1
|
Osthole: an overview of its sources, biological activities, and modification development. Med Chem Res 2021; 30:1767-1794. [PMID: 34376964 PMCID: PMC8341555 DOI: 10.1007/s00044-021-02775-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
Osthole, also known as osthol, is a coumarin derivative found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. It can be obtained via extraction and separation from plants or total synthesis. Plenty of experiments have suggested that osthole exhibited multiple biological activities covering antitumor, anti-inflammatory, neuroprotective, osteogenic, cardiovascular protective, antimicrobial, and antiparasitic activities. In addition, there has been some research done on the optimization and modification of osthole. This article summarizes the comprehensive information regarding the sources and modification progress of osthole. It also introduces the up-to-date biological activities of osthole, which could be of great value for its use in future research. ![]()
Collapse
|
2
|
Coumarin tethered cyclic imides as efficacious glucose uptake agents and investigation of hit candidate to probe its binding mechanism with human serum albumin. Bioorg Chem 2019; 92:103212. [PMID: 31465968 DOI: 10.1016/j.bioorg.2019.103212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 12/30/2022]
Abstract
A series of novel coumarin-cyclic imide conjugates (1a-1j) were designed and synthesized to evaluate their glucose uptake activity by insulin resistant liver hepatocyte carcinoma (HepG2) cells through 2-NBDG uptake assay. Compounds (1a-1j) were characterised using various analytical methods such as 1H NMR, 13C NMR, IR, GC-MS, elemental and single-crystal X-ray diffraction techniques. Compounds (1a-1j) exhibited 85.21 - 65.80% of glucose uptake and showed low level of cytotoxicity towards human embryonic kidney cells (HEK-293) indicating good selectivity and safety profile. Compound 1f was identified as a hit candidate exhibiting 85.21% of glucose uptake which was comparable with standard antidiabetic drug Metformin (93.25% glucose uptake). Solution stability study under physiological pH conditions ≈ (3.4 - 8.7), indicates that compound 1f is sufficiently stable at varied pH conditions and thereby compatible with bio-physiological environments. Interaction of 1f with human serum albumin (HSA) were also studied which quantifies that compound 1f binds with HSA efficiently through facile binding reaction in solution. Fluorescence, UV-vis spectrophotometry and molecular modeling methodologies were employed for studying the interaction mechanism of compound 1f with protein.
Collapse
|
3
|
Kan WC, Hwang JY, Chuang LY, Guh JY, Ye YL, Yang YL, Huang JS. Effect of osthole on advanced glycation end products-induced renal tubular hypertrophy and role of klotho in its mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:205-212. [PMID: 30668400 DOI: 10.1016/j.phymed.2018.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/13/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Osthole has been widely reported to have pharmacological activities such as anti-cancer, anti-inflammation and anti-hyperlipidemic effects. Klotho was identified as an anti-senescence protein in a variety of tissues. Loss of klotho has been associated with chronic kidney disease. However, potential roles and molecular events for osthole and klotho in diabetic nephropathy remain unclear. PURPOSE In the current study, we undertook to study the effect of osthole on klotho expression in advanced glycation end products (AGE)-cultured human renal proximal tubular cells, and to investigate the molecular mechanisms of osthole and exogenous klotho against AGE-induced renal tubular hypertrophy. METHODS Cell viability was elucidated by MTT assay. Protein expression was measured by Western blotting. mRNA level was analyzed by real-time PCR. Cellular hypertrophy growth was evaluated by hypertrophy index. Relative cell size was detected by flow cytometry. RESULTS We found that raising the ambient AGE concentration causes a dose-dependent decrease in klotho synthesis. Osthole significantly increased AGE-inhibited klotho mRNA and protein expression. Osthole and exogenous klotho treatments significantly attenuated AGE-induced Janus kinase 2 (JAK2)-signal transducers and activators of transcription 1 (STAT1) and STAT3 activation. Moreover, protein levels of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 were augmented by osthole and exogenous klotho. The abilities of osthole and exogenous klotho to reverse AGE-induced cellular hypertrophy were verified by the observation that osthole and exogenous klotho inhibited p21Waf1/Cip1/collagen IV/RAGE expression, total protein content, and cell size. CONCLUSION Consequently, we found that osthole attenuated AGE-induced renal tubular hypertrophy via induction of klotho expression and suppression of the JAK2-STAT1/STAT3 signaling. These results also showed that klotho might be used as a unique molecular target for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Wei-Chih Kan
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jean-Yu Hwang
- Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Lea-Yea Chuang
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jinn-Yuh Guh
- Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Yu-Lin Yang
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Jau-Shyang Huang
- Department of Biomedicine and Health Science, Chung Hwa University of Medical Technology, 89, Wen-Hwa 1st St. Rende Dist., Tainan 71703, Taiwan.
| |
Collapse
|
5
|
Li H, Yao Y, Li L. Coumarins as potential antidiabetic agents. ACTA ACUST UNITED AC 2017; 69:1253-1264. [PMID: 28675434 DOI: 10.1111/jphp.12774] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/28/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Even with great advances in modern medicine and therapeutic agent development, the search for effective antidiabetic drugs remains challenging. Coumarins are secondary metabolites found widely in nature plants and used mainly in anticoagulation and antithrombotic therapy. Over the past two decades, however, there has been an increasing body of literatures related to the effects of coumarins and their derivatives on diabetes and its complications. This review aimed to focus on research findings concerning the effects of coumarins against diabetes and its complications using in-vitro and in-vivo animal models, and also to discuss cellular and molecular mechanisms underlying these effects. KEY FINDINGS The search for new coumarins against diabetes and it complications, either isolated from traditional medicine or chemically synthesized, has been constantly expanding. The cellular and molecular mechanisms involved include protecting pancreatic beta cells from damage, improving abnormal insulin signalling, reducing oxidative stress/inflammation, activating AMP-activated protein kinase (AMPK), inhibiting α-glucosidases and ameliorating diabetic complications. CONCLUSIONS The effects and mechanisms of coumarins and their derivatives upon diabetes and its complications are discussed in current review. Further investigations remain to be carried out to develop a promising antidiabetic agent based on coumarin cores.
Collapse
Affiliation(s)
- Hanbing Li
- Department of Pharmaceutical Sciences, Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China.,Section of Endocrinology, School of Medicine, Yale University, New Haven, USA
| | - Yuanfa Yao
- Department of Pharmaceutical Sciences, Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Linghuan Li
- Department of Pharmaceutical Sciences, Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
7
|
Suk FM, Lin SY, Lin RJ, Hsine YH, Liao YJ, Fang SU, Liang YC. Bortezomib inhibits Burkitt's lymphoma cell proliferation by downregulating sumoylated hnRNP K and c-Myc expression. Oncotarget 2016; 6:25988-6001. [PMID: 26317903 PMCID: PMC4694880 DOI: 10.18632/oncotarget.4620] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/06/2015] [Indexed: 11/26/2022] Open
Abstract
Bortezomib (Velcal) was the first proteasome inhibitor to be approved by the US Food and Drug Administration to treat patients with relapsed/refractory multiple myelomas. Previous studies have demonstrated that bortezomib inhibits tumor cell proliferation and induces apoptosis by blocking the nuclear factor (NF)-κB pathway. However, the exact mechanism by which bortezomib induces cancer cell apoptosis is still not well understood. In this study, we found that bortezomib significantly inhibited cell proliferation in both human Burkitt's lymphoma CA46 and Daudi cells. Through proteomic analysis, we found that bortezomib treatment changed the expression of various proteins in distinct functional categories including unfolding protein response (UPS), RNA processing, protein targeting and biosynthesis, apoptosis, and signal transduction. Among the proteins with altered expression, hnRNP K, hnRNP H, Hsp90α, Grp78, and Hsp7C were common to both Daudi and CA46 cells. Interestingly, bortezomib treatment downregulated the expression of high-molecular-weight (HMw) hnRNP K and c-Myc but upregulated the expression of low-molecular-weight (LMw) hnRNP K. Moreover, cell proliferation was significantly correlated with high expression of HMw hnRNP K and c-Myc. HMw and LMw hnRNP K were identified as sumoylated and desumoylated hnRNP K, respectively. Using transient transfection, we found that sumoylated hnRNP K increased c-Myc expression at the translational level and contributed to cell proliferation, and that Lys422 of hnRNP K is the candidate sumoylated residue. Our results suggest that besides inhibiting the ubiquitin-proteasome pathway, bortezomib may inhibit cell proliferation by downregulating sumoylated hnRNP K and c-Myc expression in Burkitt's lymphoma cells.
Collapse
Affiliation(s)
- Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shyr-Yi Lin
- Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ren-Jye Lin
- Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsin Hsine
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ju Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Uei Fang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B 2016; 6:1-19. [PMID: 26904394 PMCID: PMC4724661 DOI: 10.1016/j.apsb.2015.06.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level, by responding to hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed. Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans, such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop pharmacological activators of AMPK. Many such activators have been described, and the various mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines. While the mechanism by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores, and that many of them will turn out to be inhibitors of mitochondrial function.
Collapse
Affiliation(s)
- David Grahame Hardie
- Division of Cell Signaling & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|