significantly contributed to the design of small molecule inhibitors, especially with selective target ability and reduced off-target therapeutic effects. Interestingly, we found out that there still exists an enormous room for the integration of structure/ligand-based drug design techniques towards the development of highly specific reversible and irreversible caspase inhibitors. Therefore, in this review, we highlight drug discovery approaches that have been directed towards caspase inhibition in addition to an insightful focus on applicable CADD techniques for achieving selective targeting in caspase research.
Collapse
Affiliation(s)
- Ransford O Kumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Abdul R Issahaku
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
49
|
Wen C, Yan X, Gu Q, Du J, Wu D, Lu Y, Zhou H, Xu J. Systematic Studies on the Protocol and Criteria for Selecting a Covalent Docking Tool. Molecules 2019; 24:molecules24112183. [PMID: 31185706 PMCID: PMC6600387 DOI: 10.3390/molecules24112183] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/28/2022] Open
Abstract
With the resurgence of drugs with covalent binding mechanisms, much attention has been paid to docking methods for the discovery of targeted covalent inhibitors. The existence of many available covalent docking tools has inspired development of a systematic and objective procedure and criteria with which to evaluate these programs. In order to find a tool appropriate to studies of a covalently binding system, protocols and criteria are proposed for protein–ligand covalent docking studies. This paper consists of three sections: (1) curating a standard data set to evaluate covalent docking tools objectively; (2) establishing criteria to measure the performance of a tool applied for docking ligands into a complex system; and (3) creating a protocol to evaluate and select covalent binding tools. The protocols were applied to evaluate four covalent docking tools (MOE, GOLD, CovDock, and ICM-Pro) and parameters affecting covalent docking performance were investigated.
Collapse
Affiliation(s)
- Chang Wen
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China.
| | - Xin Yan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China.
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China.
| | - Jiewen Du
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China.
| | - Di Wu
- National Supercomputer Center in Guangzhou & School of Data and Computer Science, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China.
| | - Yutong Lu
- National Supercomputer Center in Guangzhou & School of Data and Computer Science, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China.
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China.
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China.
| |
Collapse
|
50
|
Abdelgaleil SAM, Badawy MEI, Mahmoud NF, Marei AESM. Acaricidal activity, biochemical effects and molecular docking of some monoterpenes against two-spotted spider mite (Tetranychus urticae Koch). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:105-115. [PMID: 31027569 DOI: 10.1016/j.pestbp.2019.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 05/15/2023]
Abstract
Six natural monoterpenes (1,8-cineole, (-)-citronellal, limonene, α-pinene, pulegone and 4-terpineol) showed high acaricidal activity by fumigant and contact actions against adult females of the two-spotted spider mite, Tetranychus urticae Koch. The monoterpenes exhibited varying degrees of acaricidal potency using contact toxicity test after 24 and 48 h of treatment, where the LC50 values were <160 and 45 mg/L, respectively. In fumigation test, of these six monoterpenes, pulegone exhibited the highest toxicity (LC50 = 3.81 mg/L air), while (-)-citronellal had the lowest fumigant toxicity (LC50 = 15.20 mg/L air). All compounds had high inhibitory effect on acetylcholinesterase (AChE) and gama amino butyric acid transaminase (GABA-T) activities. Pulegone was the most AChE inhibitor (IC50 = 8.79 mg/L), while 4-terpineol revealed the lowest inhibitory effect (IC50 = 32.82 mg/L). However, limonene caused the highest inhibition of GABA-T (IC50 = 11.37 mg/L). The molecular docking studies revealed that the compounds displayed different binding interactions with the amino acid residues at the catalytic sites of AChE and GABA-T enzymes. Noncovalent interactions especially van der Waals, hydrogen bonding as well as hydrophobic was found between the compounds and the enzymes. A significant relationship was found between the docking score and the biological activity of monoterpenes compared to the standard acaricide pyridaben. In silico ADMET properties were also performed and displayed potential for the development of good acaricidal candidates.
Collapse
Affiliation(s)
- Samir A M Abdelgaleil
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, 21545 El-Shatby, Alexandria, Egypt
| | - Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, 21545 El-Shatby, Alexandria, Egypt.
| | - Nabila F Mahmoud
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, 21545 El-Shatby, Alexandria, Egypt
| | - Abd El-Salam M Marei
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, 21545 El-Shatby, Alexandria, Egypt
| |
Collapse
|