1
|
Rascón-Cruz Q, Siqueiros-Cendón TS, Siañez-Estrada LI, Villaseñor-Rivera CM, Ángel-Lerma LE, Olivas-Espino JA, León-Flores DB, Espinoza-Sánchez EA, Arévalo-Gallegos S, Iglesias-Figueroa BF. Antioxidant Potential of Lactoferrin and Its Protective Effect on Health: An Overview. Int J Mol Sci 2024; 26:125. [PMID: 39795983 PMCID: PMC11719613 DOI: 10.3390/ijms26010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic diseases, including cardiovascular and neurodegenerative diseases and cancer, are significant global health challenges. Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, is a critical factor in the progression of these pathologies. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein, has emerged as a promising therapeutic agent due to its potent antioxidant, anti-inflammatory, and iron-regulating properties. Lf plays a pivotal role in iron homeostasis by chelating iron, modulating its cellular uptake, and reducing ROS production, thereby mitigating oxidative stress-related tissue damage. Lf also demonstrates neuroprotective potential in diseases like Parkinson's and Alzheimer's, where it alleviates oxidative damage, regulates iron metabolism, and enhances antioxidant defenses. Furthermore, its ability to enhance endogenous antioxidant mechanisms, such as superoxide dismutase and glutathione peroxidase, underscores its systemic protective effects. Lf's anti-inflammatory and antimicrobial activities also contribute to its broad-spectrum protective role in chronic diseases. This review consolidates evidence of Lf's mechanisms in mitigating oxidative stress and highlights its therapeutic potential as a versatile molecule for preventing and managing chronic conditions linked to oxidative damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Blanca Flor Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (Q.R.-C.); (T.S.S.-C.); (L.I.S.-E.); (C.M.V.-R.); (L.E.Á.-L.); (J.A.O.-E.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.)
| |
Collapse
|
2
|
Nayl AEAA, El-Fakharany EM, Abd-Elhamid AI, Arafa WAA, Alanazi AH, Ahmed IM, Aly AA, Bräse S. Fabrication and characterization of lactoperoxidase coated the modified graphene oxide-based nanocomposite for medical applications. Int J Biol Macromol 2024; 288:138597. [PMID: 39667452 DOI: 10.1016/j.ijbiomac.2024.138597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
This study aims to synthesize an innovative (GO-PAA-Cu-LP) nanocomposite through multi-steps for medical applications. First, graphene oxide (GO) was radically anchored with polyacrylic acid (PAA), subsequently, activation through substituting the H-atom of the carboxylic group in PAA with Na-atom. Afterward, Cu-ions are easily loaded over the activated carboxylated groups to act as a satellite in combination with bovine milk lactoperoxidase (LP). The prepared composites were characterized by various techniques, including SEM, TEM, EDX, FTIR, TGA, and XRD analysis, as well as determination of zeta size and potentials for each composite. The experimental results exhibited the ability of LP in the modified form (GO-PAA-Cu-LP) to keep its stability during storage conditions with activity around 73 % of its original reactivity after storage for 9 weeks at 4 °C. The results revealed the selectivity of GO-PAA-Cu-LP against both treated Caco-2 and Huh-7 cells greater than free GO-PAA-Cu composite and free LP. Therefore, these results indicate that the combination of LP with the modified GO-PAA-Cu composite increased its selectivity against all treated cancer cells. These results indicate that the modified GO-PAA-Cu-LP enhanced cell cycle arrest of treated cancer cells in both sub-G1 phase (apoptotic phase) and S phase compared with untreated cells, stimulating apoptotic mechanism.
Collapse
Affiliation(s)
- Abd El Aziz A Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications (SRTA city), New Borg El-Arab, Alexandria 21934, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt; Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, 21648, Alexandria, Egypt
| | - Ahmed I Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt
| | - Wael A A Arafa
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Ahmed Hamad Alanazi
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Ismail M Ahmed
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| |
Collapse
|
3
|
Morovati S, Baghkheirati AA, Sekhavati MH, Razmyar J. A Review on cLF36, a Novel Recombinant Antimicrobial Peptide-Derived Camel Lactoferrin. Probiotics Antimicrob Proteins 2024; 16:1886-1905. [PMID: 38722550 DOI: 10.1007/s12602-024-10285-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 10/02/2024]
Abstract
Lactoferrin is an antimicrobial peptide (AMP) playing a pivotal role in numerous biological processes. The primary antimicrobial efficacy of lactoferrin is associated with its N-terminal end, which contains various peptides, such as lactoferricin and lactoferrampin. In this context, our research team has developed a refined chimeric 42-mer peptide known as cLF36 over the past few years. This peptide encompasses the complete amino acid sequence of camel lactoferrampin and partial amino acid sequence of lactoferricin. The peptide's activity against human, avian, and plant bacterial pathogens has been assessed using different biological platforms, including prokaryotic (P170 and pET) and eukaryotic (HEK293) expression systems. The peptide positively influenced the growth performance and intestinal morphology of chickens challenged with pathogen bacteria. Computational methods and in vitro studies showed the peptide's antiviral effects against hepatitis C virus, influenza virus, and rotavirus. The chimeric peptide exhibited higher activity against certain tumor cell lines compared to normal cells, which may be attributed to the peptide's interaction with negatively charged glycosaminoglycans on the surface of tumor cells. Importantly, this peptide exhibited no toxicity against host cells and demonstrated remarkable thermal and protease stability in serum. In conclusion, while our investigations suggest that the chimeric peptide, cLF36, may offer potential as a candidate or complementary option to some available antibiotics, antiviral agents, and chemical pesticides, significant uncertainties remain regarding its cost-effectiveness, as well as its pharmacodynamic and pharmacokinetic characteristics, which require further elucidation.
Collapse
Affiliation(s)
- Solmaz Morovati
- Department of Pathobiology, Division of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Mohammad Hadi Sekhavati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Jamshid Razmyar
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Abd Elhamid AS, Heikal L, Ghareeb DA, Abdulmalek SA, Mady O, Teleb M, Khattab SN, El-Gizawy SA. Engineering Thermo/pH-Responsive Lactoferrin Nanostructured Microbeads for Oral Targeting of Colorectal Cancer. ACS Biomater Sci Eng 2024; 10:4985-5000. [PMID: 39079030 DOI: 10.1021/acsbiomaterials.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
AIM Colorectal cancer is an extremely aggressive form of cancer that often leads to death. Lactoferrin shows potential for targeting and treating colorectal cancer; however, oral delivery faces hurdles hampering clinical applications. We engineered dual-responsive lactoferrin nanostructured microbeads to overcome delivery hurdles and enhance drug targeting. METHODS The hydrophobic drug mesalazine (MSZ) was coupled to lactoferrin to form amphiphilic conjugate nanoparticles, dispersed in water. The lipid-soluble polyphenolic drug resveratrol (RSV) was then encapsulated into the hydrophobic core of LF-MSZ nanoparticles. To impart thermoresponsive properties, the dual-payload NPs were coupled with a PNIPAAm shell; finally, to further endow the nanoparticles with gastrointestinal resistance and pH responsiveness, the nanoparticles were microencapsulated into ionically cross-linked pectin-alginate beads. RESULTS The nanoparticles showed enhanced internalization and cytotoxicity against HCT colon cancer cells via LF-receptor-mediated endocytosis. Thermal triggering and tuned release were conferred by the temperature-sensitive polymer. The coatings protected the drugs from degradation. Orally delivered microbeads significantly reduced tumor burden in a mouse colon cancer model, lowering carcinoembryonic antigen and elevating antioxidant enzymes. Apoptotic pathways were stimulated, indicated by heightened Bax/Bcl2 ratio and caspase-3/9 expression. CONCLUSION Overall, we propose the innovative lactoferrin nanostructured microbeads as a paradigm shift in oral colorectal cancer therapeutics.
Collapse
Affiliation(s)
- Ahmed S Abd Elhamid
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Lamia Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria 21934, Egypt
| | - Shaymaa A Abdulmalek
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria 21934, Egypt
| | - Omar Mady
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed Teleb
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Sanaa A El-Gizawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
5
|
Zhou R, Zhang W, Zhang Y, Wu X, Huang J, Bo R, Liu M, Yu J, Li J. Laponite/lactoferrin hydrogel loaded with eugenol for methicillin-resistant Staphylococcus aureus-infected chronic skin wound healing. J Tissue Viability 2024; 33:487-503. [PMID: 38769034 DOI: 10.1016/j.jtv.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Severe bacterial infections can give rise to protracted wound healing processes, thereby posing a significant risk to a patient's well-being. Consequently, the development of a versatile hydrogel dressing possessing robust bioactivity becomes imperative, as it holds the potential to expedite wound healing and yield enhanced clinical therapeutic outcomes. In this context, the present study involves the formulation of an injectable multifunctional hydrogel utilizing laponite (LAP) and lactoferrin (LF) as foundational components and loaded with eugenol (EG). This hydrogel is fabricated employing a straightforward one-pot mixing approach that leverages the principle of electrostatic interaction. The resulting LAP/LF/EG2% composite hydrogel can be conveniently injected to address irregular wound geometries effectively. Once administered, the hydrogel continually releases lactoferrin and eugenol, mitigating unwarranted oxidative stress and eradicating bacterial infections. This orchestrated action culminates in the acceleration of wound healing specifically in the context of MRSA-infected wounds. Importantly, the LAP/LF/EG2% hydrogel exhibits commendable qualities including exceptional injectability, potent antioxidant attributes, and proficient hemostatic functionality. Furthermore, the hydrogel composition notably encourages cellular migration while maintaining favorable cytocompatibility. Additionally, the hydrogel manifests noteworthy bactericidal efficacy against the formidable multidrug-resistant MRSA bacterium. Most significantly, this hydrogel formulation distinctly expedites the healing of MRSA-infected wounds by promptly inducing hemostasis, curbing bacterial proliferation, and fostering angiogenesis, collagen deposition, and re-epithelialization processes. As such, the innovative hydrogel material introduced in this investigation emerges as a promising dressing for the facilitation of bacterial-infected wound healing and consequent tissue regeneration.
Collapse
Affiliation(s)
- Ruigang Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Wenhai Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yufei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiqian Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Junjie Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Ruonan Bo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Mingjiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jie Yu
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suzhi Road 120, Suqian 223800, PR China.
| | - Jingui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Wei M, Liu J, Wang X, Liu X, Jiang L, Jiang Y, Ma Y, Wang J, Yuan H, An X, Song Y, Zhang L. Multi-omics analysis of kidney tissue metabolome and proteome reveals the protective effect of sheep milk against adenine-induced chronic kidney disease in mice. Food Funct 2024; 15:7046-7062. [PMID: 38864415 DOI: 10.1039/d4fo00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Chronic kidney disease (CKD) is characterized by impaired renal function and is associated with inflammation, oxidative stress, and fibrosis. Sheep milk contains several bioactive molecules with protective effects against inflammation and oxidative stress. In the current study, we investigated the potential renoprotective effects of sheep milk and the associated mechanisms of action in an adenine-induced CKD murine model. Sheep milk delayed renal chronic inflammation (e.g., significant reduction in levels of inflammatory factors Vcam1, Icam1, Il6, and Tnfa), fibrosis (significant reduction in levels of fibrosis factors Col1a1, Fn1, and Tgfb), oxidative stress (significant increase in levels of antioxidants and decrease in oxidative markers), mineral disorders, and renal injury in adenine-treated mice (e.g. reduced levels of kidney injury markers NGAL and KIM-1). The combined proteomics and metabolomics analyses showed that sheep milk may affect the metabolic processes of several compounds, including proteins, lipids, minerals, and hormones in mice with adenine-induced chronic kidney disease. In addition, it may regulate the expression of fibrosis-related factors and inflammatory factors through the JAK1/STAT3/HIF-1α signaling pathway, thus exerting its renoprotective effects. Therefore, sheep milk may be beneficial for patients with CKD and should be evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mengyao Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Jiaxin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Xiaofei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Xiaorui Liu
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyao Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Yue Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Yingtian Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Jiangang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Hao Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| |
Collapse
|
7
|
Attri K, Chudasama B, Mahajan RL, Choudhury D. Therapeutic potential of lactoferrin-coated iron oxide nanospheres for targeted hyperthermia in gastric cancer. Sci Rep 2023; 13:17875. [PMID: 37857677 PMCID: PMC10587155 DOI: 10.1038/s41598-023-43725-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Lactoferrin (LF) is a non-heme iron-binding glycoprotein involved in the transport of iron in blood plasma. In addition, it has many biological functions, including antibacterial, antiviral, antimicrobial, antiparasitic, and, importantly, antitumor properties. In this study, we have investigated the potential of employing lactoferrin-iron oxide nanoparticles (LF-IONPs) as a treatment modality for gastric cancer. The study confirms the formation of LF-IONPs with a spherical shape and an average size of 5 ± 2 nm, embedded within the protein matrix. FTIR and Raman analysis revealed that the Fe-O bond stabilized the protein particle interactions. Further, we conducted hyperthermia studies to ascertain whether the proposed composite can generate a sufficient rise in temperature at a low frequency. The results confirmed that we can achieve a temperature rise of about 7 °C at 242.4 kHz, which can be further harnessed for gastric cancer treatment. The particles were further tested for their anti-cancer activity on AGS cells, with and without hyperthermia. Results indicate that LF-IONPs (10 µg/ml) significantly enhance cytotoxicity, resulting in the demise of 67.75 ± 5.2% of cells post hyperthermia, while also exhibiting an inhibitory effect on cell migration compared to control cells, with the most inhibition observed after 36 h of treatment. These findings suggest the potential of LF-IONPs in targeted hyperthermia treatment of gastric cancer.
Collapse
Affiliation(s)
- Komal Attri
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Bhupendra Chudasama
- School of Physics and Material Sciences, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| | - Roop L Mahajan
- Department of Mechanical Engineering, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
8
|
Tharwat M, Almundarij TI, Sadan M, Khorshid F, Swelum A. Is camel's urine friend or enemy? Review of its role in human health or diseases. Open Vet J 2023; 13:1228-1238. [PMID: 38027399 PMCID: PMC10658017 DOI: 10.5455/ovj.2023.v13.i10.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/03/2023] [Indexed: 12/01/2023] Open
Abstract
Camels play an important role in the pastoral mode of life by fulfilling basic demands of livelihood. Various pathologies, such as tuberculosis, hemorrhoids, ascites, increased size of the abdomen, gas colic, anemia, and abdominal tumors, were treated with animal urine, including camels, horses, donkeys, sheep, goats, elephants, and buffalo. Thirty different compounds were analyzed in camel urine by gas chromatography and mass spectrometry. For inductively coupled plasma mass spectrometry analysis, 28 important elements were analyzed in the urine of both camel and bovine. It was found that the inorganic elements are almost similar, except sodium, potassium, iron, zinc, and magnesium are higher in levels in camel urine, while chromium is high in bovine urine. Camel urine also contains different nanoparticles, crystals, and nano-rods with varying shapes and sizes, which offer potent selective cytotoxic activity against several lines of cancer cells. It is believed that the camel's urine has a therapeutic effect for a wide range of diseases such as chill, fever, or even tumors; therefore, it has been consumed in the Arabian Peninsula for a long time. Usually, patients take it directly or by mixing a few drops with camel milk. Camel urine is also used for therapeutic purposes, most widely in Asia, Africa, the United States, the United Kingdom, and other European countries. The religious aspect of using camel urine in treatment comes from the fact that there has been convincing evidence that the Prophet Mohammad (PBUH) suggested the use of camel urine to treat his companions who were suffering from abdominal pains at that time. The camel's urine has anti-diabetic, anti-cancer, antibacterial, antiviral, and antifungal properties. It also has hepato-protective and cardiovascular effects.
Collapse
Affiliation(s)
- Mohamed Tharwat
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Tariq I. Almundarij
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Madeh Sadan
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Faten Khorshid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- PMF Natural Products Company, Al-Suez, Egypt
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Zhao C, Chen N, Ashaolu TJ. Prebiotic and modulatory evidence of lactoferrin on gut health and function. J Funct Foods 2023; 108:105741. [DOI: 10.1016/j.jff.2023.105741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
10
|
El-Fakharany EM, Abu-Serie MM, Ibrahim A, Eltarahony M. Anticancer activity of lactoferrin-coated biosynthesized selenium nanoparticles for combating different human cancer cells via mediating apoptotic effects. Sci Rep 2023; 13:9579. [PMID: 37311791 DOI: 10.1038/s41598-023-36492-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
The present study aims to develop a novel nanocombination with high selectivity against several invasive cancer cells, sparing normal cells and tissues. Bovine lactoferrin (bLF) has recently captured the interest of numerous medical fields owing to its biological activities and well-known immunomodulatory effects. BLF is an ideal protein to be encapsulated or adsorbed into selenium nanocomposites (Se NPs) in order to produce stable nanocombinations with potent anticancer effects and improved immunological functions. The biosynthesis of the functionalized Se NPs was achieved using Rhodotorula sp. strain MZ312359 via a simultaneous bio-reduction approach to selenium sodium salts. The physicochemical properties of Se NPs using SEM, TEM, FTIR, UV Vis, XRD, and EDX confirmed the formation of uniform agglomerated spheres with a size of 18-40 nm. Se NPs were successfully embedded in apo-LF (ALF), forming a novel nanocombination of ALF-Se NPs with a spherical shape and an average nanosize of less than 200 nm. The developed ALF-Se NPs significantly displayed an effective anti-proliferation efficiency against many cancer cells, including MCF-7, HepG-2, and Caco-2 cell lines, as compared to Se NPs and ALF in free forms. ALF-Se NPs showed a significant selectivity impact (> 64) against all treated cancer cells at IC50 63.10 ≤ μg/mL, as well as the strongest upregulation of p53 and suppression of Bcl-2, MMP-9, and VEGF genes. Besides, ALF-Se NPs were able to show the maximum activation of transcrition of key redox mediator (Nrf2) with suppression in reactive oxygen species (ROS) levels inside all treated cancer cells. This study demonstrates that this novel nanocombination of ALF-Se NPs has superior selectivity and apoptosis-mediating anticancer activity over free ALF or individual form of Se NPs.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab, 21934, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GE‑BRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab, 21934, Alexandria, Egypt
| | - Amany Ibrahim
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
- Department of Biology, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
- Ain Shams University, Cairo, Egypt
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab, 21934, Alexandria, Egypt
| |
Collapse
|
11
|
Zubeldia-Varela E, Barker-Tejeda TC, Mera-Berriatua L, Bazire R, Cabrera-Freitag P, Ubeda C, Barber D, Francino MP, Rojo D, Ibáñez-Sandín MD, Pérez-Gordo M. Further Insights into the Gut Microbiota of Cow's Milk Allergic Infants: Analysis of Microbial Functionality and Its Correlation with Three Fecal Biomarkers. Int J Mol Sci 2023; 24:ijms24119247. [PMID: 37298198 DOI: 10.3390/ijms24119247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Cow's milk allergy (CMA) is one of the most prevalent food allergies in children. Several studies have demonstrated that gut microbiota influences the acquisition of oral tolerance to food antigens at initial stages of life. Changes in the gut microbiota composition and/or functionality (i.e., dysbiosis) have been linked to inadequate immune system regulation and the emergence of pathologies. Moreover, omic sciences have become an essential tool for the analysis of the gut microbiota. On the other hand, the use of fecal biomarkers for the diagnosis of CMA has recently been reviewed, with fecal calprotectin, α-1 antitrypsin, and lactoferrin being the most relevant. This study aimed at evaluating functional changes in the gut microbiota in the feces of cow's milk allergic infants (AI) compared to control infants (CI) by metagenomic shotgun sequencing and at correlating these findings with the levels of fecal biomarkers (α-1 antitrypsin, lactoferrin, and calprotectin) by an integrative approach. We have observed differences between AI and CI groups in terms of fecal protein levels and metagenomic analysis. Our findings suggest that AI have altered glycerophospholipid metabolism as well as higher levels of lactoferrin and calprotectin that could be explained by their allergic status.
Collapse
Affiliation(s)
- Elisa Zubeldia-Varela
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, 28668 Boadilla del Monte, Spain
| | - Tomás Clive Barker-Tejeda
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, 28668 Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28668 Boadilla del Monte, Spain
| | - Leticia Mera-Berriatua
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, 28668 Boadilla del Monte, Spain
| | - Raphaëlle Bazire
- Department of Allergy, H. Infantil Universitario Niño Jesús, FibHNJ, ARADyAL-RETICs Instituto de Salud Carlos III, IIS-P, 28031 Madrid, Spain
| | - Paula Cabrera-Freitag
- Allergy Paediatric Unit, Allergy Service, Hospital General Universitario Gregorio Marañón, Gregorio Marañón Health Research Institute (IiSGM), 28007 Madrid, Spain
| | - Carles Ubeda
- Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain
| | - Domingo Barber
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, 28668 Boadilla del Monte, Spain
| | - María Pilar Francino
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain
- Joint Research Unit in Genomics and Health, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO) and Institut de Biologia Integrativa de Sistemes (Universitat de València/Consejo Superior de Investigaciones Científicas), Avda. Catalunya 21, 46020 València, Spain
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28668 Boadilla del Monte, Spain
| | - María Dolores Ibáñez-Sandín
- Department of Allergy, H. Infantil Universitario Niño Jesús, FibHNJ, ARADyAL-RETICs Instituto de Salud Carlos III, IIS-P, 28031 Madrid, Spain
| | - Marina Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, 28668 Boadilla del Monte, Spain
| |
Collapse
|
12
|
Estefanía M, Aldana G, Marianela M, Agustina LC, José MM, Fabián P, Sergio G. Lactoferrin affects in vitro and in vivo fertilization and implantation in rats. Biometals 2022; 36:575-585. [PMID: 36326924 DOI: 10.1007/s10534-022-00460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Lactoferrin (LF) is present in the oviduct, reduces in vitro gamete interaction, and affects sperm capacitation parameters in humans. Our aim was to investigate LF actions on further stages of the reproductive process in the Wistar rat model. Motile sperm were obtained from cauda epididymis to assess LF binding by direct immunofluorescence and LF effect on acrosome reaction (AR) using a Coomassie blue staining. After ovarian hyperstimulation of female rats, oocytes were surgically recovered and coincubated with motile sperm and different doses of LF to estimate the in vitro fertilization (IVF) rate. To evaluate the LF effect on pregnancy and embryo implantation, female rats (80 days old) were placed with males and received daily intraperitoneal injections of LF during one complete estrous cycle (pregnancy experiments) or during the first 8 gestational days (implantation experiments). The number of pregnant females and live born pups was recorded after labor. Moreover, the number of implantation sites was registered during the implantation period. LF was able to bind to the sperm head, midpiece, and tail. 10 and 100 μg/ml LF stimulated the AR but reduced the IVF rate. The administration of 100 and 200 mg/kg LF significantly decreased the number of implantation sites and the litter size, whereas 100 mg/kg LF declined the pregnancy rate. The results suggest that LF might interfere with the reproductive process, possibly interfering with gamete interaction or inducing a premature AR; nevertheless, the mechanisms involved are yet to be elucidated.
Collapse
Affiliation(s)
- Massa Estefanía
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Gola Aldana
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Moriconi Marianela
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Lo Celso Agustina
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Madariaga María José
- Area of Morphology, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Pelusa Fabián
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Ghersevich Sergio
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina.
| |
Collapse
|
13
|
Wang B, Zhao J, Lu W, Ma Y, Wang X, An X, Fan Z. The preparation of lactoferrin/magnesium silicate lithium injectable hydrogel and application in promoting wound healing. Int J Biol Macromol 2022; 220:1501-1511. [PMID: 36122774 DOI: 10.1016/j.ijbiomac.2022.09.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
The development of novel wound dressings with highly effective antibacterial and accelerating wound healing properties has become the focus of current research. In this study, a novel and injectable lactoferrin (LF)/lithium magnesium silicate hydrogel (LMSH) was first synthesized through a simple electrostatic interaction method. The physical and biological properties are systematically characterized. The results show that the synthesized LF/LMSH has good antibacterial properties and biocompatibility. More importantly, it can effectively promote wound healing in the rat full-thickness skin wound model after 14 days post-operation, and the healing rate can reach 99.1 %, which is much higher than that of other groups. Meanwhile, histochemical and immunofluorescent staining confirm that the prepared injectable LF/LMSH has good pro-collagen deposition, pro-angiogenic and anti-inflammatory properties. The healed wounds present a consistently thickened epidermis with more follicular and glandular structures, indicating the great potential of the prepared material for wound management.
Collapse
Affiliation(s)
- Bei Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Jiayuan Zhao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Wenxin Lu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Yuanya Ma
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Xusen Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaoli An
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China.
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
14
|
Camels' biological fluids contained nanobodies: promising avenue in cancer therapy. Cancer Cell Int 2022; 22:279. [PMID: 36071488 PMCID: PMC9449263 DOI: 10.1186/s12935-022-02696-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a major health concern and accounts for one of the main causes of death worldwide. Innovative strategies are needed to aid in the diagnosis and treatment of different types of cancers. Recently, there has been an evolving interest in utilizing nanobodies of camel origin as therapeutic tools against cancer. Nanotechnology uses nanobodies an emerging attractive field that provides promises to researchers in advancing different scientific sectors including medicine and oncology. Nanobodies are characteristically small-sized biologics featured with the ability for deep tissue penetration and dissemination and harbour high stability at high pH and temperatures. The current review highlights the potential use of nanobodies that are naturally secreted in camels’ biological fluids, both milk and urine, in the development of nanotechnology-based therapy for treating different typesQuery of cancers and other diseases. Moreover, the role of nano proteomics in the invention of novel therapeutic agents specifically used for cancer intervention is also illustrated.
Collapse
|
15
|
Duarte LG, Picone CS. Antimicrobial activity of lactoferrin-chitosan-gellan nanoparticles and their influence on strawberry preservation. Food Res Int 2022; 159:111586. [DOI: 10.1016/j.foodres.2022.111586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 01/09/2023]
|
16
|
Li Y, Dong L, Mu Z, Liu L, Yang J, Wu Z, Pan D, Liu L. Research Advances of Lactoferrin in Electrostatic Spinning, Nano Self-Assembly, and Immune and Gut Microbiota Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10075-10089. [PMID: 35968926 DOI: 10.1021/acs.jafc.2c04241] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lactoferrin (LF) is a naturally present iron-binding globulin with the structural properties of an N-lobe strongly positively charged terminus and a cage-like structure of nano self-assembly encapsulation. These unique structural properties give it potential for development in the fields of electrostatic spinning, targeted delivery systems, and the gut-brain axis. This review will provide an overview of LF's unique structure, encapsulation, and targeted transport capabilities, as well as its applications in immunity and gut microbiota regulation. First, the microstructure of LF is summarized and compared with its homologous ferritin, revealing both structural and functional similarities and differences between them. Second, the electrostatic interactions of LF and its application in electrostatic spinning are summarized. Its positive charge properties can be applied to functional environmental protection packaging materials and to improving drug stability and antiviral effects, while electrostatic spinning can promote bone regeneration and anti-inflammatory effects. Then the nano self-assembly behavior of LF is exploited as a cage-like protein to encapsulate bioactive substances to construct functional targeted delivery systems for applications such as contrast agents, antibacterial dressings, anti-cancer therapy, and gene delivery. In addition, some covalent and noncovalent interactions of LF in the Maillard reaction and protein interactions and other topics are briefly discussed. Finally, LF may affect immunological function via controlling the gut microbiota. In conclusion, this paper reviews the research advances of LF in electrostatic spinning, nano self-assembly, and immune and gut microbiota regulation, aiming to provide a reference for its application in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Zhishen Mu
- Inner Mongolia Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, PR China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-6205, United States
| | - Junsi Yang
- Department of Food Science and Technology, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-6205, United States
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| |
Collapse
|
17
|
Augmenting apoptosis-mediated anticancer activity of lactoperoxidase and lactoferrin by nanocombination with copper and iron hybrid nanometals. Sci Rep 2022; 12:13153. [PMID: 35915221 PMCID: PMC9343395 DOI: 10.1038/s41598-022-17357-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
There is an urgent need in the medicinal fields to discover biocompatible nanoformulations with low cytotoxicity, which provide new strategies for promising therapies for several types of tumors. Bovine lactoperoxidase (LP) and lactoferrin (LF) have recently attracted attention in medicine for their antitumor activities with recognized safety pattern. Both LP and LF are suitable proteins to be coated or adsorbed to Cu and Fe nanometals for developing stable nanoformulations that boost immunity and strong anticancer effects. New nanometals of Cu and Fe NPs embedded in LP and LF forming novel nanocombinations of LP-CNPs and LF-FNPs had a spherical shape with an average nanosize of about 21 nm. The combination of LP-CNPs and LF-FNPs significantly exhibited the highest growth inhibitory efficacy, in terms of effectively lowering the half-maximal inhibitory concentration (IC50) values, against Caco-2, HepG2 and MCF7 cells comparing to nanometals, LP, LF and individual nanoproteins (LP-CNPs or LF-FNPs). The highest apoptotic effect of this nanocombination (LP-CNPs and LF-FNPs) was confirmed by the highest percentages of annexin-stained apoptotic cells and G0 population with the strongest alteration in the expression of two well-characterized apoptosis guards (p53 and Bcl-2) and the maximum suppression in the proliferation marker (Ki-67). Also, the in silico analysis predicted that LP-CNPs and LF-FNPs enhanced AMP-activated protein kinase (AMPK, p53 activator) activity and inhibited cancer migration-related proteases (cathepsin B and matrix metalloproteinase (MMP)-9). Our results offer for the first time that these novel nanocombinations of LP and LF were superior in their selectivity and apoptosis-mediating anticancer activity to Cu and Fe nanometals as well as the free form of these proteins or their individual nanoforms.
Collapse
|
18
|
Xia X, Zhang C, Li L, Wang S, Ding X, He J, Xu S, Wang M. Bovine Lactoferrin Alleviates Pulmonary Lipid Peroxidation and Inflammatory Damage in Heat Stroke Rats. Ther Hypothermia Temp Manag 2022; 12:223-228. [PMID: 35605088 DOI: 10.1089/ther.2022.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lung injury occurring in the early stage of heat stroke (HS) leads to hypoxia and further aggravation of other organic damage. Lactoferrin (LF) is an iron binding protein with anti-inflammatory and antioxidant effects. This study focuses on the protection of preadministration of bovine lactoferrin (BLF) against lung injury in rats with HS. Sixty-four Sprague-Dawley male rats were divided into four groups randomly: control (CON)+phosphate-buffered saline (PBS) (n = 16), HS+PBS (n = 16), HS+low-dose BLF (LBLF) (n = 16), and HS+high-dose BLF (HBLF) (n = 16). CON+PBS and HS+PBS were preadministered 10 mL/kg PBS for 1 week. HS+LBLF and HS+HBLF were preadministered 100 and 200 mg/kg BLF for 1 week, respectively. The HS onset time and the survival rate were recorded, and bronchoalveolar lavage fluid was obtained to measure protein concentration. Lung was obtained for pathological analysis and wet/dry weight ratio measurement; later, the content of malondialdehyde (MDA), activity of myeloperoxidase (MPO), and superoxide dismutase (SOD) were measured in lung tissue homogenate. The results indicated that BLF preadministration could delay the HS onset time, enhance the survival rate, the levels of serum inflammatory cytokine and MDA content in HS+LBLF and HS+HBLF showed significant reduction compared with HS+PBS, while a significant elevation of SOD activity and reduction of MPO activity in HS+HBLF. Our results demonstrate that BLF preadministration could relieve lung injury in HS rats by enhancing thermal endurance, and alleviating serum inflammatory response and pulmonary oxidative stress damage.
Collapse
Affiliation(s)
- Xinyu Xia
- Department of Emergency, The First Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of Emergency, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chenjie Zhang
- Department of Vasculocardiology, The First People's Hospital of Kunshan, Suzhou, China
| | - Lei Li
- Department of Emergency, The First Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of Emergency, The Second Naval Hospital of Southern Theater Command of PLA, Hainan, China
| | - Shaokang Wang
- Department of Emergency, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xian Ding
- Department of Emergency, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jian He
- Department of Emergency, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shuogui Xu
- Department of Orthopedic Trauma, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Meitang Wang
- Department of Emergency, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
19
|
Duarte LG, Alencar WM, Iacuzio R, Silva NC, Picone CS. Synthesis, characterization and application of antibacterial lactoferrin nanoparticles. Curr Res Food Sci 2022; 5:642-652. [PMID: 35373146 PMCID: PMC8971344 DOI: 10.1016/j.crfs.2022.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Lactoferrin (L) and gellan gum (G) nanoparticles were produced in different biopolymer proportions through electrostatic complexation to enhance the antimicrobial properties of lactoferrin. The nanoparticles were characterized according to size, charge density, morphology and antimicrobial activity against S. aureus and E. coli, in two different broths to show the effect of the broth composition on the nanoparticle activity. The 9L:1G particles showed the highest positive zeta potential (+21.20 mV) and reduced diameter (92.03 nm) which resulted in a minimum inhibitory concentration six times smaller (0.3 mg/ml) than pure lactoferrin (2 mg/ml). However, the bacteriostatic action of nanoparticles was inhibited in the presence of divalent cations. When applied to strawberries as a coating, lactoferrin nanoparticles extended fruit shelf-life up to 6 days in the presence of carboxymethylcellulose (CMC). Therefore, lactoferrin-gellan gum complexation was proved to be a promising tool to enhance lactoferrin antimicrobial action and broaden its application as a food preserver.
Collapse
Affiliation(s)
- Larissa G.R. Duarte
- School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - William M.P. Alencar
- School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Raiza Iacuzio
- School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Nathália C.C. Silva
- School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Carolina S.F. Picone
- School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| |
Collapse
|
20
|
Du Y, Li D, Chen J, Li YH, Zhang Z, Hidayat K, Wan Z, Xu JY, Qin LQ. Lactoferrin improves hepatic insulin resistance and pancreatic dysfunctions in high-fat diet and streptozotocin-induced diabetic mice. Nutr Res 2022; 103:47-58. [DOI: 10.1016/j.nutres.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022]
|
21
|
López-Machado A, Díaz N, Cano A, Espina M, Badía J, Baldomà L, Calpena AC, Biancardi M, Souto EB, García ML, Sánchez-López E. Development of topical eye-drops of lactoferrin-loaded biodegradable nanoparticles for the treatment of anterior segment inflammatory processes. Int J Pharm 2021; 609:121188. [PMID: 34655707 DOI: 10.1016/j.ijpharm.2021.121188] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022]
Abstract
Ocular inflammation is one of the most common comorbidities associated to ophthalmic surgeries and disorders. Since conventional topical ophthalmic treatments present disadvantages such as low bioavailability and relevant side effects, natural alternatives constitute an unmet medical need. In this sense, lactoferrin, a high molecular weight protein, is a promising alternative against inflammation. However, lactoferrin aqueous instability and high nasolacrimal duct drainage compromises its potential effectiveness. Moreover, nanotechnology has led to an improvement in the administration of active compounds with compromised biopharmaceutical profiles. Here, we incorporate lactoferrin into biodegradable polymeric nanoparticles and optimized the formulation using the design of experiments approach. A monodisperse nanoparticles population was obtained with an average size around 130 nm and positive surface charge. Pharmacokinetic and pharmacodynamic behaviour were improved by the nanoparticles showing a prolonged lactoferrin release profile. Lactoferrin nanoparticles were non-cytotoxic and non-irritant neither in vitro nor in vivo. Moreover, nanoparticles exhibited significantly increased anti-inflammatory efficacy in cell culture and preclinical assays. In conclusion, lactoferrin loaded nanoparticles constitute a safe and novel nanotechnological tool suitable for the treatment of ocular inflammation.
Collapse
Affiliation(s)
- Ana López-Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Natalia Díaz
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Josefa Badía
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal; CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
22
|
The role of dietary proteins and carbohydrates in gut microbiome composition and activity: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Development of Lactoferrin-Loaded Liposomes for the Management of Dry Eye Disease and Ocular Inflammation. Pharmaceutics 2021; 13:pharmaceutics13101698. [PMID: 34683990 PMCID: PMC8539938 DOI: 10.3390/pharmaceutics13101698] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Dry eye disease (DED) is a high prevalent multifactorial disease characterized by a lack of homeostasis of the tear film which causes ocular surface inflammation, soreness, and visual disturbance. Conventional ophthalmic treatments present limitations such as low bioavailability and side effects. Lactoferrin (LF) constitutes a promising therapeutic tool, but its poor aqueous stability and high nasolacrimal duct drainage hinder its potential efficacy. In this study, we incorporate lactoferrin into hyaluronic acid coated liposomes by the lipid film method, followed by high pressure homogenization. Pharmacokinetic and pharmacodynamic profiles were evaluated in vitro and ex vivo. Cytotoxicity and ocular tolerance were assayed both in vitro and in vivo using New Zealand rabbits, as well as dry eye and anti-inflammatory treatments. LF loaded liposomes showed an average size of 90 nm, monomodal population, positive surface charge and a high molecular weight protein encapsulation of 53%. Biopharmaceutical behaviour was enhanced by the nanocarrier, and any cytotoxic effect was studied in human corneal epithelial cells. Developed liposomes revealed the ability to reverse dry eye symptoms and possess anti-inflammatory efficacy, without inducing ocular irritation. Hence, lactoferrin loaded liposomes could offer an innovative nanotechnological tool as suitable approach in the treatment of DED.
Collapse
|
24
|
Li YQ, Guo C. A Review on Lactoferrin and Central Nervous System Diseases. Cells 2021; 10:cells10071810. [PMID: 34359979 PMCID: PMC8307123 DOI: 10.3390/cells10071810] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Central nervous system (CNS) diseases are currently one of the major health issues around the world. Most CNS disorders are characterized by high oxidative stress levels and intense inflammatory responses in affected tissues. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein, plays a significant role in anti-inflammatory, antibacterial, antiviral, reactive oxygen species (ROS) modulator, antitumor immunity, and anti-apoptotic processes. Previous studies have shown that Lf is abnormally expressed in a variety of neurological diseases, especially neurodegenerative diseases. Recently, the promotion of neurodevelopment and neuroprotection by Lf has attracted widespread attention, and Lf could be exploited both as an active therapeutic agent and drug nanocarrier. However, our understanding of the roles of Lf proteins in the initiation or progression of CNS diseases is limited, especially the roles of Lf in regulating neurogenesis. This review highlights recent advances in the understanding of the major pharmacological effects of Lf in CNS diseases, including neurodegenerative diseases, cerebrovascular disease, developmental delays in children, and brain tumors.
Collapse
Affiliation(s)
| | - Chuang Guo
- Correspondence: ; Tel.: +86-24-8365-6109
| |
Collapse
|
25
|
Jain A, Prajapati SK, Tripathi M, Raichur AM, Kanwar JR. Exploring the room for repurposed hydroxychloroquine to impede COVID-19: toxicities and multipronged combination approaches with pharmaceutical insights. Expert Rev Clin Pharmacol 2021; 14:715-734. [PMID: 33769888 DOI: 10.1080/17512433.2021.1909473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: SARS-CoV-2 has fatally affected the whole world with millions of deaths. Amidst the dilemma of a breakthrough in vaccine development, hydroxychloroquine (HCQ) was looked upon as a prospective repurposed candidate. It has confronted numerous controversies in the past few months as a chemoprophylactic and treatment option for COVID-19. Recently, it has been withdrawn by the World Health Organization for its use in an ongoing pandemic. However, its benefit/risk ratio regarding its use in COVID-19 disease remains poorly justified. An extensive literature search was done using Scopus, PubMed, Google Scholar, www.cdc.gov, www.fda.gov, and who.int.Areas covered: Toxicity vexations of HCQ; pharmaceutical perspectives on new advances in drug delivery approaches; computational modeling (PBPK and PD modeling) overtures; multipronged combination approaches for enhanced synergism with antiviral and anti-inflammatory agents; immuno-boosting effects.Expert commentary: Harnessing the multipronged pharmaceutical perspectives will optimistically help the researchers, scientists, biotech, and pharmaceutical companies to bring new horizons in the safe and efficacious utilization of HCQ alone or in combination with remdesivir and immunomodulatory molecules like bovine lactoferrin in a fight against COVID-19. Combinational therapies with free forms or nanomedicine based targeted approaches can act synergistically to boost host immunity and stop SARS-CoV-2 replication and invasion to impede the infection.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore - Karnataka, India
| | - Shiv Kumar Prajapati
- Department of Pharmaceutical Sciences, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, Uttar Pradesh, India
| | - Madhavi Tripathi
- Department of Materials Engineering, Indian Institute of Science, Bangalore - Karnataka, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore - Karnataka, India
| | - Jagat R Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, Madhya Pradesh, India
| |
Collapse
|
26
|
DeRosa A, Leftin A. The Iron Curtain: Macrophages at the Interface of Systemic and Microenvironmental Iron Metabolism and Immune Response in Cancer. Front Immunol 2021; 12:614294. [PMID: 33986740 PMCID: PMC8110925 DOI: 10.3389/fimmu.2021.614294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages fulfill central functions in systemic iron metabolism and immune response. Infiltration and polarization of macrophages in the tumor microenvironment is associated with differential cancer prognosis. Distinct metabolic iron and immune phenotypes in tumor associated macrophages have been observed in most cancers. While this prompts the hypothesis that macroenvironmental manifestations of dysfunctional iron metabolism have direct associations with microenvironmental tumor immune response, these functional connections are still emerging. We review our current understanding of the role of macrophages in systemic and microenvironmental immune response and iron metabolism and discuss these functions in the context of cancer and immunometabolic precision therapy approaches. Accumulation of tumor associated macrophages with distinct iron pathologies at the invasive tumor front suggests an "Iron Curtain" presenting as an innate functional interface between systemic and microenvironmental iron metabolism and immune response that can be harnessed therapeutically to further our goal of treating and eliminating cancer.
Collapse
Affiliation(s)
- Angela DeRosa
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, United States
| | - Avigdor Leftin
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, United States
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
27
|
Liu ZS, Lin CF, Lee CP, Hsieh MC, Lu HF, Chen YF, Ku YW, Chen PW. A Single Plasmid of Nisin-Controlled Bovine and Human Lactoferrin Expressing Elevated Antibacterial Activity of Lactoferrin-Resistant Probiotic Strains. Antibiotics (Basel) 2021; 10:antibiotics10020120. [PMID: 33513782 PMCID: PMC7911973 DOI: 10.3390/antibiotics10020120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 11/28/2022] Open
Abstract
Lactoferrin (LF) is a multifunctional protein found in mammals, and it shows broad-spectrum antimicrobial activity. To improve the functional properties of specific probiotics in order to provide both the beneficial characteristics of lactic acid bacteria and the biological activity of LF, cDNAs of bovine LF (BLF), human LF (HLF), or porcine LF (PLF) were cloned into a nisin-inducible plasmid. These were then transformed into the selected eight probiotics, which are LF-resistant hosts. Expression of recombinant LFs (rLFs) was analyzed via SDS-PAGE and Western blot analysis. Although the selected host strains may not contain the nisRK genes (NisK, the sensor kinase; NisR, the regulator protein), the components of autoregulation, a low level of LFs expression can be successfully induced by using nisin within bacterial cells in a time-dependent manner in three engineered clones, including Lactobacillus delbrueckii/HLF, L. delbrueckii/BLF, and L. gasseri/BLF. Lactobacillus delbrueckii and Lactobacillus gasseri originate from yogurt and human milk, respectively, and both strains are functional probiotic strains. Therefore, we further compared the antibacterial activities of disrupted recombinant probiotic clones, conventional strains (host control), and vector control ones by using agar diffusion and broth inhibition analysis, and the expression of rLFs in the above three clones considerately improved their antibacterial efficacies against four important food-borne pathogens, namely, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and Salmonellaenterica. In conclusion, this study provides a simple strategy for the production of functional LFs (BLF and HLF) in both functional and LF-resistant hosts for applications in the field.
Collapse
Affiliation(s)
- Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; (Z.-S.L.); (M.-C.H.); (H.-F.L.)
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Chung-Pei Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan;
| | - Min-Chi Hsieh
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; (Z.-S.L.); (M.-C.H.); (H.-F.L.)
| | - Hung-Fu Lu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; (Z.-S.L.); (M.-C.H.); (H.-F.L.)
| | - Ying-Fang Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan; (Y.-F.C.); (Y.-W.K.)
| | - Yu-We Ku
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan; (Y.-F.C.); (Y.-W.K.)
| | - Po-Wen Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan; (Y.-F.C.); (Y.-W.K.)
- Correspondence: ; Tel.: +886-4-22840368-36
| |
Collapse
|
28
|
Evaluation of Direct and Cell-Mediated Lactoferrin Gene Therapy for the Maxillofacial Area Abscesses in Rats. Pharmaceutics 2021; 13:pharmaceutics13010058. [PMID: 33406760 PMCID: PMC7823524 DOI: 10.3390/pharmaceutics13010058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
Resistance to antibacterial therapy requires the discovery of new methods for the treatment of infectious diseases. Lactoferrin (LTF) is a well-known naïve first-line defense protein. In the present study, we suggested the use of an adenoviral vector (Ad5) carrying the human gene encoding LTF for direct and cell-mediated gene therapy of maxillofacial area phlegmon in rats. Abscesses were developed by injection of the purulent peritoneal exudate in the molar region of the medial surface of the mandible. At 3-4 days after phlegmon maturation, all rats received ceftriaxone and afterward were subcutaneously injected around the phlegmon with: (1) Ad5 carrying reporter gfp gene encoding green fluorescent protein (Ad5-GFP control group), (2) Ad5 carrying LTF gene (Ad5-LTF group), (3) human umbilical cord blood mononuclear cells (UCBC) transduced with Ad5-GFP (UCBC + Ad5-GFP group), and (4) UCBC transduced with Ad5-LTF (UCBC + Ad5-LTF group). Control rats developed symptoms considered to be related to systemic inflammation and were euthanized at 4-5 days from the beginning of the treatment. Rats from therapeutic groups demonstrated wound healing and recovery from the fifth to seventh day based on the type of therapy. Histological investigation of cervical lymph nodes revealed purulent lymphadenitis in control rats and activated lymphatic tissue in rats from the UCBC + Ad5-LTF group. Our results propose that both approaches of LTF gene delivery are efficient for maxillofacial area phlegmon recovery in rats. However, earlier wound healing and better outcomes in cervical lymph node remodeling in the UCBC + Ad5-LTF group, as well as the lack of direct exposure of the viral vector to the organism, which may cause toxic and immunogenic effects, suggest the benefit of cell-mediated gene therapy.
Collapse
|
29
|
Rascón-Cruz Q, Espinoza-Sánchez EA, Siqueiros-Cendón TS, Nakamura-Bencomo SI, Arévalo-Gallegos S, Iglesias-Figueroa BF. Lactoferrin: A Glycoprotein Involved in Immunomodulation, Anticancer, and Antimicrobial Processes. Molecules 2021; 26:molecules26010205. [PMID: 33401580 PMCID: PMC7795860 DOI: 10.3390/molecules26010205] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Lactoferrin is an iron binding glycoprotein with multiple roles in the body. Its participation in apoptotic processes in cancer cells, its ability to modulate various reactions of the immune system, and its activity against a broad spectrum of pathogenic microorganisms, including respiratory viruses, have made it a protein of broad interest in pharmaceutical and food research and industry. In this review, we have focused on describing the most important functions of lactoferrin and the possible mechanisms of action that lead to its function.
Collapse
|
30
|
Fan Y, Jiang J, Song S, Chen X. The selective extraction of iron-binding glycoprotein lactoferrin via a “deferrization-restoring” SPE strategy. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Sabra S, Agwa MM. Lactoferrin, a unique molecule with diverse therapeutical and nanotechnological applications. Int J Biol Macromol 2020; 164:1046-1060. [PMID: 32707283 PMCID: PMC7374128 DOI: 10.1016/j.ijbiomac.2020.07.167] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 01/25/2023]
Abstract
Lactoferrin (LF) is a naturally glycoprotein with iron-binding properties and diverse biological applications including; antiviral, anti-inflammatory, antioxidant, anti-cancer and immune stimulating effects. In addition, LF was found to be an ideal nanocarrier for some hydrophobic therapeutics because of its active targeting potential due to overexpression of its receptor on the surface of many cells. Moreover, it was proven to be a good candidate for fabrication of nanocarriers to specifically deliver drugs in case of brain tumors owing to the capability of LF to cross the blood brain barrier (BBB). Consequently, it seems to be a promising molecule with multiple applications in the field of cancer therapy and nanomedicine.
Collapse
Affiliation(s)
- Sally Sabra
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt.
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El-Behooth St, Dokki, Giza 12311, Egypt.
| |
Collapse
|
32
|
El-Fakharany EM. Nanoformulation of lactoferrin potentiates its activity and enhances novel biotechnological applications. Int J Biol Macromol 2020; 165:970-984. [PMID: 33011258 DOI: 10.1016/j.ijbiomac.2020.09.235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023]
|
33
|
Saettone V, Biasato I, Radice E, Schiavone A, Bergero D, Meineri G. State-of-the-Art of the Nutritional Alternatives to the Use of Antibiotics in Humans and Monogastric Animals. Animals (Basel) 2020; 10:ani10122199. [PMID: 33255356 PMCID: PMC7759783 DOI: 10.3390/ani10122199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Antibiotic resistance represents a worldwide recognized issue affecting both human and veterinary medicine, with a particular focus being directed towards monogastric animals destined for human consumption. This scenario is the result of frequent utilization of the antibiotics either for therapeutic purposes (humans and animals) or as growth promoters (farmed animals). Therefore, the search for nutritional alternatives has progressively been the object of significant efforts by the scientific community. So far, probiotics, prebiotics and postbiotics are considered the most promising products, as they are capable of preventing or treating gastrointestinal diseases as well as restoring a eubiosis condition after antibiotic-induced dysbiosis development. This review provides an updated state-of-the-art of these nutritional alternatives in both humans and monogastric animals. Abstract In recent years, the indiscriminate use of antibiotics has been perpetrated across human medicine, animals destined for zootechnical productions and companion animals. Apart from increasing the resistance rate of numerous microorganisms and generating multi-drug resistance (MDR), the nonrational administration of antibiotics causes sudden changes in the structure of the intestinal microbiota such as dysbiotic phenomena that can have a great clinical significance for both humans and animals. The aim of this review is to describe the state-of-the-art of alternative therapies to the use of antibiotics and their effectiveness in humans and monogastric animals (poultry, pigs, fish, rabbits, dogs and cats). In particular, those molecules (probiotics, prebiotics and postbiotics) which have a direct function on the gastrointestinal health are herein critically analysed in the prevention or treatment of gastrointestinal diseases or dysbiosis induced by the consumption of antibiotics.
Collapse
Affiliation(s)
- Vittorio Saettone
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy
- Correspondence:
| | - Elisabetta Radice
- Department of Surgical Sciences, Medical School, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy;
| | - Achille Schiavone
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Domenico Bergero
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Giorgia Meineri
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| |
Collapse
|
34
|
Elzoghby AO, Abdelmoneem MA, Hassanin IA, Abd Elwakil MM, Elnaggar MA, Mokhtar S, Fang JY, Elkhodairy KA. Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand. Biomaterials 2020; 263:120355. [PMID: 32932142 PMCID: PMC7480805 DOI: 10.1016/j.biomaterials.2020.120355] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Recent progress in protein-based nanomedicine, inspired by the success of Abraxane® albumin-paclitaxel nanoparticles, have resulted in novel therapeutics used for treatment of challenging diseases like cancer and viral infections. However, absence of specific drug targeting, poor pharmacokinetics, premature drug release, and off-target toxicity are still formidable challenges in the clinic. Therefore, alternative protein-based nanomedicines were developed to overcome those challenges. In this regard, lactoferrin (Lf), a glycoprotein of transferrin family, offers a promising biodegradable well tolerated material that could be exploited both as an active therapeutic and drug nanocarrier. This review highlights the major pharmacological actions of Lf including anti-cancer, antiviral, and immunomodulatory actions. Delivery technologies of Lf to improve its pries and enhance its efficacy were also reviewed. Moreover, different nano-engineering strategies used for fabrication of drug-loaded Lf nanocarriers were discussed. In addition, the use of Lf for functionalization of drug nanocarriers with emphasis on tumor-targeted drug delivery was illustrated. Besides its wide application in oncology nano-therapeutics, we discussed the recent advances of Lf-based nanocarriers as efficient platforms for delivery of anti-parkinsonian, anti-Alzheimer, anti-viral drugs, immunomodulatory and bone engineering applications.
Collapse
Affiliation(s)
- Ahmed O Elzoghby
- Center for Engineered Therapeutics, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences & Technology (HST), Cambridge, MA, 02139, USA; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Mona A Abdelmoneem
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Damanhur University, Damanhur, 22516, Egypt
| | - Islam A Hassanin
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Mahmoud M Abd Elwakil
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Manar A Elnaggar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Nanotechnology Program, School of Sciences & Engineering, The American University in Cairo (AUC), New Cairo, 11835, Egypt
| | - Sarah Mokhtar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan
| | - Kadria A Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
35
|
Shi P, Fan F, Chen H, Xu Z, Cheng S, Lu W, Du M. A bovine lactoferrin–derived peptide induced osteogenesis via regulation of osteoblast proliferation and differentiation. J Dairy Sci 2020; 103:3950-3960. [DOI: 10.3168/jds.2019-17425] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/13/2020] [Indexed: 01/24/2023]
|
36
|
Ibuki M, Shoda C, Miwa Y, Ishida A, Tsubota K, Kurihara T. Lactoferrin Has a Therapeutic Effect via HIF Inhibition in a Murine Model of Choroidal Neovascularization. Front Pharmacol 2020; 11:174. [PMID: 32180725 PMCID: PMC7059857 DOI: 10.3389/fphar.2020.00174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/07/2020] [Indexed: 12/30/2022] Open
Abstract
Background Lactoferrin, a type of glycoprotein, is contained in exocrine fluids such as tears, breast milk, sweat, and saliva, and is known to have anti-microbial, antioxidant, and anti-cancer effects. In the ophthalmological field, topical administration of lactoferrin has been reported to have a therapeutic effect in a murine dry eye model. Hypoxia-inducible factor (HIF) regulates various gene expressions under hypoxia, including vascular endothelial growth factor (VEGF), and is considered as an alternative target for neovascular ocular diseases such as age-related macular degeneration (AMD). We previously screened natural products and identified lactoferrin as a novel HIF inhibitor. In this study, we confirmed that lactoferrin has an HIF inhibitory effect and a therapeutic effect in a murine model of neovascular AMD. Methods HIF inhibitory effects of lactoferrin were evaluated using a luciferase assay and western blotting in vitro. The quantified volume of choroidal neovascularization (CNV) induced by laser irradiation was compared with oral lactoferrin administration or conditional tissue specific Hif1a knockout mice. Results Lactoferrin administration showed a significant HIF inhibitory effect in the retinal neuronal cells. Oral administration of lactoferrin or conditional Hif1a gene deletion significantly reduced CNV volume compared to controls. Conclusions Lactoferrin has a therapeutic effect in a laser CNV model by suppressing the retinal HIF activity.
Collapse
Affiliation(s)
- Mari Ibuki
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Chiho Shoda
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Nihon University, Tokyo, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Ayako Ishida
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Tsubota Laboratory, Inc., Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Kao HF, Wang YC, Tseng HY, Wu LSH, Tsai HJ, Hsieh MH, Chen PC, Kuo WS, Liu LF, Liu ZG, Wang JY. Goat Milk Consumption Enhances Innate and Adaptive Immunities and Alleviates Allergen-Induced Airway Inflammation in Offspring Mice. Front Immunol 2020; 11:184. [PMID: 32132998 PMCID: PMC7040033 DOI: 10.3389/fimmu.2020.00184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/23/2020] [Indexed: 11/13/2022] Open
Abstract
Goat milk (GM), as compared to cow milk (CM), is easier for humans to digest. It also has antioxidant and anti-inflammatory effects and can improve minor digestive disorders and prevent allergic diseases in infants. It is unclear whether GM consumed in pregnant mothers has any protective effects on allergic diseases in infants. In this experimental study with mice, we found GM feeding enhanced immunoglobulin production, antigen-specific (ovalbumin, OVA) immune responses, and phagocytosis activity. The GM-fed mice had an increasing proportion of CD3+ T lymphocytes in the spleen. Splenocytes isolated from these animals also showed significantly increased production of cytokines IFN-γ and IL-10. More importantly, GM feeding during pregnancy and lactation periods can confer protective activity onto offspring by alleviating the airway inflammation of allergic asthma induced by mite allergens. There was a remarkably different composition of gut microbiota between offspring of pregnant mice fed with water or with milk (GM or CM). There was a greater proportion of beneficial bacterial species, such as Akkermansia muciniphila, Bacteroides eggerthii, and Parabacteroides goldsteinii in the gut microbiota of offspring from GM- or CM-fed pregnant mice compared to the offspring of water-fed pregnant mice. These results suggested that improving the nutrition of pregnant mice can promote immunological maturation and colonization of gut microbiota in offspring. This mother-to-child biological action may provide a protective effect on atopy development and alleviate allergen-induced airway inflammation in offspring.
Collapse
Affiliation(s)
- Hui-Fang Kao
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Yu-Chin Wang
- Center for Allergy and Clinical Immunology Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Ying Tseng
- Center for Allergy and Clinical Immunology Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Hui-Ju Tsai
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Miao-Hsi Hsieh
- Graduate Institute of Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chi Chen
- Graduate Institute of Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Shou Kuo
- Center for Allergy and Clinical Immunology Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Li-Fan Liu
- Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Zhi-Gang Liu
- Department of Respirology and Allergy, Third Affiliated Hospital of Shengzhen University, Shengzhen, China
| | - Jiu-Yao Wang
- Center for Allergy and Clinical Immunology Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan
| |
Collapse
|
38
|
Matsumura E, Kosuge N, Nakanishi S, Suda T, Sugawa A, Fujimura T, Miyagi R, Yoshimi N, Saito S. Urine Lactoferrin as a Potential Biomarker Reflecting the Degree of Malignancy in Urothelial Carcinoma of the Bladder. TOHOKU J EXP MED 2020; 252:225-244. [PMID: 33162487 DOI: 10.1620/tjem.252.225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Urothelial carcinoma of the bladder (UCB) is potentially life-threatening; therefore, we aimed to discover a novel urine biomarker for diagnosis and prognostication of UCB. This is a retrospective case-control study. Exploration of a new biomarker using urine from 20 UCB patients in the present study revealed that urinary level of lactoferrin (LF), a multifunctional glycoprotein released from neutrophils, was higher in 11 of 15 with invasive/high-grade UCB than 5 with non-invasive one, and 2 healthy adults. We therefore focused on LF and assessed the value of urine LF normalized by urine creatinine concentration (LF/Cr) using an enzyme-linked immunosorbent assay. Diagnostic performance of urine LF/Cr was examined using urine from 92 patients with primary (newly diagnosed) untreated UCB and 166 controls without UCB, including 62 patients with pyuria, and 104 subjects without pyuria consisting of 84 patients and 20 healthy adults. However, the diagnostic accuracies were accompanied by the risk of bias. In 92 primary UCB patients, both pyuria and tumor-infiltrating neutrophils (TINs) were independent predictors for urine LF/Cr. In contrast, TINs or urine LF/Cr were independent predictors for invasive histology, whereas pyuria was not. In terms of prognostication, urine LF/Cr and nodal metastasis were independent predictors of disease-specific survival in 22 patients with muscle-invasive bladder cancer, characterized by a high mortality rate, in the Cox proportional hazards model. In conclusion, urine LF/Cr linked to TINs was a predictor of both invasive histology and prognosis in UCB. Urine LF/Cr is a potential biomarker reflecting the degree of malignancy in UCB.
Collapse
Affiliation(s)
- Eiri Matsumura
- Department of Urology, University of the Ryukyus Graduate School of Medicine
| | - Noritake Kosuge
- Department of Tumor Pathology, University of the Ryukyus Graduate School of Medicine
| | - Shotaro Nakanishi
- Department of Urology, University of the Ryukyus Graduate School of Medicine
| | - Tetsuji Suda
- Department of Urology, University of the Ryukyus Graduate School of Medicine
| | - Ai Sugawa
- Department of Urology, University of the Ryukyus Graduate School of Medicine
| | - Tsutomu Fujimura
- Laboratory of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University
| | - Ryota Miyagi
- Department of Urology, University of the Ryukyus Graduate School of Medicine
| | - Naoki Yoshimi
- Department of Tumor Pathology, University of the Ryukyus Graduate School of Medicine
| | - Seiichi Saito
- Department of Urology, University of the Ryukyus Graduate School of Medicine
| |
Collapse
|
39
|
Swelum AAA, Saadeldin IM, Abdelnour SA, Ba-Awadh H, Abd El-Hack ME, Sheiha AM. Relationship between concentrations of macro and trace elements in serum and follicular, oviductal, and uterine fluids of the dromedary camel (Camelus dromedarius). Trop Anim Health Prod 2019; 52:1315-1324. [PMID: 31760562 DOI: 10.1007/s11250-019-02137-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022]
Abstract
This study aimed at investigating the relationship between concentrations of macro and trace elements in blood serum, and fluids from small and large follicles (SFF and LFF, respectively), oviduct (OF), and uterus (UF) of female dromedary camels. Fluids from small (2-6 mm) and large follicles (7-20 mm), oviduct and uterus, and blood samples were collected from 19 camels. The results indicated that the concentrations of serum Mg, Fe, and Mn were significantly higher than their follicular fluid, OF, and UF concentrations. Levels of Zn, Fe, Cu, Cr, and Mn were significantly higher in SFF than in LFF. Se and Mo concentrations were higher in LFF. Co concentration was lower in serum than in reproductive tract fluids. Cr concentration was higher in UF and OF than in the serum, SFF, and LFF. High Ca concentration was observed for serum and SFF, followed by LFF. The concentration of Na was about 1.18-fold higher in SFF than in serum, OF, and LFF, and approximately 4.1-fold higher in serum than in UF. K was present in higher concentration in SFF than in serum and LFF; however, its concentration was low in UF and OF. In conclusion, this study shows the concentrations of certain elements in small and large follicular, uterine, and oviductal fluids, which may be low or high depending on their function in the development and growth of follicles. This information can support the development of new media for in vitro oocyte maturation and fertilization of female camels.
Collapse
Affiliation(s)
- Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, P.O Box 2460, Riyradh, 11451, Kingdom of Saudi Arabia. .,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Islam M Saadeldin
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt. .,Physiology Department, Faculty of veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Hani Ba-Awadh
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, P.O Box 2460, Riyradh, 11451, Kingdom of Saudi Arabia
| | | | - Asmaa M Sheiha
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
40
|
Nowier AM, Darwish HR, Ramadan SI, Othman OE. Polymorphism of lactoferrin gene in Egyptian goats and its association with milk composition traits in Zaraibi breed. Trop Anim Health Prod 2019; 52:1065-1071. [PMID: 31664649 DOI: 10.1007/s11250-019-02099-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/23/2019] [Indexed: 11/26/2022]
Abstract
The objectives of this study were to identify polymorphisms in the lactoferrin gene among three Egyptian goat breeds (Barki, Zaraibi, and Damascus) and to investigate the effect of LF genotype, parity, and lactation stage on milk composition traits of Zaraibi goats. One hundred and thirty-two blood samples were collected for DNA extraction, with 53 from Zaraibi, 40 from Damascus, and 39 from Barki breeds. Fat, protein, total solids, solids-not-fat, and lactose percentages were determined in Zaraibi goat milk using an automatic milk analyzer. Two genotypes, GG and GA, in the lactoferrin gene were identified using single-strand conformation polymorphism and were confirmed by direct sequencing technique. The Zaraibi breed recorded the highest heterozygosity (0.272) and effective number of alleles (1.369), while the Damascus breed recorded the lowest values. The G/A SNP showed a significant association with protein, solids-not-fat, and total solid content of Zaraibi goat milk. Protein, solids-not-fat, and total solid content in our study were significantly higher at early and late parities. Lactose percentage decreased significantly from early to late parity. Fat, protein, solids-not-fat, and total solid content were significantly higher at early and late stages of lactation, and our results encourage the utilization of Zaraibi goat milk in cheese and butter processing at these stages. Moreover, the G/A SNP of the LF gene may be a useful marker for assisted selection programs to improve goat milk composition.
Collapse
Affiliation(s)
- Amira M Nowier
- Biotechnology Research Department, Animal Production Research Institute, Dokki, Giza, Egypt
| | - Hassan R Darwish
- Cell Biology Department, National Research Centre, Dokki, Giza, Egypt
| | - Sherif I Ramadan
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Othman E Othman
- Cell Biology Department, National Research Centre, Dokki, Giza, Egypt.
| |
Collapse
|
41
|
Semak I, Budzevich A, Maliushkova E, Kuzniatsova V, Popkov N, Zalutsky I, Ivashkevich O. Development of dairy herd of transgenic goats as biofactory for large-scale production of biologically active recombinant human lactoferrin. Transgenic Res 2019; 28:465-478. [PMID: 31396786 DOI: 10.1007/s11248-019-00165-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
The primary male-goats Lac-1 (human lactoferrin gene construct hLF5) and Lac-2 (human lactoferrin gene construct hLF3) with genome containing human lactoferrin gene were bred and the sperm bank of primary male-goats and their male descendents (F1-F7) was created. The herd of goats (200 transgenic females) that produced recombinant human lactoferrin (rhLF) in their milk at levels up to 16 g/L was obtained. The rhLF from milk of transgenic goats, natural human lactoferrin (hLF) from woman milk and natural goat lactoferrin (gLF) from milk of non-transgenic goats were purified using cation-exchange chromatography. It has been shown that rhLF is a glycoprotein and its physicochemical characteristics of rhLF are similar to hLf as revealed by different analytical methods including electron paramagnetic resonance, spectrophotometry, differential scanning calorimetry, mass spectrometry and peptide mapping. The high expression level of rhLF achieved in milk of transgenic goats provides a solid basis for developing an efficient and cost-effective downstream processing. The rhLF exhibited a prominent biological activity suggesting it as a promising biopharmaceutical and food supplements.
Collapse
Affiliation(s)
- I Semak
- Belarusian State University, Nezavisimosti Avenue 4, 220030, Minsk, Belarus.
| | - A Budzevich
- Scientific and Practical Centre on Animal Husbandry of the National Academy of Sciences of Belarus, 11 Frunze Str., 222160, Zhodino, Belarus
| | - E Maliushkova
- Belarusian State University, Nezavisimosti Avenue 4, 220030, Minsk, Belarus
| | - V Kuzniatsova
- Scientific and Practical Centre on Animal Husbandry of the National Academy of Sciences of Belarus, 11 Frunze Str., 222160, Zhodino, Belarus
| | - N Popkov
- Scientific and Practical Centre on Animal Husbandry of the National Academy of Sciences of Belarus, 11 Frunze Str., 222160, Zhodino, Belarus
| | - I Zalutsky
- Institute of Physiology of the National Academy of Sciences of Belarus, 28 Academicheskaya Str., 220072, Minsk, Belarus
| | - O Ivashkevich
- Belarusian State University, Nezavisimosti Avenue 4, 220030, Minsk, Belarus
| |
Collapse
|
42
|
Abstract
Nickel is an essential cofactor for some pathogen virulence factors. Due to its low availability in hosts, pathogens must efficiently transport the metal and then balance its ready intracellular availability for enzyme maturation with metal toxicity concerns. The most notable virulence-associated components are the Ni-enzymes hydrogenase and urease. Both enzymes, along with their associated nickel transporters, storage reservoirs, and maturation enzymes have been best-studied in the gastric pathogen Helicobacter pylori, a bacterium which depends heavily on nickel. Molecular hydrogen utilization is associated with efficient host colonization by the Helicobacters, which include both gastric and liver pathogens. Translocation of a H. pylori carcinogenic toxin into host epithelial cells is powered by H2 use. The multiple [NiFe] hydrogenases of Salmonella enterica Typhimurium are important in host colonization, while ureases play important roles in both prokaryotic (Proteus mirabilis and Staphylococcus spp.) and eukaryotic (Cryptoccoccus genus) pathogens associated with urinary tract infections. Other Ni-requiring enzymes, such as Ni-acireductone dioxygenase (ARD), Ni-superoxide dismutase (SOD), and Ni-glyoxalase I (GloI) play important metabolic or detoxifying roles in other pathogens. Nickel-requiring enzymes are likely important for virulence of at least 40 prokaryotic and nine eukaryotic pathogenic species, as described herein. The potential for pathogenic roles of many new Ni-binding components exists, based on recent experimental data and on the key roles that Ni enzymes play in a diverse array of pathogens.
Collapse
|
43
|
Pastori V, Tavazzi S, Lecchi M. Lactoferrin-loaded contact lenses counteract cytotoxicity caused in vitro by keratoconic tears. Cont Lens Anterior Eye 2019; 42:253-257. [DOI: 10.1016/j.clae.2018.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 02/08/2023]
|
44
|
Soboleva SE, Sedykh SE, Alinovskaya LI, Buneva VN, Nevinsky GA. Cow Milk Lactoferrin Possesses Several Catalytic Activities. Biomolecules 2019; 9:biom9060208. [PMID: 31146486 PMCID: PMC6627417 DOI: 10.3390/biom9060208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 11/16/2022] Open
Abstract
Lactoferrin (LF) is a Fe3+-binding glycoprotein, that was first recognized in milk and then in other epithelial secretions and barrier body fluids to which many different functions have been attributed to LF including protection from iron-induced lipid peroxidation, immunomodulation, cell growth regulation, DNA and RNA binding, as well as transcriptional activation, еtс. The polyfunctional physiological role of LF is still unclear, but it has been suggested to be responsible for primary defense against microbial and viral infections. It was shown previously that human milk LF possesses several enzymatic activities: DNase, RNase, ATPase, phosphatase, and amylase. Analysis of human, cow, horse, buffalo and camel LF showed a highly conserved three-dimensional (3D) structure including only detail differences in the species. Recently, it was shown that similar to human cow LF possesses DNase and RNase activities. Using different methods here we have shown for the first time that LFs from the milk of seven cows of different breeds possess high peroxidase, protease, amylase, protease, and phosphatase activities. Protease activity of cow LFs was activated by Mg2+ and Ca2+ ions. In contrast to human LFs, ATPase activity was revealed only in three of seven cow LF preparations. The discovery that LF possesses these activities may contribute to understanding the multiple physiological functions of this extremely polyfunctional protein including its protective role against microbial and viral infections.
Collapse
Affiliation(s)
- Svetlana E Soboleva
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Sergey E Sedykh
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Ludmila I Alinovskaya
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
45
|
Mohammed W, El Magdoub HM, Schaalan M. Renoprotective effect of camel milk in pediatric diabetic ketoacidosis: A focus on TLR-4/MAPK axis. Diabetes Res Clin Pract 2019; 151:88-95. [PMID: 30951795 DOI: 10.1016/j.diabres.2019.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Waleed Mohammed
- Chemistry Department, Kasr Alainy Hospitals, Cairo University, Cairo, Egypt
| | - Hekmat M El Magdoub
- Department of Biochemistry, Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Mona Schaalan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Translational and Clinical Research Unit, Misr International University, Cairo, Egypt
| |
Collapse
|
46
|
Affiliation(s)
- Paolo Manzoni
- Division of Pediatrics and Neonatology, Degli Infermi Hospital, Biella, Italy
| |
Collapse
|
47
|
Russo R, Superti F, Karadja E, De Seta F. Randomised clinical trial in women with Recurrent Vulvovaginal Candidiasis: Efficacy of probiotics and lactoferrin as maintenance treatment. Mycoses 2019; 62:328-335. [PMID: 30565745 DOI: 10.1111/myc.12883] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/27/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Vulvovaginal candidiasis (VVC) is a recurrent vaginal condition in childbearing women. OBJECTIVES The aim of this study was to assess the efficacy of an oral formulation containing Lactobacillus acidophilus GLA-14, Lactobacillus rhamnosus HN001 and bovine lactoferrin on symptoms and recurrence of VVC as adjuvant therapy to topical clotrimazole. PATIENTS/METHODS Forty-eight women positive for C. albicans, symptoms of VVC and documented history of recurrences were randomised into 2 groups receiving verum or placebo (2 capsules/day for 5 days followed by 1 capsule/day for additional 10 days) as adjuvant treatment to clotrimazole (induction phase) followed by a maintenance cycle of 6 months (1 capsule/day verum or placebo for 10 consecutive days each month). Symptoms, overall cure rate and recurrence rate were assessed. RESULTS After clotrimazole therapy, a significant improvement of symptoms was shown in both groups. However, only women treated with probiotics and lactoferrin showed a significant improvement of itching and discharge at 3 and 6 months. During the six-month follow-up, recurrences were significantly less in the intervention group vs placebo (33.3% vs 91.7% after 3 months and 29.2% vs 100% after 6 months). CONCLUSIONS The results show that the investigated lactobacilli mixture in combination with lactoferrin represents a safe and effective adjuvant approach for reducing symptoms and recurrences of RVVC.
Collapse
Affiliation(s)
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Rome, Italy
| | - Eugen Karadja
- Emergency Clinical County Hospital "Pius Branzeu", Timisoara, Romania
| | - Francesco De Seta
- Department of Medical Science, University of Trieste, Trieste, Italy
| |
Collapse
|
48
|
Tian M, Han J, Ye A, Liu W, Xu X, Yao Y, Li K, Kong Y, Wei F, Zhou W. Structural characterization and biological fate of lactoferrin-loaded liposomes during simulated infant digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2677-2684. [PMID: 30338536 DOI: 10.1002/jsfa.9435] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/15/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Limited information is concerned on the structure changes of liposomal delivery system under infant conditions. Positively charged lactoferrin (LF)-loaded liposomes, with the entrapment efficiency (EE) of 52.3 ± 6.3%, were prepared from soybean-derived phospholipids using a thin-layer dispersion method. The structure changes and digestibility of LF-loaded liposomes under infant conditions, including simulated gastric fluid (SGF) and simulated small intestinal fluid (SIF), were characterized in terms of the average particle size, zeta potential, turbidity, fourier transform infrared, transmission electron microscopy, lipolysis and protein hydrolysis. RESULTS This study showed that the functional groups, favorable membrane structure and the EE of liposomes were slightly changed as a function of time when the liposome digested under SGF conditions. However, the intact bilayer structures were damaged and the EE of LF-loaded liposomes decreased to 28.5% after digestion in infant SIF. CONCLUSION These results suggested that liposomal membrane could prevent the gastric degradation and the structure of liposomes was not completely destroyed with a low concentration of pancreatin and bile salts under infant conditions. Present study provided information on the insight into the characteristics of liposomes during infant gastrointestinal digestion, which was useful for the development of microcapsule systems in infant diet. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengmeng Tian
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Aiqian Ye
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Weilin Liu
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiankang Xu
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yixin Yao
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Kexuan Li
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Youyu Kong
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Fuqiang Wei
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wei Zhou
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture, Zhanjiang, China
| |
Collapse
|
49
|
Zavatski S, Khinevich N, Girel K, Redko S, Kovalchuk N, Komissarov I, Lukashevich V, Semak I, Mamatkulov K, Vorobyeva M, Arzumanyan G, Bandarenka H. Surface Enhanced Raman Spectroscopy of Lactoferrin Adsorbed on Silvered Porous Silicon Covered with Graphene. BIOSENSORS 2019; 9:E34. [PMID: 30823455 PMCID: PMC6468514 DOI: 10.3390/bios9010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022]
Abstract
We registered surface enhanced Raman scattering (SERS) spectra of the human lactoferrin molecules adsorbed on a silvered porous silicon (por-Si) from 10-6⁻10-18 M solutions. It was found that the por-Si template causes a negative surface potential of silver particles and their chemical resistivity to oxidation. These properties provided to attract positively charged lactoferrin molecules and prevent their interaction with metallic particles upon 473 nm laser excitation. The SERS spectra of lactoferrin adsorbed from 10-6 M solution were rather weak but a decrease of the concentration to 10-10 M led to an enormous growth of the SERS signal. This effect took place as oligomers of lactoferrin were broken down to monomeric units while its concentration was reduced. Oligomers are too large for a uniform overlap with electromagnetic field from silver particles. They cannot provide an intensive SERS signal from the top part of the molecules in contrast to monomers that can be completely covered by the electromagnetic field. The SERS spectra of lactoferrin at the 10-14 and 10-16 M concentrations were less intensive and started to change due to increasing contribution from the laser burned molecules. To prevent overheating the analyte molecules on the silvered por-Si were protected with graphene, which allowed the detection of lactoferrin adsorbed from the 10-18 M solution.
Collapse
Affiliation(s)
- Sergey Zavatski
- Laboratory of Applied Plasmonics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Nadia Khinevich
- Laboratory of Applied Plasmonics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Kseniya Girel
- Laboratory of Applied Plasmonics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Sergey Redko
- Laboratory of Materials and Structures of Nanoelectronics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Nikolai Kovalchuk
- Laboratory of Integrated Micro- and Nanosystems, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Ivan Komissarov
- Laboratory of Integrated Micro- and Nanosystems, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| | - Vladimir Lukashevich
- Laboratory of Nutrition and Sports Physiology, Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus.
| | - Igor Semak
- Department of Biochemistry, Belarusian State University, 220030 Minsk, Belarus.
| | - Kahramon Mamatkulov
- Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.
| | - Maria Vorobyeva
- Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.
| | - Grigory Arzumanyan
- Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.
- Dubna State University, 141982 Dubna, Russia.
| | - Hanna Bandarenka
- Laboratory of Applied Plasmonics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus.
| |
Collapse
|
50
|
Kumari N, Kumar A, Goyal S, Dubey PK, Mishra SK, Ahlawat S, Kataria RS. Evaluation of therapeutic potential of recombinant buffalo lactoferrin N-lobe expressed in E. coli. Anim Biotechnol 2019; 31:181-187. [PMID: 30773109 DOI: 10.1080/10495398.2019.1570224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lactoferrin (Lf) is a multifunctional bi-lobate iron-binding glycoprotein belonging to transferrin family with a mass of approximately 80 kD. Being ubiquitously present in almost all biological secretions, it performs important biological functions. One of the earliest and very well-documented functions of Lf is the antibacterial effect against broad spectrum Gram-negative and Gram-positive bacteria. In this study, buffalo Lf N-lobe cDNA was amplified, cloned and expressed as a fusion protein in Escherichia coli cells using pQE30 expression vector. After post-induction confirmation of expressed protein by SDS-PAGE, purification of recombinant protein using Ni-NTA was attempted and the yield of recombinant buffalo N-lobe Lf was estimated to be 1 mg/ml. Antibacterial activity of recombinant buffalo Lf N-lobe was assessed on pathogenic E. coli and Staphylococcus aureus strains. Peptic digest of recombinant N-lobe buffalo Lf showed antibacterial activity comparable to commercially available bovine Lf. The successful expression and characterization of functional recombinant N-lobe of buffalo Lf expressed in E. coli opens new vistas for developing alternate therapeutics, particularly against the diseases caused by Gram-negative microbes such as septicemia and diarrhea in newborn calves and mastitis in dairy animals.
Collapse
Affiliation(s)
- Namita Kumari
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Arun Kumar
- Faculty of Veterinary Science & Animal Husbandry, Birsa Agricultural University, Ranchi, India
| | - Shubham Goyal
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Praveen K Dubey
- Lewis Ketz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | | | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | |
Collapse
|