1
|
Wu XX, Law SK, Ma H, Jiang Z, Li YF, Au DCT, Wong CK, Luo DX. Bio-active metabolites from Chinese Medicinal Herbs for treatment of skin diseases. Nat Prod Res 2024:1-23. [PMID: 39155491 DOI: 10.1080/14786419.2024.2391070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Skin diseases have become serious issues to human health and affect one-third of the world's population according to the World Health Organisation (WHO). These consist of internal (endogenous) and external (exogenous) factors referring to genetics, hormones, and the body's immune system, as well as environmental situations, UV radiation, or environmental pollution respectively. Generally, Western Medicines (WMs) are usually treated with topical creams or strong medications for skin diseases that help superficially, and often do not treat the root cause. The relief may be instant and strong, sometimes these medicines have adverse reactions that are too strong to be able and sustained over a long period, especially steroid drug type. Chinese Medicinal Herbs (CMHs) are natural resources and relatively mild in the treatment of both manifestation and the root cause of disease. Nowadays, CMHs are attractive to many scientists, especially in studying their formulations for the treatment of skin diseases. METHODS The methodology of this review was searched in nine electronic databases including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without regard to language constraints. All eligible studies are analysed and summarised. RESULTS Based on the literature findings, some extracts or active metabolites divided from CMHs, including Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan, and Calendula officinalis L., are effective for the treatment and prevention of skin diseases because of a wide range of pharmacological activities, e.g. anti-bacterial, anti-microbial, anti-virus, and anti-inflammation to enhance the body's immune system. It is also responsible for skin whitening to prevent pigmentation and premature ageing through several mechanisms, such as regulation or inhibition of nuclear factor kappa B (IκB/NF-κB) signalling pathways. CONCLUSION This is possible to develop CMHs, such as Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan and Calendula officinalis L. The ratio of multiple CMH formulations and safety assessments on human skin diseases required studying to achieve better pharmacological activities. Nano formulations are the future investigation for CMHs to combat skin diseases.
Collapse
Affiliation(s)
- Xiao Xiao Wu
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Siu Kan Law
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Zhou Jiang
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Yi Fan Li
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Dawn Ching Tung Au
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Di Xian Luo
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
- Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
2
|
Lee JW, Kim EN, Jeong GS. Anti-Inflammatory Herbal Extracts and Their Drug Discovery Perspective in Atopic Dermatitis. Biomol Ther (Seoul) 2024; 32:25-37. [PMID: 38148551 PMCID: PMC10762282 DOI: 10.4062/biomolther.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 12/28/2023] Open
Abstract
Atopic dermatitis (AD) is an allergic disorder characterized by skin inflammation. It is well known that the activation of various inflammatory cells and the generation of inflammatory molecules are closely linked to the development of AD. There is accumulating evidence demonstrating the beneficial effects of herbal extracts (HEs) on the regulation of inflammatory response in both in vitro and in vivo studies of AD. This review summarizes the anti-atopic effects of HEs and its associated underlying mechanisms, with a brief introduction of in vitro and in vivo experiment models of AD based on previous and recent studies. Thus, this review confirms the utility of HEs for AD therapy.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Liu J, Li X, Bai H, Yang X, Mu J, Yan R, Wang S. Traditional uses, phytochemistry, pharmacology, and pharmacokinetics of the root bark of Paeonia x suffruticosa andrews: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116279. [PMID: 36822345 DOI: 10.1016/j.jep.2023.116279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moutan Cortex (MC), commonly known as "Mu dan pi", refers to the dried root bark of Paeonia x suffruticosa Andrews and is broadly used as a traditional herbal medication in China, Japan, and Korea. For thousands of years, it has been utilized to treat female genital, extravasated blood, cardiovascular, and stagnant blood disorders. AIM OF THE REVIEW The purpose of this review article was to summarize information on the traditional uses, phytochemistry, pharmacology and pharmacokinetics of MC, as well as to outline the further research directions for the development of new drugs and the associations between traditional uses and pharmacological effects. MATERIALS AND METHODS The information involved in the study was gathered from a variety of electronic resources, including PubMed, Web of Science, ScienceDirect, SciFinder, China Knowledge Resource Integrated Database, and Google Scholar. The date was from 1992 to 2022. RESULTS Approximately 163 chemical compounds have been extracted and identified from MC, including monoterpenes, monoterpene glycosides, triterpenes, phenolics, flavonoids, volatile oils, alkaloids, and others. In these categories, the monoterpene glycosides and phenols being the most common. A wide variety of pharmacological effects have been described for MC crude extracts and active molecules, such as antioxidant, anti-inflammatory, antibacterial and antiviral, antitumor, antidiabetic, organ protection, and neuroprotective activities, as well as treating cardiovascular diseases. Pharmacokinetics has been also used in the study of MC, including its crude extracts or chemical constituents, in order to explore the therapeutic mechanism, direct clinically appropriate application and provide new ideas for the exploitation of innovative medicines. CONCLUSION Modern pharmacological research has demonstrated that MC, as a significant therapeutic resource, has the ability to heal a wide range of diseases, particularly female genital and cardiovascular problems. These researches propose therapeutic ideas for the development of novel MC medicines. Furthermore, preclinical and clinical study have verified several observed pharmacological properties related with the traditional usages of MC.
Collapse
Affiliation(s)
- Jincai Liu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xiang Li
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Huixin Bai
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xu Yang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Jun Mu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Ruonan Yan
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Siwang Wang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
4
|
An Updated Review on Efficiency of Penthorum chinense Pursh in Traditional Uses, Toxicology, and Clinical Trials. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4254051. [PMID: 36852294 PMCID: PMC9966574 DOI: 10.1155/2023/4254051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 02/20/2023]
Abstract
Traditional Chinese medicines (TCM) play an important role in the control and treatment of several animal diseases. Penthorum chinense Pursh (PCP) is a famous plant for its use in traditional medication practice and therapeutic effects in numerous pathological conditions. In China, PCP is utilized for both food and medication due to numerous bioactivities. PCP is widely administered in prevention and treatment of traumatic injury, edema, and liver diseases with functions of reducing swelling, support diuresis, blood stasis, and mitigation symptoms of excessive alcohol intake. Recently, PCP highlighted for research trials in various fields including pharmacology, pharmacognosy, cosmeceuticals, nutraceuticals, and pharmaceuticals due to medicinal significance with less toxicity and an effective ethnomedicine in veterinary practice. PCP contains diverse important ingredients such as flavonoids, organic acids, coumarins, lignans, polyphenols, and sterols that are important bioactive constituents of PCP exerting the therapeutic benefits and organ-protecting effects. In veterinary, PCP extract, compound, and phytochemicals/biomolecules significantly reversed the liver and kidney injuries, via antioxidation, oxidative stress, apoptosis, mitochondrial signaling pathways, and related genes. PCP water extract and compounds also proved in animal and humans' clinical trial for their hepatoprotective, antiaging, nephroprotective, anti-inflammatory, antidiabetic, antibacterial, antiapoptotic, immune regulation, and antioxidative stress pathways. This updated review spotlighted the current information on efficiency and application of PCP by compiling and reviewing recent publications on animal research. In addition, this review discussed the toxicology, traditional use, comparative, and clinical application of PCP in veterinary practices to authenticate and find out new perspectives on the research and development of this herbal medicine.
Collapse
|
5
|
Phenethyl Ester of Gallic Acid Ameliorates Experimental Autoimmune Encephalomyelitis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248770. [PMID: 36557903 PMCID: PMC9782083 DOI: 10.3390/molecules27248770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Gallic acid is a phenolic acid present in various plants, nuts, and fruits. It is well known for its anti-oxidative and anti-inflammatory properties. The phenethyl ester of gallic acid (PEGA) was synthesized with the aim of increasing the bioavailability of gallic acid, and thus its pharmacological potential. Here, the effects of PEGA on encephalitogenic cells were examined, and PEGA was found to modulate the inflammatory activities of T cells and macrophages/microglia. Specifically, PEGA reduced the release of interleukin (IL)-17 and interferon (IFN)-γ from T cells, as well as NO, and IL-6 from macrophages/microglia. Importantly, PEGA ameliorated experimental autoimmune encephalomyelitis, an animal model of chronic inflammatory disease of the central nervous system (CNS)-multiple sclerosis. Thus, PEGA is a potent anti-inflammatory compound with a perspective to be further explored in the context of CNS autoimmunity and other chronic inflammatory disorders.
Collapse
|
6
|
Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules 2022; 27:molecules27217593. [DOI: 10.3390/molecules27217593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Plants rich in hydrolyzable tannins were traditionally used all over the world for a variety of chronic inflammatory disorders, including arthritis, colitis, and dermatitis. However, the knowledge of their immunological targets is still limited though fundamental for their rational use in phytotherapy. The recent advances regarding the pathogenesis of inflammatory-based diseases represent an opportunity to elucidate the pharmacological mechanism of plant-derived metabolites with immunomodulatory activity. This review collects recent articles regarding the role of hydrolyzable tannins and their gut metabolites in Th1, Th2, and Th17 inflammatory responses. In line with the traditional use, rheumatoid arthritis (RA), inflammatory bowel diseases (IBDs), psoriasis, atopic dermatitis (AD), and asthma were the most investigated diseases. A substantial body of in vivo studies suggests that, beside innate response, hydrolyzable tannins may reduce the levels of Th-derived cytokines, including IFN-γ, IL-17, and IL-4, following oral administration. The mode of action is multitarget and may involve the impairment of inflammatory transcription factors (NF-κB, NFAT, STAT), enzymes (MAPKs, COX-2, iNOS), and ion channels. However, their potential impact on pathways with renewed interest for inflammation, such as JAK/STAT, or the modulation of the gut microbiota demands dedicate studies.
Collapse
|
7
|
Sun J, Dong S, Li J, Zhao H. A comprehensive review on the effects of green tea and its components on the immune function. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Song HK, Park SH, Kim HJ, Jang S, Kim T. Spatholobus suberectus Dunn Water Extract Ameliorates Atopic Dermatitis–Like Symptoms by Suppressing Proinflammatory Chemokine Production In Vivo and In Vitro. Front Pharmacol 2022; 13:919230. [PMID: 35795574 PMCID: PMC9251377 DOI: 10.3389/fphar.2022.919230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
S. patholobus suberectus Dunn, a traditional Chinese herbal medicine, has various pharmacological activities, such as anti-inflammatory properties. However, to the best of our knowledge, its therapeutic effect on atopic dermatitis (AD) has not been investigated. In this study, we explored the effect of S. suberectus Dunn water extract (SSWex) on AD in vivo and in vitro. In Dermatophagoides farina extract (DfE)–treated NC/Nga mice, the oral administration of SSWex alleviated AD-like symptoms, such as ear thickness, dermatitis score, epidermal thickness, immune cell infiltration, and levels of AD-related serum parameters (immunoglobulin E, histamine, and proinflammatory chemokines). In HaCaT cells, the production of proinflammatory chemokines induced by interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) was inhibited by SSWex pretreatment. SSWex treatment inhibited the phosphorylation of mitogen-activated protein kinase and activation and translocation of transcriptional factors, such as signal transducer and activator of transcription 1 and nuclear factor kappa B in IFN-γ/TNF-α–stimulated HaCaT cells. These results indicate that SSWex may be developed as an efficient therapeutic agent for AD.
Collapse
Affiliation(s)
- Hyun-Kyung Song
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sun Haeng Park
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Hye Jin Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Seol Jang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Taesoo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
- *Correspondence: Taesoo Kim,
| |
Collapse
|
9
|
Aierken K, Luo Y, Maiwulanjiang M, Wu T, Aisa HA. The Suppressive Effect of Mamiran Cream on Atopic Dermatitis-Like Skin Lesions In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2854238. [PMID: 34887930 PMCID: PMC8651352 DOI: 10.1155/2021/2854238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND The Chinese herbal formula Mamiran cream (MMC) has been known for its ameliorative effects on diverse skin diseases, such as eczema. Atopic dermatitis (AD; eczema) is a chronic recurrent skin disease dominated by T-helper type 2-driven inflammation (Th2). OBJECTIVE In this study, the inhibitory effect of MMC on AD was investigated in vivo. METHODS An animal model was established by sensitization with 2,4-dinitrochlorobenzene (DNCB) on the skin of SD rats. Cutaneous administration of MMC was applied, and its mechanism of action was investigated via RT-PCR and IHC assay. RESULT Our data showed that topical application of MMC reduced the skin severity scores and alleviated the histological changes. Furthermore, immunohistochemical analysis demonstrated that MMC significantly decreased the levels of Th2 cytokine IL-5 and IL-4Ra in the skin lesion. In addition, it was demonstrated that MMC downregulated the mRNA expression of TNF-α, IL-1β, IL-6, IL-10, and TLR4. Moreover, MMC inhibited the activation of NF-κB, JNK1, and STAT6 pathways in skin lesions. CONCLUSIONS Our findings suggest that MMC exhibits the inhibitory effect on AD, suggesting that MMC may be a potential therapeutic agent for this atopic disorder.
Collapse
Affiliation(s)
- Kailibinuer Aierken
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yuqing Luo
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Maitinuer Maiwulanjiang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Tao Wu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - H. A. Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
10
|
Influence of pH-responsive compounds synthesized from chitosan and hyaluronic acid on dual-responsive (pH/temperature) hydrogel drug delivery systems of Cortex Moutan. Int J Biol Macromol 2020; 168:163-174. [PMID: 33309656 DOI: 10.1016/j.ijbiomac.2020.12.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 12/27/2022]
Abstract
The polysaccharide-based pH-responsive compounds, namely, N,N,N-trimethyl chitosan (TMC), polyethylene glycolated hyaluronic acid (PEG-HA), and polysaccharide-based nano-conjugate of hyaluronic acid, chitosan oligosaccharide and alanine [HA-Ala-Chito(oligo)] were chemically synthesized using biopolymers chitosan and hyaluronic acid, and applied here to observe the changes in morphology, pH-stability, mechanical and drug-release behavior, and cytotoxicity of thermo-responsive polymer: Poloxamer 407 (PF127)-based drug delivery systems for traditional Chinese medicine Cortex Moutan (CM). The thermo-responsive hydrogel of PF127 loaded with CM (GelC) was used as control. The dual-responsive (pH/temperature) hydrogels: PF127/TMC/PEG-HA (Gel1) and PF127/HA-Ala-Chito(oligo) (Gel2) showed improved mechanical behavior as obtained by rheology and mechanical agitation study, and pH-stability under various external pH conditions, and those improvements occurred due to the addition of polysaccharide-based pH-responsive compounds in the systems. Both, Gel1 and Gel2 showed better morphology than GelC as obtained by SEM or TEM suggesting that interaction of polysaccharide-based pH-responsive compounds with PF127 in either gel or sol state gave better porous network structure in the hydrogels or more dispersed micellar arrangements in sol-state, respectively. Gel1 showed the highest cumulative drug release (86.5%) after 5 days under mild acidic condition (pH 6.4) suggesting that release behavior of a hydrogel drug carrier was dependent on morphology, mechanical behavior, and pH-stability. The transdermal release (ex-vivo) results indicated that gallic acid, the active marker of CM passed through porcine ear skin and all the formulations showed more or less similar transdermal release properties. The hydrogels loaded with CM showed no cytotoxicity (cell viability >90.0%) on human HaCaT keratinocytes within concentration range of 0.0-20.0 μg/ml as obtained by MTT assay, and cell viability was more than 100% at a concentration of 20.0 μg/ml for Gel2. The formulations without loaded drug namely, Gel1-CM and Gel2-CM exhibited strong anti-bacterial action against gram positive bacteria Staphylococcus aureus.
Collapse
|
11
|
The Active Compounds and Therapeutic Mechanisms of Pentaherbs Formula for Oral and Topical Treatment of Atopic Dermatitis Based on Network Pharmacology. PLANTS 2020; 9:plants9091166. [PMID: 32916837 PMCID: PMC7569866 DOI: 10.3390/plants9091166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
To examine the molecular targets and therapeutic mechanism of a clinically proven Chinese medicinal pentaherbs formula (PHF) in atopic dermatitis (AD), we analyzed the active compounds and core targets, performed network and molecular docking analysis, and investigated interacting pathways. Information on compounds in PHF was obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and target prediction was performed using the Drugbank database. AD-related genes were gathered using the GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. Network analysis was performed by Cytoscape software and protein-protein interaction was analyzed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). The Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources were applied for the enrichment analysis of the potential biological process and pathways associated with the intersection targets between PHF and AD. Autodock software was used to perform protein compound docking analysis. We identified 43 active compounds in PHF associated with 117 targets, and 57 active compounds associated with 107 targets that form the main pathways linked to oral and topical treatment of AD, respectively. Among them, quercetin, luteolin, and kaempferol are key chemicals targeting the core genes involved in the oral use of PHF against AD, while apigenin, ursolic acid, and rosmarinic acid could be used in topical treatment of PHF against AD. The compound–target–disease network constructed in the current study reveals close interactions between multiple components and multiple targets. Enrichment analysis further supports the biological processes and signaling pathways identified, indicating the involvement of IL-17 and tumor necrosis factor signaling pathways in the action of PHF on AD. Our data demonstrated the main compounds and potential pharmacological mechanisms of oral and topical application of PHF in AD.
Collapse
|
12
|
Khan BA, Mahmood T, Menaa F, Shahzad Y, Yousaf AM, Hussain T, Ray SD. New Perspectives on the Efficacy of Gallic Acid in Cosmetics & Nanocosmeceuticals. Curr Pharm Des 2019; 24:5181-5187. [PMID: 30657034 DOI: 10.2174/1381612825666190118150614] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Gallic acid (GA-3,4,5-trihydroxybenzoic acid), a phenolic phytochemical, is a ubiquitous secondary metabolite found in most plants, with appreciable concentrations in grapes seed, rose flowers, sumac, oak and witch hazel. GA often results from the hydrolysis of terpenes and the polyphenol tannic acid. APPLICATIONS It exhibits powerful antioxidant, anti-inflammatory, antimicrobial, and anti-cancer activities. Most intriguing benefit has been reported to be on the skin. Due to these beneficial properties, GA and its derivatives (e.g. lipid-soluble phenols such as synthetic gallic esters aka gallates) have been extensively used as an adjuvant in a number of therapeutic formulations, as a substitute of hydrocortisone in children with atopic dermatitis (AD) and other skin conditions (hyperpigmentation, wound healing), and as a cosmetic ingredient. GA has a USFDA GRAS status (generally recognized as safe), exhibiting fairly low systemic toxicity and associated mortality at acute doses in many experimental models. Despite anti-skin aging benefits obtained with relatively safe GA formulations, few cases of gallate-induced skin allergic have been reported in humans. Therefore, approaches to improve the bioavailability and biodegradability of this poor-water soluble and non-biodegradable phenolic compound are warranted. PURPOSE This review has focused on the recently reported biological activities pertaining to the skin as well as the pharmacological properties of GA and its derivatives with special emphasis on its use in (nano-) cosmetic formulations. Since this is an evolving area of research, an adequate emphasis has been placed upon advantages and disadvantages of various nanoformulations.
Collapse
Affiliation(s)
- Barkat Ali Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I.Khan, Pakistan
| | - Tariq Mahmood
- Faculty of Pharmacy, University of Central Punjab Lahore, Pakistan
| | - Farid Menaa
- Department of Medical Technology and Translational Medicine, California Innovations Corporation, San Diego, California, United States
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Sidhartha D Ray
- College of Pharmacy, Manchester University, Fort Wayne, IN 46845, United States
| |
Collapse
|
13
|
Chan BCL, Lam CWK, Tam LS, Wong CK. IL33: Roles in Allergic Inflammation and Therapeutic Perspectives. Front Immunol 2019; 10:364. [PMID: 30886621 PMCID: PMC6409346 DOI: 10.3389/fimmu.2019.00364] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/12/2019] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-33 belongs to IL-1 cytokine family which is constitutively produced from the structural and lining cells including fibroblasts, endothelial cells, and epithelial cells of skin, gastrointestinal tract, and lungs that are exposed to the environment. Different from most cytokines that are actively secreted from cells, nuclear cytokine IL-33 is passively released during cell necrosis or when tissues are damaged, suggesting that it may function as an alarmin that alerts the immune system after endothelial or epithelial cell damage during infection, physical stress, or trauma. IL-33 plays important roles in type-2 innate immunity via activation of allergic inflammation-related eosinophils, basophils, mast cells, macrophages, and group 2 innate lymphoid cells (ILC2s) through its receptor ST2. In this review, we focus on the recent advances of the underlying intercellular and intracellular mechanisms by which IL-33 can regulate the allergic inflammation in various allergic diseases including allergic asthma and atopic dermatitis. The future pharmacological strategy and application of traditional Chinese medicines targeting the IL-33/ST2 axis for anti-inflammatory therapy of allergic diseases were also discussed.
Collapse
Affiliation(s)
- Ben C L Chan
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Christopher W K Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Lai-Shan Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chun K Wong
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
14
|
Gallic acid inhibits the expression of keratin 16 and keratin 17 through Nrf2 in psoriasis-like skin disease. Int Immunopharmacol 2018; 65:84-95. [PMID: 30293051 DOI: 10.1016/j.intimp.2018.09.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/05/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022]
Abstract
Gallic acid (GA), a natural small molecule found in Radix Paeoniae Rubra, has a variety of favorable biological activities. However, the anti-psoriasis effect of GA has never been explored up to now. This study evaluates the protective effect of GA on psoriasis-like skin disease both in vitro and in vivo and explores the underlying mechanism. The results show that GA significantly decreases the mRNA and protein expression of keratin 16 and keratin 17 which are the markers of psoriasis. Additionally, GA obviously ameliorates psoriasis area and severity index scores and decreases the epidermal hyperplasia of psoriasis-like disease mice. The activity of Nrf2 which targets keratin 16 and keratin 17 is significantly downregulated by GA. Furthermore, the downregulation of keratin 16 and keratin 17 induced by GA was abolished by the Nrf2-overexpression in vitro. This study initially elucidates the anti-psoriasis effect and mechanism of GA which hints that GA would be a potential candidate for the treatment of psoriasis.
Collapse
|
15
|
Li SS, Wu Q, Yin DD, Feng CY, Liu ZA, Wang LS. Phytochemical variation among the traditional Chinese medicine Mu Dan Pi from Paeonia suffruticosa (tree peony). PHYTOCHEMISTRY 2018; 146:16-24. [PMID: 29207319 DOI: 10.1016/j.phytochem.2017.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 05/12/2023]
Abstract
Mu Dan Pi is a traditional Chinese medicine used to treat inflammation, cancer, allergies, diabetes, angiocardiopathy, and neurodegenerative diseases. In this study, the metabolome variation within Mu Dan Pi collected from 372 tree peony cultivars was systematically investigated. In total, 42 metabolites were identified, comprising of 14 monoterpene glucosides, 11 tannins, 8 paeonols, 6 flavonoids, and 3 phenols. All cultivars revealed similar metabolite profiles, however, they were further classified into seven groups on the basis of their varying metabolite contents by hierarchical cluster analysis. Traditional cultivars for Mu Dan Pi were found to have very low metabolite contents, falling into clusters I and II. Cultivars with the highest amounts of metabolites were grouped in clusters VI and VII. Five potential cultivars, namely, 'Bai Yuan Qi Guan', 'Cao Zhou Hong', 'Da Zong Zi', 'Sheng Dan Lu', and 'Cheng Xin', with high contents of monoterpene glycosides, tannins, and paeonols, were further screened. Interestingly, the majority of investigated cultivars had relatively higher metabolite contents compared to the traditional medicinal tree peony cultivars.
Collapse
Affiliation(s)
- Shan-Shan Li
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Qian Wu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan-Dan Yin
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Yong Feng
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China.
| | - Liang-Sheng Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Hon KL, Ip M, Wong CK, Chan BCL, Leung PC, Leung TF. In vitro antimicrobial effects of a novel Pentaherbs concoction for atopic dermatitis. J DERMATOL TREAT 2017; 29:235-237. [PMID: 29098912 DOI: 10.1080/09546634.2017.1395804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND In a series of bench and clinical trials, our group has determined the immunologic effects and clinical efficacy of a concoction of five herbal ingredients (PentaHerbs Formula, PHF) in treating children with atopic eczema (AE). This study investigates the antimicrobial effects that may be induced with PHF treatment. METHODS We investigated the effects of PHF on the minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Staphylococcus aureus and various bacteria that are commonly present on the skin of patients with AE. RESULTS Staphylococcus aureus ATCC 25923, Methicllin resistant Staphylococcus aureus (MRSA) ATCC BAA-43, Enterococcus faecalis ATCC 29212, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Enterobacter cloacae ATCC 13047, Proteus vulgaris ATCC 6380, and Acinetobacter baumannii ATCC 19606 were tested. PHF was more effective against Staphylococcus aureus ATCC 25923 and Methicllin resistant Staphylococcus aureus (MRSA) ATCC BAA-43. MIC and MBC were 1 and 25 mg/mL, respectively. CONCLUSION PHF was more effective against Staphylococcus aureus ATCC 25923 and Methicllin resistant Staphylococcus aureus (MRSA) ATCC BAA-43t. PHF may be developed into a Staphylococcus aureus targeting topical application.
Collapse
Affiliation(s)
- Kam Lun Hon
- a Department of Paediatrics , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong.,d Institute of Chinese Medicine , The Chinese University of Hong Kong , Hong Kong
| | - Margaret Ip
- b Department of Microbiology , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong
| | - Chun Kwok Wong
- c Department of Chemical Pathology , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong.,d Institute of Chinese Medicine , The Chinese University of Hong Kong , Hong Kong.,e Partner State Key Laboratory of Phytochemistry and Plant Resources in West China , The Chinese University of Hong Kong , Hong Kong
| | - Ben Chung Lap Chan
- d Institute of Chinese Medicine , The Chinese University of Hong Kong , Hong Kong.,e Partner State Key Laboratory of Phytochemistry and Plant Resources in West China , The Chinese University of Hong Kong , Hong Kong
| | - Ping Chung Leung
- d Institute of Chinese Medicine , The Chinese University of Hong Kong , Hong Kong.,e Partner State Key Laboratory of Phytochemistry and Plant Resources in West China , The Chinese University of Hong Kong , Hong Kong
| | - Ting Fan Leung
- a Department of Paediatrics , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong
| |
Collapse
|
17
|
Wang ZQ, Shen J, Li P, Liu SS, Yi F, Liu HB, Wu FR, He CN, Chen FH, Xiao PG. Research on Quality Markers of Moutan Cortex : Quality Evaluation and Quality Standards of Moutan Cortex. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60110-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Wang W, Hui PC, Wat E, Ng FS, Kan CW, Wang X, Wong EC, Hu H, Chan B, Lau CB, Leung PC. In vitro drug release and percutaneous behavior of poloxamer-based hydrogel formulation containing traditional Chinese medicine. Colloids Surf B Biointerfaces 2016; 148:526-532. [DOI: 10.1016/j.colsurfb.2016.09.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/08/2016] [Accepted: 09/23/2016] [Indexed: 10/21/2022]
|
19
|
Wang WY, Hui PCL, Wat E, Ng FSF, Kan CW, Lau CBS, Leung PC. Enhanced Transdermal Permeability via Constructing the Porous Structure of Poloxamer-Based Hydrogel. Polymers (Basel) 2016; 8:E406. [PMID: 30974683 PMCID: PMC6432284 DOI: 10.3390/polym8110406] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 11/16/2022] Open
Abstract
A major concern for transdermal drug delivery systems is the low bioavailability of targeted drugs primarily caused by the skin's barrier function. The resistance to the carrier matrix for the diffusion and transport of drugs, however, is routinely ignored. This study reports a promising and attractive approach to reducing the resistance to drug transport in the carrier matrix, to enhance drug permeability and bioavailability via enhanced concentration-gradient of the driving force for transdermal purposes. This approach simply optimizes and reconstructs the porous channel structure of the carrier matrix, namely, poloxamer 407 (P407)-based hydrogel matrix blended with carboxymethyl cellulose sodium (CMCs). Addition of CMCs was found to distinctly improve the porous structure of the P407 matrix. The pore size approximated to normal distribution as CMCs were added and the fraction of pore number was increased by over tenfold. Transdermal studies showed that P407/CMCs saw a significant increase in drug permeability across the skin. This suggests that P407/CMC with improved porous structure exhibits a feasible and promising way for the development of transdermal therapy with high permeability and bioavailability, thereby avoiding or reducing use of any chemical enhancers.
Collapse
Affiliation(s)
- Wen-Yi Wang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Patrick C L Hui
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Elaine Wat
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Frency S F Ng
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Chi-Wai Kan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Clara B S Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
20
|
Tsang MSM, Jiao D, Chan BCL, Hon KL, Leung PC, Lau CBS, Wong ECW, Cheng L, Chan CKM, Lam CWK, Wong CK. Anti-Inflammatory Activities of Pentaherbs Formula, Berberine, Gallic Acid and Chlorogenic Acid in Atopic Dermatitis-Like Skin Inflammation. Molecules 2016; 21:519. [PMID: 27104513 PMCID: PMC6274171 DOI: 10.3390/molecules21040519] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022] Open
Abstract
Atopic dermatitis (AD) is a common allergic skin disease, characterized by dryness, itchiness, thickening and inflammation of the skin. Infiltration of eosinophils into the dermal layer and presence of edema are typical characteristics in the skin biopsy of AD patients. Previous in vitro and clinical studies showed that the Pentaherbs formula (PHF) consisting of five traditional Chinese herbal medicines, Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis at w/w ratio of 2:1:2:2:2 exhibited therapeutic potential in treating AD. In this study, an in vivo murine model with oxazolone (OXA)-mediated dermatitis was used to elucidate the efficacy of PHF. Active ingredients of PHF water extract were also identified and quantified, and their in vitro anti-inflammatory activities on pruritogenic cytokine IL-31- and alarmin IL-33-activated human eosinophils and dermal fibroblasts were evaluated. Ear swelling, epidermis thickening and eosinophils infiltration in epidermal and dermal layers, and the release of serum IL-12 of the murine OXA-mediated dermatitis were significantly reduced upon oral or topical treatment with PHF (all p < 0.05). Gallic acid, chlorogenic acid and berberine contents (w/w) in PHF were found to be 0.479%, 1.201% and 0.022%, respectively. Gallic acid and chlorogenic acid could suppress the release of pro-inflammatory cytokine IL-6 and chemokine CCL7 and CXCL8, respectively, in IL-31- and IL-33-treated eosinophils-dermal fibroblasts co-culture; while berberine could suppress the release of IL-6, CXCL8, CCL2 and CCL7 in the eosinophil culture and eosinophils-dermal fibroblasts co-culture (all p < 0.05). These findings suggest that PHF can ameliorate allergic inflammation and attenuate the activation of eosinophils.
Collapse
Affiliation(s)
- Miranda S M Tsang
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China.
| | - Delong Jiao
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ben C L Chan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China.
| | - Kam-Lun Hon
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
| | - Ping C Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China.
| | - Clara B S Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China.
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Eric C W Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ling Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China.
| | - Carmen K M Chan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China.
| | - Christopher W K Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| | - Chun K Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China.
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|