1
|
Eity TA, Bhuia MS, Chowdhury R, Ahmmed S, Salehin Sheikh, Akter R, Islam MT. Therapeutic Efficacy of Quercetin and Its Nanoformulation Both the Mono- or Combination Therapies in the Management of Cancer: An Update with Molecular Mechanisms. J Trop Med 2024; 2024:5594462. [PMID: 39380577 PMCID: PMC11461079 DOI: 10.1155/2024/5594462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Quercetin, a major representative of the flavonol subclass found abundantly in almost all edible vegetables and fruits, showed remarkable therapeutic properties and was beneficial in numerous degenerative diseases by preventing lipid peroxidation. Quercetin is beneficial in different diseases, such as atherosclerosis and chronic inflammation. This study aims to find out the anticancer activities of quercetin and to determine different mechanisms and pathways which are responsible for the anticancer effect. It also revealed the biopharmaceutical, toxicological characteristics, and clinical utilization of quercetin to evaluate its suitability for further investigations as a reliable anticancer drug. All of the relevant data concerning this compound with cancer was collected using different scientific search engines, including PubMed, Springer Link, Wiley Online, Web of Science, SciFinder, ScienceDirect, and Google Scholar. This review demonstrated that quercetin showed strong anticancer properties, including apoptosis, inhibition of cell proliferation, autophagy, cell cycle arrest, inhibition of angiogenesis, and inhibition of invasion and migration against various types of cancer. Findings also revealed that quercetin could significantly moderate and regulate different pathways, including PI3K/AKT-mTORC1 pathway, JAK/STAT signaling system, MAPK signaling pathway, MMP signaling pathway, NF-κB pathway, and p-Camk2/p-DRP1 pathway. However, this study found that quercetin showed poor oral bioavailability due to reduced absorption; this limitation is overcome by applying nanotechnology (nanoformulation of quercetin). Moreover, different investigations revealed that quercetin expressed no toxic effect in the investigated subjects. Based on the view of these findings, it is demonstrated that quercetin might be considered a reliable chemotherapeutic drug candidate in the treatment of different cancers. However, more clinical studies are suggested to establish the proper therapeutic efficacy, safety, and human dose.
Collapse
Affiliation(s)
- Tanzila Akter Eity
- Department of Biotechnology and Genetic EngineeringBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
| | - Md. Shimul Bhuia
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Shakil Ahmmed
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of Biochemistry and Molecular BiologyBangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Salehin Sheikh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Rima Akter
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Biotechnology and Genetic Engineering DisciplineKhulna University, Khulna 9208, Bangladesh
| | - Muhammad Torequl Islam
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
- Pharmacy DisciplineKhulna University, Khulna 9208, Bangladesh
| |
Collapse
|
2
|
Samantaray A, Pradhan D, Nayak NR, Chawla S, Behera B, Mohanty L, Bisoyi SK, Gandhi S. Nanoquercetin based nanoformulations for triple negative breast cancer therapy and its role in overcoming drug resistance. Discov Oncol 2024; 15:452. [PMID: 39287822 PMCID: PMC11408462 DOI: 10.1007/s12672-024-01239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is a highly aggressive and treatment-resistant subtype of breast cancer, lacking the expression of estrogen, progesterone, and HER2 receptors. Conventional chemotherapy remains the primary treatment option, but its efficacy is often compromised by the development of drug resistance. Nanoquercetin has garnered the attention of researchers due to its potential in combating cancer. This antioxidant exhibits significant efficacy against various types of cancer, including blood, breast, pancreatic, prostate, colon, and oral cancers. Functioning as a potential anti-cancer agent, nanoquercetin impedes the development and proliferation of cancer cells, induces apoptosis and autophagy, and prevents cancer cell invasion and metastasis. Numerous processes, such as the inhibition of pathways linked to angiogenesis, inflammation, and cell survival, are responsible for these anticancer actions. Moreover, it shields DNA from degradation caused by radiation and other carcinogens. The cost-effectiveness of current cancer treatments remains a significant challenge in healthcare, imposing a substantial economic burden on societies worldwide. Preclinical studies and early-phase clinical trials indicate that nanoquercetin-based therapies could offer a significant advancement in the management of TNBC, providing a foundation for future research and clinical application in overcoming drug resistance and improving patient outcomes. This article examines the latest data on nanoquercetin's potent anti-cancer properties and interprets the accumulated research findings within the framework of preventive, predictive, and personalized (3P) medicine.
Collapse
Affiliation(s)
- Adyasa Samantaray
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Debasish Pradhan
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India.
| | - Nalini Ranjan Nayak
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Khurda, Odisha, India
| | - Bandana Behera
- Faculty of Pharmacy, C.V.Raman Global University, Bhubaneswar, India
| | - Lalatendu Mohanty
- Department of Pharmaceutical Sciences, HNB Garhwal University, Uttarakhand, India
| | - Saroj Kanta Bisoyi
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Sabnam Gandhi
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Xu Y, Bai L, Yang X, Huang J, Wang J, Wu X, Shi J. Recent advances in anti-inflammation via AMPK activation. Heliyon 2024; 10:e33670. [PMID: 39040381 PMCID: PMC11261115 DOI: 10.1016/j.heliyon.2024.e33670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Inflammation is a complex physiological phenomenon, which is the body's defensive response, but abnormal inflammation can have adverse effects, and many diseases are related to the inflammatory response. AMPK, as a key sensor of cellular energy status, plays a crucial role in regulating cellular energy homeostasis and glycolipid metabolism. In recent years, the anti-inflammation effect of AMPK and related signalling cascade has begun to enter everyone's field of vision - not least the impact on metabolic diseases. A great number of studies have shown that anti-inflammatory drugs work through AMPK and related pathways. Herein, this article summarises recent advances in compounds that show anti-inflammatory effects by activating AMPK and attempts to comment on them.
Collapse
Affiliation(s)
- Yihua Xu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Neacșu SM, Mititelu M, Ozon EA, Musuc AM, Iuga IDM, Manolescu BN, Petrescu S, Pandele Cusu J, Rusu A, Surdu VA, Oprea E, Lupuliasa D, Popescu IA. Comprehensive Analysis of Novel Synergistic Antioxidant Formulations: Insights into Pharmacotechnical, Physical, Chemical, and Antioxidant Properties. Pharmaceuticals (Basel) 2024; 17:690. [PMID: 38931357 PMCID: PMC11206646 DOI: 10.3390/ph17060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Oxidative stress plays a pivotal role in the pathogenesis of various diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, and diabetes, highlighting the pressing need for effective antioxidant interventions. (2) Methods: In this study, we aimed to develop and characterise two novel antioxidant formulations, F3 and F4, as therapeutic interventions for oxidative stress-related conditions. (3) Results: The physicochemical characterisation, preformulation analysis, formulation, preparation of filling powders for capsules, capsule content evaluation, and antioxidant activity assessment of the two novel antioxidant formulations were assessed. These formulations comprise a combination of well-established antioxidants like quercetin, biotin, coenzyme Q10, and resveratrol. Through comprehensive testing, the formulations' antioxidant efficacy, stability, and potential synergistic interactions were evaluated. (4) Conclusions: The findings underscore the promising potential of these formulations as therapeutic interventions for oxidative stress-related disorders and highlight the significance of antioxidant interventions in mitigating their progression.
Collapse
Affiliation(s)
- Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.M.); (I.D.M.I.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Izabela Dana Maria Iuga
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.M.); (I.D.M.I.)
| | - Bogdan Nicolae Manolescu
- “C. Nenitescu” Department of Organic Chemistry, Faculty of Applied Chemistry and Science of Materials, National University for Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Simona Petrescu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Jeanina Pandele Cusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Adriana Rusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Eliza Oprea
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1–3 Portocalilor Way, 060101 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Ioana Andreea Popescu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| |
Collapse
|
5
|
Cecerska-Heryć E, Wiśniewska Z, Serwin N, Polikowska A, Goszka M, Engwert W, Michałów J, Pękała M, Budkowska M, Michalczyk A, Dołęgowska B. Can Compounds of Natural Origin Be Important in Chemoprevention? Anticancer Properties of Quercetin, Resveratrol, and Curcumin-A Comprehensive Review. Int J Mol Sci 2024; 25:4505. [PMID: 38674092 PMCID: PMC11050349 DOI: 10.3390/ijms25084505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Malignant tumors are the second most common cause of death worldwide. More attention is being paid to the link between the body's impaired oxidoreductive balance and cancer incidence. Much attention is being paid to polyphenols derived from plants, as one of their properties is an antioxidant character: the ability to eliminate reactive oxygen and nitrogen species, chelate specific metal ions, modulate signaling pathways affecting inflammation, and raise the level and activity of antioxidant enzymes while lowering those with oxidative effects. The following three compounds, resveratrol, quercetin, and curcumin, are polyphenols modulating multiple molecular targets, or increasing pro-apoptotic protein expression levels and decreasing anti-apoptotic protein expression levels. Experiments conducted in vitro and in vivo on animals and humans suggest using them as chemopreventive agents based on antioxidant properties. The advantage of these natural polyphenols is low toxicity and weak adverse effects at higher doses. However, the compounds discussed are characterized by low bioavailability and solubility, which may make achieving the blood concentrations needed for the desired effect challenging. The solution may lie in derivatives of naturally occurring polyphenols subjected to structural modifications that enhance their beneficial effects or work on implementing new ways of delivering antioxidants that improve their solubility and bioavailability.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Zofia Wiśniewska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Małgorzata Goszka
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Weronika Engwert
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Jaśmina Michałów
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Maja Pękała
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland;
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| |
Collapse
|
6
|
Khil NHS, Sharma S, Sharma PK, Alam MA. Neoteric Role of Quercetin in Visual Disorders. Curr Drug Res Rev 2024; 16:164-174. [PMID: 37608659 DOI: 10.2174/2589977515666230822114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Flavonoids are a family of secondary metabolites found in plants and fungi that exhibit strong antioxidant properties and low toxicity, making them potential candidates for medicinal use. Quercetin, a flavonoid present in various plant-based foods, has gained attention for its numerous biological benefits, including anti-inflammatory, anti-fibrosis, and antioxidant properties. The ocular surface research community has recently focused on quercetin's therapeutic potential for managing ocular diseases, such as dry eye, keratoconus, corneal inflammation, and neovascularization. In this paper, we discuss the role of quercetin for ocular disease prevention, highlighting its fundamental characteristics, common biological properties, and recent applications. By reviewing the latest research conducted in the last 10 years which was focused on novel herbal formulations for ocular diseases, we aim to provide insights into the role of quercetin in managing ocular diseases and offer perspectives on its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Noor Hassan Sulaiman Khil
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Mirza MA, Mahmood S, Hilles AR, Ali A, Khan MZ, Zaidi SAA, Iqbal Z, Ge Y. Quercetin as a Therapeutic Product: Evaluation of Its Pharmacological Action and Clinical Applications-A Review. Pharmaceuticals (Basel) 2023; 16:1631. [PMID: 38004496 PMCID: PMC10674654 DOI: 10.3390/ph16111631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Quercetin is the major polyphenolic flavonoid that belongs to the class called flavanols. It is found in many foods, such as green tea, cranberry, apple, onions, asparagus, radish leaves, buckwheat, blueberry, broccoli, and coriander. It occurs in many different forms, but the most abundant quercetin derivatives are glycosides and ethers, namely, Quercetin 3-O-glycoside, Quercetin 3-sulfate, Quercetin 3-glucuronide, and Quercetin 3'-metylether. Quercetin has antioxidant, anti-inflammatory, cardioprotective, antiviral, and antibacterial effects. It is found to be beneficial against cardiovascular diseases, cancer, diabetes, neuro-degenerative diseases, allergy asthma, peptic ulcers, osteoporosis, arthritis, and eye disorders. In pre-clinical and clinical investigations, its impacts on various signaling pathways and molecular targets have demonstrated favorable benefits for the activities mentioned above, and some global clinical trials have been conducted to validate its therapeutic profile. It is also utilized as a nutraceutical due to its pharmacological properties. Although quercetin has several pharmacological benefits, its clinical use is restricted due to its poor water solubility, substantial first-pass metabolism, and consequent low bioavailability. To circumvent this limited bioavailability, a quercetin-based nanoformulation has been considered in recent times as it manifests increased quercetin uptake by the epithelial system and enhances the delivery of quercetin to the target site. This review mainly focuses on pharmacological action, clinical trials, patents, marketed products, and approaches to improving the bioavailability of quercetin with the use of a nanoformulation.
Collapse
Affiliation(s)
- Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ayah Rebhi Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur 53100, Malaysia;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Mohammed Zaafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Syed Amir Azam Zaidi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
8
|
Parsaei M, Akhbari K. Magnetic UiO-66-NH 2 Core-Shell Nanohybrid as a Promising Carrier for Quercetin Targeted Delivery toward Human Breast Cancer Cells. ACS OMEGA 2023; 8:41321-41338. [PMID: 37969997 PMCID: PMC10633860 DOI: 10.1021/acsomega.3c04863] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
In this study, a magnetic core-shell metal-organic framework (MOF) nanocomposite, Fe3O4-COOH@UiO-66-NH2, was synthesized for tumor-targeting drug delivery by incorporating carboxylate groups as functional groups onto ferrite nanoparticle surfaces, followed by fabrication of the UiO-66-NH2 shell using a facile self-assembly approach. The anticancer drug quercetin (QU) was loaded into the magnetic core-shell nanoparticles. The synthesized magnetic nanoparticles were comprehensively evaluated through multiple techniques, including FT-IR, PXRD, FE-SEM, TEM, EDX, BET, UV-vis, ZP, and VSM. Drug release investigations were conducted to investigate the release behavior of QU from the nanocomposite at two different pH values (7.4 and 5.4). The results revealed that QU@Fe3O4-COOH@UiO-66-NH2 exhibited a high loading capacity of 43.1% and pH-dependent release behavior, maintaining sustained release characteristics over a prolonged duration of 11 days. Furthermore, cytotoxicity assays using the human breast cancer cell line MDA-MB-231 and the normal cell line HEK-293 were performed to evaluate the cytotoxic effects of QU, UiO-66-NH2, Fe3O4-COOH, Fe3O4-COOH@UiO-66-NH2, and QU@Fe3O4-COOH@UiO-66-NH2. Treatment with QU@Fe3O4-COOH@UiO-66-NH2 substantially reduced the cell viability in cancerous MDA-MB-231 cells. Cellular uptake and cell death mechanisms were further investigated, demonstrating the internalization of QU@Fe3O4-COOH@UiO-66-NH2 by cancer cells and the induction of cancer cell death through the apoptosis pathway. These findings highlight the considerable potential of Fe3O4-COOH@UiO-66-NH2 as a targeted nanocarrier for the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College
of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College
of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
9
|
Sanad SM, Farouk R, Nassar SE, Alshahrani MY, Suliman M, Ezzat Ahmed A, Eid Elesawi I. The neuroprotective effect of quercetin nanoparticles in the therapy of neuronal damage stimulated by acrolein. Saudi J Biol Sci 2023; 30:103792. [PMID: 37711970 PMCID: PMC10498005 DOI: 10.1016/j.sjbs.2023.103792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023] Open
Abstract
A gradual loss of neuronal function or structure causes neurodegenerative disorders such as Parkinson's and Alzheimer's. Neurological damage might cause cell death. Acrolein is a high-risk air and water contaminant that causes neurodegenerative disorders. Quercetin has several strategies for treating neurodegenerative disorders but has limited bioavailability inside the body. One of the hypotheses offered to improve quercetin's bioavailability is to convert it into quercetin nanoparticles. This study aims to comprehend the immunohistochemical devastation that might arise in the cerebellum because of acrolein treatment. Furthermore, the protective and ameliorative roles of quercetin nanoparticles against oxidative stress and neurotoxicity induced in mice by acrolein were assessed. Ninety male albino rats weighing 120 to 200 g were used in the present investigation. The animals were split up into the following six groups: the control group, the acrolein-treated group: animals were given acrolein (3 mg/kg) for 30 days, quercetin nanoparticles treated group: animals were given quercetin nanoparticles (30 mg/kg) for 30 days. The administration of acrolein was found to be connected to immunohistochemical abnormalities in the cerebellum. Marked differences were observed in Bax, Bcl-2, TNF-α, and GFAP expressions in the cerebellum. Treatment of rats with quercetin nanoparticles either before or after treatment with acrolein has been found to preserve the cerebellum tissues from the toxic impacts and oxidative stress induced by acrolein. This may open the door to more nanomedicine studies and a new avenue for employing nanoparticles as a therapeutic intervention in neurodegenerative illnesses.
Collapse
Affiliation(s)
- Samia M. Sanad
- Zoology Department, Faculty of Science, Zagazig University, Sharkia 44519, Egypt
| | - Reham Farouk
- Zoology Department, Faculty of Science, Zagazig University, Sharkia 44519, Egypt
| | - Safaa E. Nassar
- Zoology Department, Faculty of Science, Zagazig University, Sharkia 44519, Egypt
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, P.O. Box 61413 Abha 9088, Saudi Arabia
| | - Ibrahim Eid Elesawi
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
10
|
Attar ES, Chaudhari VH, Deokar CG, Dyawanapelly S, Devarajan PV. Nano Drug Delivery Strategies for an Oral Bioenhanced Quercetin Formulation. Eur J Drug Metab Pharmacokinet 2023; 48:495-514. [PMID: 37523008 DOI: 10.1007/s13318-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Quercetin, a naturally occurring flavonoid, has been credited with a wide spectrum of therapeutic properties. However, the oral use of quercetin is limited due to its poor water solubility, low bioavailability, rapid metabolism, and rapid plasma clearance. Quercetin has been studied extensively when used with various nanodelivery systems for enhancing quercetin bioavailability. To enhance its oral bioavailability and efficacy, various quercetin-loaded nanosystems such as nanosuspensions, polymer nanoparticles, metal nanoparticles, emulsions, liposomes or phytosomes, micelles, solid lipid nanoparticles, and other lipid-based nanoparticles have been investigated in in-vitro cells, in-vivo animal models, and humans. Among the aforementioned nanosystems, quercetin phytosomes are attracting more interest and are available on the market. The present review covers insights into the possibilities of harnessing quercetin for several therapeutic applications and a special focus on anticancer applications and the clinical benefits of nanoquercetin formulations.
Collapse
Affiliation(s)
- Esha S Attar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Vanashree H Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Chaitanya G Deokar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
11
|
Ysrafil Y, Sapiun Z, Slamet NS, Mohamad F, Hartati H, Damiti SA, Alexandra FD, Rahman S, Masyeni S, Harapan H, Mamada SS, Bin Emran T, Nainu F. Anti-inflammatory activities of flavonoid derivates. ADMET AND DMPK 2023; 11:331-359. [PMID: 37829324 PMCID: PMC10567070 DOI: 10.5599/admet.1918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Indexed: 09/01/2023] Open
Abstract
Background and purpose Flavonoids are a group of phytochemicals found abundantly in various plants. Scientific evidence has revealed that flavonoids display potential biological activities, including their ability to alleviate inflammation. This activity is closely related to their action in blocking the inflammatory cascade and inhibiting the production of pro-inflammatory factors. However, as flavonoids typically have poor bioavailability and pharmacokinetic profile, it is quite challenging to establish these compounds as a drug. Nevertheless, progressive advancements in drug delivery systems, particularly in nanotechnology, have shown promising approaches to overcome such challenges. Review approach This narrative review provides an overview of scientific knowledge about the mechanism of action of flavonoids in the mitigation of inflammatory reaction prior to delivering a comprehensive discussion about the opportunity of the nanotechnology-based delivery system in the preparation of the flavonoid-based drug. Key results Various studies conducted in silico, in vitro, in vivo, and clinical trials have deciphered that the anti-inflammatory activities of flavonoids are closely linked to their ability to modulate various biochemical mediators, enzymes, and signalling pathways involved in the inflammatory processes. This compound could be encapsulated in nanotechnology platforms to increase the solubility, bioavailability, and pharmacological activity of flavonoids as well as reduce the toxic effects of these compounds. Conclusion In Summary, we conclude that flavonoids and their derivates have given promising results in their development as new anti-inflammatory drug candidates, especially if they formulate in nanoparticles.
Collapse
Affiliation(s)
- Ysrafil Ysrafil
- Department of Pharmacotherapy, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Zulfiayu Sapiun
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Nangsih Sulastri Slamet
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Fihrina Mohamad
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Hartati Hartati
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Sukmawati A Damiti
- Department of Midwivery, Politeknik Kesehatan Kementerian Kesehatan Palangka Raya 73111, Palangka Raya, Indonesia
| | - Francisca Diana Alexandra
- Department of Pharmacotherapy, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Sudarman Rahman
- Faculty of mathematics and natural sciences, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Denpasar, Bali 80235, Indonesia
- Department of Internal Medicine, Sanjiwani Hospital, Denpasar, Bali 80235, Indonesia
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
12
|
Mobasheri K, Zaefizadeh M, Ghobeh M, Eidi A. Synthesis of Novel Magnetic Quercetin-Neuropeptide Nanocomposite as a Smart Nano-Drug Shuttle System: Investigation of Its Effect on Behavior, Histopathological Characteristics, and Expression of MAPT and APP Genes in Alzheimer's Disease Rats. J Alzheimers Dis 2023:JAD221095. [PMID: 37393494 DOI: 10.3233/jad-221095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia. The drugs introduced for this disease have many side effects and limitations in use, so the production of a suitable herbal medicine to cure AD patients is essential. OBJECTIVE The aim of this research is to make a magnetic neuropeptide nano shuttle as a targeted carrier for the transfer of quercetin to the brains of AD model rats. METHODS In this work, a magnetic quercetin-neuropeptide nanocomposite (MQNPN) was fabricated and administered to the rat's brain by the shuttle drug of the Margatoxin scorpion venom neuropeptide, and will be a prospect for targeted drug delivery in AD. The MQNPN has been characterized by FTIR, spectroscopy, FE-SEM, XRD, and VSM. Investigations into the efficacy of MQNPN, MTT, and real Time PCR for MAPT and APP genes expression were performed. After 7 days treatment with Fe3O4 (Ctr) and MQNPN treatment in AD rat, superoxide dismutase activity and quercetin in blood serum and brain was detected. Hematoxylin-Eosin staining was applied for histopathological analysis. RESULTS Analysis of data showed that MQNPN increased the activity of superoxide dismutase. The histopathology results of the hippocampal region of AD rats also confirmed their improvement after treatment with MQNPN. MQNPN treatment caused a significant decrease in the relative expression of MAPT and APP genes. CONCLUSION MQNPN is a suitable carrier for the transfer of quercetin to the rat hippocampus, and has a significant effect in reducing AD symptoms in terms of histopathology, behavioral testing, and changing the expression of AD-related genes.
Collapse
Affiliation(s)
- Kamelia Mobasheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Zaefizadeh
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Willian de Alencar Pereira E, Fontes VC, da Fonseca Amorim EA, de Miranda RDCM, Carvalho RC, de Sousa EM, Cutrim SCPF, Alves Lima CZGP, de Souza Monteiro A, Neto LGL. Antimicrobial effect of quercetin against Streptococcus pneumoniae. Microb Pathog 2023; 180:106119. [PMID: 37098385 DOI: 10.1016/j.micpath.2023.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023]
Abstract
Streptococcus pneumoniae is a bacterium that causes serious infections, including pneumonia. The limited range of available vaccines and the rise of antibiotic-resistant bacteria mean that new treatments are needed. This study looked at the potential of quercetin as an antimicrobial agent against S. pneumoniae in both isolation and in biofilms. The researchers used microdilution tests, checkerboard assays, and death curve assays, as well as in silico and in vitro cytotoxicity evaluations. They found that quercetin at a concentration of 125.0 μg/mL had both inhibitory and bactericidal effects against S. pneumoniae, and these effects were increased when quercetin was combined with ampicillin. Quercetin also reduced the growth of pneumococcal biofilms. In addition, quercetin (absence or in combination with ampicillin) reduced the death time of Tenebrio molitor larvae compared to the infection control. The study also demonstrated that quercetin had low toxicity in both in silico and in vivo assays, suggesting that it could be a promising treatment for infections caused by S. pneumoniae.
Collapse
|
14
|
Heydariyan Z, Soofivand F, Dawi EA, Abd Al-Kahdum SA, Hameed NM, Salavati-Niasari M. A comprehensive review: Different approaches for encountering of bacterial infection of dental implants and improving their properties. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
15
|
Improvement of Therapeutic Value of Quercetin with Chitosan Nanoparticle Delivery Systems and Potential Applications. Int J Mol Sci 2023; 24:ijms24043293. [PMID: 36834702 PMCID: PMC9959398 DOI: 10.3390/ijms24043293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
This paper reviews recent studies investigating chitosan nanoparticles as drug delivery systems for quercetin. The therapeutic properties of quercetin include antioxidant, antibacterial and anti-cancer potential, but its therapeutic value is limited by its hydrophobic nature, low bioavailability and fast metabolism. Quercetin may also act synergistically with other stronger drugs for specific disease states. The encapsulation of quercetin in nanoparticles may increase its therapeutic value. Chitosan nanoparticles are a popular candidate in preliminary research, but the complex nature of chitosan makes standardisation difficult. Recent studies have used in-vitro, and in-vivo experiments to study the delivery of quercetin alone or in combination with another active pharmaceutical ingredient encapsulated in chitosan nanoparticles. These studies were compared with the administration of non-encapsulated quercetin formulation. Results suggest that encapsulated nanoparticle formulations are better. In-vivo or animal models simulated the type of disease required to be treated. The types of diseases were breast, lung, liver and colon cancers, mechanical and UVB-induced skin damage, cataracts and general oxidative stress. The reviewed studies included various routes of administration: oral, intravenous and transdermal routes. Although toxicity tests were often included, it is believed that the toxicity of loaded nanoparticles needs to be further researched, especially when not orally administered.
Collapse
|
16
|
Lotfi N, Yousefi Z, Golabi M, Khalilian P, Ghezelbash B, Montazeri M, Shams MH, Baghbadorani PZ, Eskandari N. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update. Front Immunol 2023; 14:1077531. [PMID: 36926328 PMCID: PMC10011078 DOI: 10.3389/fimmu.2023.1077531] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer is caused by abnormal proliferation of cells and aberrant recognition of the immune system. According to recent studies, natural products are most likely to be effective at preventing cancer without causing any noticeable complications. Among the bioactive flavonoids found in fruits and vegetables, quercetin is known for its anti-inflammatory, antioxidant, and anticancer properties. This review aims to highlight the potential therapeutic effects of quercetin on some different types of cancers including blood, lung and prostate cancers.
Collapse
Affiliation(s)
- Noushin Lotfi
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marjan Golabi
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Khalilian
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrooz Ghezelbash
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Montazeri
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Shams
- Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Nahid Eskandari
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Joseph A, Shanmughan P, Balakrishnan A, Maliakel B, M KI. Enhanced Bioavailability and Pharmacokinetics of a Natural Self-Emulsifying Reversible Hybrid-Hydrogel System of Quercetin: A Randomized Double-Blinded Comparative Crossover Study. ACS OMEGA 2022; 7:46825-46832. [PMID: 36570285 PMCID: PMC9774360 DOI: 10.1021/acsomega.2c05929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Despite the vast array of health beneficial pharmacological effects, the bioavailability of the dietary flavonoid quercetin was found to be poor due to insolubility, incompatibility, and rapid biotransformation. Herein, we investigated the solubility, morphology, particle size, stability, in vitro release, and human pharmacokinetics of a hybrid-hydrogel formulation of quercetin (FQ-35) using fenugreek galactomannans as the hydrogel scaffold. Physicochemical characterization revealed that the crystalline quercetin was well encapsulated in the hydrogel matrix to form translucent microgel particles of FQ-35 with enhanced solubility (96-fold). The mean particle size was found to be 183.6 ± 42.7 nm with a zeta potential of 35.1 ± 3.8 mV. Pharmacokinetic investigation on healthy volunteers (N = 16) employing tandem mass spectrometric (ultra-performance liquid chromatography-electrospray tandem mass spectrometry) measurements of the concentration of free (unconjugated) and conjugated quercetin metabolites revealed an 18.6-fold improvement in free (unconjugated) quercetin bioavailability and 62-fold improvement in total quercetin (sum of free and conjugated) bioavailability, compared to the unformulated quercetin extracted from Sophora japonica. In summary, the natural self-emulsifying reversible hybrid-hydrogel delivery system was found to offer significant solubility, stability, and bioavailability of quercetin upon single-dose oral administration.
Collapse
|
18
|
Ke C, Liu B, Dudu OE, Zhang S, Meng L, Wang Y, Wei W, Cheng J, Yan T. Modification of structural and functional characteristics of casein treated with quercetin via two interaction modes: Covalent and non-covalent interactions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Parsaei M, Akhbari K. Synthesis and Application of MOF-808 Decorated with Folic Acid-Conjugated Chitosan as a Strong Nanocarrier for the Targeted Drug Delivery of Quercetin. Inorg Chem 2022; 61:19354-19368. [DOI: 10.1021/acs.inorgchem.2c03138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College of Science, University of Tehran, Tehran14155-6455, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran14155-6455, Iran
| |
Collapse
|
20
|
Kang SG, Lee GB, Vinayagam R, Do GS, Oh SY, Yang SJ, Kwon JB, Singh M. Anti-Inflammatory, Antioxidative, and Nitric Oxide-Scavenging Activities of a Quercetin Nanosuspension with Polyethylene Glycol in LPS-Induced RAW 264.7 Macrophages. Molecules 2022; 27:7432. [PMID: 36364256 PMCID: PMC9659305 DOI: 10.3390/molecules27217432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Quercetin (Qu) is a dietary antioxidant and a member of flavonoids in the plant polyphenol family. Qu has a high ability to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS) molecules; hence, exhibiting beneficial effects in preventing obesity, diabetes, cancer, cardiovascular diseases, and inflammation. However, quercetin has low bioavailability due to poor water solubility, low absorption, and rapid excretion from the body. To address these issues, the usage of Qu nanosuspensions can improve physical stability, solubility, and pharmacokinetics. Therefore, we developed a Qu and polyethylene glycol nanosuspension (Qu-PEG NS) and confirmed its interaction by Fourier transform infrared analysis. Qu-PEG NS did not show cytotoxicity to HaCaT and RAW 264.7 cells. Furthermore, Qu-PEG NS effectively reduced the nitrogen oxide (NO) production in lipopolysaccharide (LPS)-induced inflammatory RAW 264.7 cells. Additionally, Qu-PEG NS effectively lowered the levels of COX-2, NF-κB p65, and IL-1β in the LPS-induced inflammatory RAW 264.7 cells. Specifically, Qu-PEG NS exhibited anti-inflammatory properties by scavenging the ROS and RNS and mediated the inhibition of NF-κB signaling pathways. In addition, Qu-PEG NS had a high antioxidant effect and antibacterial activity against Escherichia coli and Bacillus cereus. Therefore, the developed novel nanosuspension showed comparable antioxidant, anti-inflammatory, and antibacterial functions and may also improve solubility and physical stability compared to raw quercetin.
Collapse
Affiliation(s)
- Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
| | - Gi Baek Lee
- Department of Biotechnology, Institute of Biotechnology, Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
| | - Geum Sook Do
- Department of Biology, College of Natural Sciences, Kyungpook National University, Buk-gu, Daegu 41566, Korea
| | - Se Yong Oh
- Nova M Healthcare Co., Ltd., 16-53, Jisiksaneop 4-ro, Gyeongsan 38408, Korea
| | - Su Jin Yang
- Nova M Healthcare Co., Ltd., 16-53, Jisiksaneop 4-ro, Gyeongsan 38408, Korea
| | - Jun Bum Kwon
- Nova M Healthcare Co., Ltd., 16-53, Jisiksaneop 4-ro, Gyeongsan 38408, Korea
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
21
|
Hosseini SS, Ebrahimi SO, Haji Ghasem Kashani M, Reiisi S. Study of quercetin and fisetin synergistic effect on breast cancer and potentially involved signaling pathways. Cell Biol Int 2022; 47:98-109. [DOI: 10.1002/cbin.11942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Seyede Saba Hosseini
- Department of Cellular and Molecular Biology, School of Biology and Institute of Biological Sciences Damghan University Damghan Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences Shahrekord University Shahrekord Iran
| | - Maryam Haji Ghasem Kashani
- Department of Cellular and Molecular Biology, School of Biology and Institute of Biological Sciences Damghan University Damghan Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences Shahrekord University Shahrekord Iran
| |
Collapse
|
22
|
Gasmi A, Mujawdiya PK, Lysiuk R, Shanaida M, Peana M, Gasmi Benahmed A, Beley N, Kovalska N, Bjørklund G. Quercetin in the Prevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2. Pharmaceuticals (Basel) 2022; 15:1049. [PMID: 36145270 PMCID: PMC9504481 DOI: 10.3390/ph15091049] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 outbreak seems to be the most dangerous challenge of the third millennium due to its highly contagious nature. Amongst natural molecules for COVID-19 treatment, the flavonoid molecule quercetin (QR) is currently considered one of the most promising. QR is an active agent against SARS and MERS due to its antimicrobial, antiviral, anti-inflammatory, antioxidant, and some other beneficial effects. QR may hold therapeutic potential against SARS-CoV-2 due to its inhibitory effects on several stages of the viral life cycle. In fact, QR inhibits viral entry, absorption, and penetration in the SARS-CoV virus, which might be at least partly explained by the ability of QR and its derivatives to inhibit 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro). QR is a potent immunomodulatory molecule due to its direct modulatory effects on several immune cells, cytokines, and other immune molecules. QR-based nanopreparations possess enhanced bioavailability and solubility in water. In this review, we discuss the prospects for the application of QR as a preventive and treatment agent for COVID-19. Given the multifactorial beneficial action of QR, it can be considered a very valid drug as a preventative, mitigating, and therapeutic agent of COVID-19 infection, especially in synergism with zinc, vitamins C, D, and E, and other polyphenols.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | | | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Asma Gasmi Benahmed
- Académie Internationale de Médecine Dentaire Intégrative, 75000 Paris, France
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| |
Collapse
|
23
|
Jia Y, Chen S, Wang C, Sun T, Yang L. Hyaluronic acid-based nano drug delivery systems for breast cancer treatment: Recent advances. Front Bioeng Biotechnol 2022; 10:990145. [PMID: 36091467 PMCID: PMC9449492 DOI: 10.3389/fbioe.2022.990145] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy among females worldwide, and high resistance to drugs and metastasis rates are the leading causes of death in BC patients. Releasing anti-cancer drugs precisely to the tumor site can improve the efficacy and reduce the side effects on the body. Natural polymers are attracting extensive interest as drug carriers in treating breast cancer. Hyaluronic acid (HA) is a natural polysaccharide with excellent biocompatibility, biodegradability, and non-immunogenicity and is a significant component of the extracellular matrix. The CD44 receptor of HA is overexpressed in breast cancer cells and can be targeted to breast tumors. Therefore, many researchers have developed nano drug delivery systems (NDDS) based on the CD44 receptor tumor-targeting properties of HA. This review examines the application of HA in NDDSs for breast cancer in recent years. Based on the structural composition of NDDSs, they are divided into HA NDDSs, Modified HA NDDSs, and HA hybrid NDDSs.
Collapse
Affiliation(s)
- Yufeng Jia
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Siwen Chen
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Chenyu Wang
- Department of Information Management, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Tao Sun
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
- *Correspondence: Tao Sun, ; Liqun Yang,
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
- *Correspondence: Tao Sun, ; Liqun Yang,
| |
Collapse
|
24
|
Potential Pharmaceutical Applications of Quercetin in Cardiovascular Diseases. Pharmaceuticals (Basel) 2022; 15:ph15081019. [PMID: 36015169 PMCID: PMC9412669 DOI: 10.3390/ph15081019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022] Open
Abstract
Quercetin, as a member of flavonoids, has emerged as a potential therapeutic agent in cardiovascular diseases (CVDs) in recent decades. In this comprehensive literature review, our goal was a critical appraisal of the pathophysiological mechanisms of quercetin in relation to the classical cardiovascular risk factors (e.g., hyperlipidemia), atherosclerosis, etc. We also assessed experimental and clinical data about its potential application in CVDs. Experimental studies including both in vitro methods and in vivo animal models mainly outline the following effects of quercetin: (1) antihypertensive, (2) hypolipidemic, (3) hypoglycemic, (4) anti-atherosclerotic, and (5) cardioprotective (suppressed cardiotoxicity). From the clinical point of view, there are human studies and meta-analyses implicating its beneficial effects on glycemic and lipid parameters. In contrast, other human studies failed to demonstrate consistent favorable effects of quercetin on other cardiometabolic risk factors such as MS, obesity, and hypertension, underlying the need for further investigation. Analyzing the reason of this inconsistency, we identified significant drawbacks in the clinical trials’ design, while the absence of pharmacokinetic/pharmacodynamic tests prior to the studies attenuated the power of clinical results. Therefore, additional well-designed preclinical and clinical studies are required to examine the therapeutic mechanisms and clinical efficacy of quercetin in CVDs.
Collapse
|
25
|
Ebunang DVT, Tajeu KY, Pecheu CN, Jiokeng SLZ, Tamo AK, Doench I, Osorio-Madrazo A, Tonle IK, Ngameni E. Amino-Functionalized Laponite Clay Material as a Sensor Modifier for the Electrochemical Detection of Quercetin. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166173. [PMID: 36015934 PMCID: PMC9414484 DOI: 10.3390/s22166173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 05/07/2023]
Abstract
In this work, an electrode modified with an amino-functionalized clay mineral was used for the electrochemical analysis and quantification of quercetin (QCT). The resulting amine laponite (LaNH2) was used as modifier for a glassy carbon electrode (GCE). The organic-inorganic hybrid material was structurally characterized using X-ray diffraction, Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and CHN elemental analysis. The covalent grafting of the organosilane to the clay backbone was confirmed. The charge on the aminated laponite, both without and with the protonation of NH2 groups, was evaluated via cyclic voltammetry. On the protonated amine (LaNH3+)-modified GCE, the cyclic voltammograms for QCT showed two oxidation peaks and one reduction peak in the range of -0.2 V to 1.2 V in a phosphate buffer-ethanol mixture at pH 3. By using the differential pulse voltammetry (DPV), the modification showed an increase in the electrode performance and a strong pH dependence. The experimental conditions were optimized, with the results showing that the peak current intensity of the DPV increased linearly with the QCT concentration in the range from 2 × 10-7 M to 2 × 10-6 M, leading to a detection limit of 2.63 × 10-8 M (S/N 3). The sensor selectivity was also evaluated in the presence of interfering species. Finally, the proposed aminated organoclay-modified electrode was successfully applied for the detection of QCT in human urine. The accuracy of the results achieved with the sensor was evaluated by comparing the results obtained using UV-visible spectrometry.
Collapse
Affiliation(s)
- Delmas Vidal Tabe Ebunang
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Kevin Yemele Tajeu
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Chancellin Nkepdep Pecheu
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Sherman Lesly Zambou Jiokeng
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), UMR 7564 CNRS—Université de Lorraine, 405, Rue de Vandœuvre, 54600 Villers-lès-Nancy, France
| | - Arnaud Kamdem Tamo
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK-Sensors, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Ingo Doench
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK-Sensors, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Anayancy Osorio-Madrazo
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK-Sensors, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Correspondence: (A.O.-M.); (E.N.); Tel.: +49-761-203-67363 (A.O.-M.); +237-675-311-930 (E.N.)
| | - Ignas Kenfack Tonle
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Emmanuel Ngameni
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Yaounde 1, Yaoundé P.O. Box 812, Cameroon
- Correspondence: (A.O.-M.); (E.N.); Tel.: +49-761-203-67363 (A.O.-M.); +237-675-311-930 (E.N.)
| |
Collapse
|
26
|
Mohapatra P, Singh P, Singh D, Sahoo S, Sahoo SK. Phytochemical based nanomedicine: a panacea for cancer treatment, present status and future prospective. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Guo WH, Zhang K, Yang LH. Potential Mechanisms of Pyrrosiae Folium in Treating Prostate Cancer Based on Network Pharmacology and Molecular Docking. Drug Dev Ind Pharm 2022; 48:189-197. [PMID: 35730236 DOI: 10.1080/03639045.2022.2088785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective The network pharmacology approach and molecular docking were employed to explore the mechanism of Pyrrosiae Folium(PF) against prostate cancer (PCa). Methods The active compounds and their corresponding putative targets of PF were identified by the Traditional Chinese Medicine Systems Pharmacology (TCMSP), the gene names of the targets were obtained from the UniProt database. The collection of genes associated with PCa were obtained from GeneCards and DisGeNET database. We merged the drug targets and disease targets by online software, Draw Venn Diagram. The resulting gene list was imported into R software (v3.6.3) for GO and KEGG function enrichment analysis. The STRING database was utilized for protein-protein interaction (PPI) network construction. The cytoHubba plugin of Cytoscape was used to identify core genes. Further, molecular docking analysis of the hub targets were carried out using AutoDock Vina software (v1.5.6). Results A total of 6 active components were screened by PF, with 167 corresponding putative targets, 1395 related targets for PCa, and 113 targets for drugs and diseases. The "drug-component-disease-target" network was constructed by Cytoscape software and the target genes mainly involved in the complex treating effects associated with response to oxidative stress, cytokine activity, pathways in cancer, prostate cancer pathway and TNF signaling pathway. Core genes in the PPI network were TNF, JUN, IL6, IL1B, CXCL8, RELA, CCL2, TP53, IL10 and FOS. The molecular docking results reveal the better binding affinity of 6 active components to the core targets. Conclusion The results of this study indicated that PF may be have a certain anti-PCa effect by regulating related target genes, affecting Pathways in cancer, TNF signaling pathway, Hepatitis B signaling pathway.
Collapse
Affiliation(s)
- Wen-Hua Guo
- Modern College of Humanities and Science of Shanxi Normal University, Linfen, Shanxi 041004, P.R. China.,School of Life Science, Shanxi Normal University, Linfen, Shanxi 041004, P.R. China
| | - Kun Zhang
- School of Life Science, Shanxi Normal University, Linfen, Shanxi 041004, P.R. China
| | - Lu-Hong Yang
- Modern College of Humanities and Science of Shanxi Normal University, Linfen, Shanxi 041004, P.R. China
| |
Collapse
|
28
|
Satake K, Ishii T, Morikawa T, Sakamoto T, Nishii Y. Quercetin Reduces the Development of 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Induced Cleft Palate in Mice by Suppressing CYP1A1 via the Aryl Hydrocarbon Receptor. Nutrients 2022; 14:nu14122448. [PMID: 35745180 PMCID: PMC9229746 DOI: 10.3390/nu14122448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Quercetin is a flavonoid with a wide range of pharmacological activities, including anticancer, antioxidant, and anti-inflammatory effects. Since it is a nutrient that can be consumed with a regular diet, quercetin has recently garnered interest. Quercetin acts as a phytochemical ligand for the aryl hydrocarbon receptor (AhR). Cleft lip and palate are among the most frequently diagnosed congenital diseases, and exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during pregnancy induces cleft palate via AhR. In this study, we investigated the preventive effect of quercetin intake on the TCDD-induced cleft palate and its mechanism of action. The in vivo results suggest that quercetin intake by pregnant mice can prevent cleft palate in fetal mice. In vitro, the addition of TCDD induced a reduction in cell migration and the proliferation of mouse embryonic palatal mesenchymal cells, which was mitigated by the addition of quercetin. The addition of quercetin did not alter the mRNA expression levels of the AhR repressor but significantly suppressed mRNA expression of CYP1A1. In addition, the binding of AhR to a xenobiotic responsive element was inhibited by quercetin, based on a chemically activated luciferase expression assay. In conclusion, our results suggest that quercetin reduces the development of TCDD-induced cleft palate by inhibiting CYP1A1 through AhR.
Collapse
|
29
|
Cote B, Elbarbry F, Bui F, Su JW, Seo K, Nguyen A, Lee M, Rao DA. Mechanistic Basis for the Role of Phytochemicals in Inflammation-Associated Chronic Diseases. Molecules 2022; 27:molecules27030781. [PMID: 35164043 PMCID: PMC8838908 DOI: 10.3390/molecules27030781] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory diseases occur in a large portion of the population and are associated with a poor diet. Key natural products found in fruits and vegetables may assist in lowering inflammation associated with chronic diseases such as obesity, diabetes, cardiovascular diseases, and cancer. This review seeks to examine the roles of several natural products, resveratrol (RES), quercetin (QUE), curcumin (CUR), piperine (PIP), epigallocatechin gallate (EGCG), and gingerol (GIN), in their ability to attenuate inflammatory markers in specific diseases states. Additionally, we will discuss findings in past and ongoing clinical trials, detail possible phytochemical–drug interactions, and provide a brief resource for researchers and healthcare professionals on natural product and supplement regulation as well as names of databases with information on efficacy, indications, and natural product–drug interactions. As diet and over-the-counter supplement use are modifiable factors and patients are interested in using complementary and alternative therapies, understanding the mechanisms by which natural products have demonstrated efficacy and the types of drugs they interact with and knowing where to find information on herbs and supplements is important for practicing healthcare providers and researchers interested in this field.
Collapse
Affiliation(s)
- Brianna Cote
- College of Pharmacy, Oregon State University, Portland, OR 97201, USA;
| | - Fawzy Elbarbry
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Fiona Bui
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Joe W. Su
- School of Pharmacy, West Coast University, Los Angeles, CA 90004, USA;
| | - Karen Seo
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Arthur Nguyen
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Max Lee
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Deepa A. Rao
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
- Correspondence:
| |
Collapse
|
30
|
Caruana R, Montalbano F, Zizzo MG, Puleio R, Caldara G, Cicero L, Cassata G, Licciardi M. Enhanced anticancer effect of quercetin microparticles formulation obtained by spray drying. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Maria Grazia Zizzo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo Palermo Italy
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia ‘A. Mirri’ Palermo Italy
| | | | - Luca Cicero
- Istituto Zooprofilattico Sperimentale della Sicilia ‘A. Mirri’ Palermo Italy
| | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia ‘A. Mirri’ Palermo Italy
| | - Mariano Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo Palermo Italy
| |
Collapse
|
31
|
Ruiz-Manriquez LM, Estrada-Meza C, Benavides-Aguilar JA, Ledesma-Pacheco SJ, Torres-Copado A, Serrano-Cano FI, Bandyopadhyay A, Pathak S, Chakraborty S, Srivastava A, Sharma A, Paul S. Phytochemicals mediated modulation of microRNAs and long non-coding RNAs in cancer prevention and therapy. Phytother Res 2021; 36:705-729. [PMID: 34932245 DOI: 10.1002/ptr.7338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are two main categories of noncoding RNAs (ncRNAs) that can influence essential biological functions in various ways, as well as their expression and function are tightly regulated in physiological homeostasis. Additionally, the dysregulation of these ncRNAs seems to be crucial to the pathogenesis of human diseases. The latest findings indicate that ncRNAs execute vital roles in cancer initiation and progression, and the cancer phenotype can be reversed by modulating their expression. Available scientific discoveries suggest that phytochemicals such as polyphenols, alkaloids, terpenoids, and organosulfur compounds can significantly modulate multiple cancer-associated miRNAs and lncRNAs, thereby inhibiting cancer initiation and development. However, despite promising outcomes of experimental research, only a few clinical trials are currently being conducted to evaluate the therapeutic effectiveness of these compounds. Nevertheless, understanding phytochemical-mediated ncRNA regulation in cancer and the underlying molecular mechanisms on tumor pathophysiology can aid in the development of novel therapeutic strategies to combat this deadly disease.
Collapse
Affiliation(s)
- Luis M Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | | | - S Janin Ledesma-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Andrea Torres-Copado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Francisco I Serrano-Cano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Anindya Bandyopadhyay
- C4 Rice Center, International Rice Research Institute, Manila, Philippines.,Synthetic Biology, Biofuel and Genome Editing R&D, Reliance Industries Ltd, Navi Mumbai, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo, Mexico
| |
Collapse
|
32
|
Quagliariello V, Gennari A, Jain SA, Rosso F, Iaffaioli RV, Barbarisi A, Barbarisi M, Tirelli N. Double-responsive hyaluronic acid-based prodrugs for efficient tumour targeting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112475. [PMID: 34857264 DOI: 10.1016/j.msec.2021.112475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Hyaluronic acid (HA)-based prodrugs bearing double-responsive (acid pH or oxidation) boronates of catechol-containing drugs were used to treat xenografted human prostate tumours (LNCaP) in SCID mice. The HA prodrugs accumulated significantly only in tumours (impressively, up to 40% of the injected dose after 24 h) and in liver, with negligible - actually anti-inflammatory - consequences in the latter. A quercetin-HA prodrug significantly slowed down tumour growth, in a dose-dependent fashion and with a much higher efficacy (up to 4 times) than equivalent doses of free quercetin. In short, boronated HA appears to be a very promising platform for targeted chemotherapy.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Department of Cardio-Thoracic and Respiratory Science, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy
| | - Arianna Gennari
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Som Akshay Jain
- Department of Cardio-Thoracic and Respiratory Science, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy
| | - Francesco Rosso
- Department of Cardio-Thoracic and Respiratory Science, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy
| | | | - Alfonso Barbarisi
- Department of Human Sciences, Pegaso Online University, 80132 Napoli, Italy
| | - Manlio Barbarisi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Nicola Tirelli
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
33
|
Duan J, Guo H, Fang Y, Zhou G. The mechanisms of wine phenolic compounds for preclinical anticancer therapeutics. Food Nutr Res 2021; 65:6507. [PMID: 34512232 PMCID: PMC8396239 DOI: 10.29219/fnr.v65.6507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/24/2021] [Accepted: 05/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background Wine is one of the oldest and most popular drinks worldwide, which is rich in phenolic compounds. Epidemiological studies show that moderate consumption of wine can reduce the risk of certain diseases, and this effect is attributed to its phenolic compounds. Objective The objective of this review was to elaborate the effects of wine-derived phenolic compounds for preclinical anticancer therapeutics and their major mechanisms. Methods In this review, we discuss the classification and content of common phenolic compounds in wine and summarize previous studies that have evaluated the anticancer properties of wine-derived phenolic compounds and their mechanisms. Results Wine-derived phenolic compounds have been proven to participate in several mechanisms against cancers, including deoxyribonucleic acid damage, oxidative stress, cell proliferation, cell cycle arrest, cell apoptosis, autophagy, cell invasion and metastasis, immunity and metabolism, regulation of multiple signaling molecules, and gene expression. However, the exact anticancer mechanisms of the phenolic compounds in wine need to be further investigated. Conclusion Wine-derived phenolic compounds are promising chemoprotective and chemotherapeutic agents for cancer.
Collapse
Affiliation(s)
- Jing Duan
- College of Enology, Northwest A&F University, Yangling, China
| | - Hua Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling, China
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Mohammed HA, Sulaiman GM, Anwar SS, Tawfeeq AT, Khan RA, Mohammed SAA, Al-Omar MS, Alsharidah M, Rugaie OA, Al-Amiery AA. Quercetin against MCF7 and CAL51 breast cancer cell lines: apoptosis, gene expression and cytotoxicity of nano-quercetin. Nanomedicine (Lond) 2021; 16:1937-1961. [PMID: 34431317 DOI: 10.2217/nnm-2021-0070] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aims: To evaluate the anti breast-cancer activity, biocompatibility and toxicity of poly(d,l)-lactic-co-glycolic acid (PLGA)-encapsulated quercetin nanoparticles (Q-PLGA-NPs). Materials & methods: Quercetin was nano-encapsulated by an emulsion-diffusion process, and the nanoparticles were fully characterized through Fourier transform infrared spectroscopy, x-ray diffractions, FESEM and zeta-sizer analysis. Activity against CAL51 and MCF7 cell lines were assessed by DNA fragmentation assays, fluorescence microscopy, and acridine-orange, and propidium-iodide double-stainings. Biocompatibility towards red blood cells and toxicity towards mice were also explored. Results: The Q-PLGA-NPs exhibited apoptotic activity against the cell lines. The murine in vivo studies showed no significant alterations in the liver and kidney's functional biomarkers, and no apparent abnormalities, or tissue damages were observed in the histological images of the liver, spleen, lungs, heart and kidneys. Conclusion: The study established the preliminary in vitro efficacy and in vivo safety of Q-PLGA-NPs as a potential anti-breast cancer formulation.
Collapse
Affiliation(s)
- Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad,10066, Iraq
| | - Sahar S Anwar
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad,10066, Iraq
| | - Amer T Tawfeeq
- Department of Molecular Biology, Iraqi Center for Cancer and Medical Genetics Research, Mustansiriyah University, PO Box 14022, Baghdad, Iraq
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Salman A A Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Mohsen S Al-Omar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia.,Medicinal Chemistry and Pharmacognosy Department, Faculty of Pharmacy, JUST, Irbid, 22110, Jordan
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Qassim, 51452, Kingdom of Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, PO Box 991, Qassim, 51911, Saudi Arabia
| | - Ahmed A Al-Amiery
- Unit of Applied Sciences Research, Department of Applied Science, University of Technology, Baghdad,10066, Iraq.,Department of Chemical and Process Engineering, University of Kebangsaan Malaysia (UKM), Bangi, Selangor, 43000, Malaysia
| |
Collapse
|
35
|
Colpan RD, Erdemir A. Co-delivery of quercetin and caffeic-acid phenethyl ester by polymeric nanoparticles for improved antitumor efficacy in colon cancer cells. J Microencapsul 2021; 38:381-393. [PMID: 34189998 DOI: 10.1080/02652048.2021.1948623] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM This study aimed to synthesise quercetin- caffeic-acid phenethyl ester (CAPE)-co-loaded poly(lactic-co-glycolic-acid) (PLGA) nanoparticles (QuCaNP) and investigate their anti-cancer activity on human colorectal carcinoma HT-29 cells. METHODS QuCaNPs were synthesised using single-emulsion (o/w) solvent evaporation method. Particle size, zeta potential, polydispersity index, in vitro release profile, and surface morphology of QuCaNPs were determined. Cytotoxicity, anti-migration, anti-proliferation and apoptotic activities of QuCaNPs were studied. RESULTS Mean diameter of QuCaNP was 237.8 ± 9.670 nm, with a polydispersity index (PDI) of 0.340 ± 0.027. Encapsulation efficiency was 74.28% (quercetin) and 65.24% (CAPE). Particle size and drug content of QuCaNP remained stable for 30 days at -20 °C. The half-maximal inhibitory concentration (IC50) values of QuCaNP-treated HT-29 cells were calculated as 11.2 µg/mL (24 h) and 8.2 µg/mL (48 h). QuCaNP treatment increased mRNA levels of caspase-3 (2.38 fold) and caspase-9 (2-fold) and expressions of key proteins in the intrinsic apoptosis pathway in HT-29 cells. CONCLUSION Overall, our results demonstrated QuCaNPs exhibits improved anti-cancer activity on HT-29 cells.
Collapse
Affiliation(s)
- Reyhan Dilsu Colpan
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| | - Aysegul Erdemir
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
36
|
García-Martínez DJ, Arroyo-Hernández M, Posada-Ayala M, Santos C. The High Content of Quercetin and Catechin in Airen Grape Juice Supports Its Application in Functional Food Production. Foods 2021; 10:foods10071532. [PMID: 34359402 PMCID: PMC8306294 DOI: 10.3390/foods10071532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Ensuring healthy lives and well-being constitutes one of the Sustainable Development Goals of the UN 2030 agenda. Consequently, research into how natural products may promote health is essential for the new generation of nutraceuticals and functional foods that are in high demand today. Grape juice is a natural foodstuff composed of water, sugars, minerals, vitamins and a wide array of polyphenols. Polyphenols are bioactive compounds of great interest due to their antioxidant properties and benefits to health, supporting antimicrobial, anti-aging, and anticarcinogenic activity. The majority of grape juice produced in the world is used for the production of wine, although a small part is used in the food industry, mainly in baby food and sports drinks. The aim of this work is to determine the polyphenol content in the natural and concentrated juice of Airen grapes, the main white grape variety produced in Spain. For this, fresh juices from five grape varietals (Airen, Sauvignon Blanc, Gewürztraminer, Verdejo and Tempranillo) and concentrated Airen juice were analyzed and compared. Results showed similar contents of phenolic acids and stilbenes in all grape varietals studied, although the Airen variety demonstrated a higher concentration of two flavonoids: quercetin and catechin. It can be concluded that the grape juice concentration process negatively affects the stability of these compounds, causing a reduction in the polyphenol content that ranges between 54–71%, with the exception of quercetin and catechin.
Collapse
|
37
|
Zhaorigetu, Farrag IM, Belal A, Badawi MHA, Abdelhady AA, Galala FMAA, El-Sharkawy A, EL-Dahshan AA, Mehany ABM. Antiproliferative, Apoptotic Effects and Suppression of Oxidative Stress of Quercetin against Induced Toxicity in Lung Cancer Cells of Rats: In vitro and In vivo Study. J Cancer 2021; 12:5249-5259. [PMID: 34335941 PMCID: PMC8317526 DOI: 10.7150/jca.52088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/05/2021] [Indexed: 11/19/2022] Open
Abstract
In the present study, quercetin was examined against lung human cancer cells using A549 and H69 cancer cell lines in addition to normal non cancer cells (W138). Two genes Bax and Bcl-2 that play an important role in apoptosis pathways were investigated. Also Immunohistochemical study for caspase-3 which is considered as indicator for apoptosis was performed. Quercetin showed good anti proliferative activity against tested lung cancer cell lines, IC50 values on A549 are 8.65, 7.96 and 5.14 µg/ml at 24, 48 and 72h respectively. Also significant effects of quercetin on Bax, Bcl-2 and caspase-3 were observed, that can prove its ability to induce apoptosis. On the other hand quercetin showed good therapeutic effects against cyclophosphamide induced lung toxicity that were observed in the histopathology study. In vitro studies were also performed such as cell cycle analysis through flowcytometry. The obtained results from all these performed analysis proved that quercetin can induce apoptosis in human lung cancer cells, additionally quercetin showed ability to reduce MDA and increase SOD and GSHP levels which indicates its ability in suppressing oxidative stress, Quercetin has played a therapeutic role in cyclophosphamide induced lung toxicity as it has improved restoring of the damaged lung tissue as discussed in this research work.
Collapse
Affiliation(s)
- Zhaorigetu
- Thoracic Surgery, Inner Mongolia People's Hospital, Hohhot City, Inner Mongolia Autonomous Region, 010020, China
| | - Islam M Farrag
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099,Taif 21944, Saudi Arabia
| | - Manal H. Al Badawi
- Department of anatomy, Faculty of Medicine, Helwan University, Helwan, Egypt
| | | | | | - Abdou El-Sharkawy
- Department of anatomy, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Asmaa A. EL-Dahshan
- Department of zoology Faculty of science (Girls branch), Al-Azhar University, Cairo, Egypt
| | - Ahmed B. M. Mehany
- Department of zoology Faculty of science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
38
|
Yammine A, Namsi A, Vervandier-Fasseur D, Mackrill JJ, Lizard G, Latruffe N. Polyphenols of the Mediterranean Diet and Their Metabolites in the Prevention of Colorectal Cancer. Molecules 2021; 26:3483. [PMID: 34201125 PMCID: PMC8227701 DOI: 10.3390/molecules26123483] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
The Mediterranean diet is a central element of a healthy lifestyle, where polyphenols play a key role due to their anti-oxidant properties, and for some of them, as nutripharmacological compounds capable of preventing a number of diseases, including cancer. Due to the high prevalence of intestinal cancer (ranking second in causing morbidity and mortality), this review is focused on the beneficial effects of selected dietary phytophenols, largely present in Mediterranean cooking: apigenin, curcumin, epigallocatechin gallate, quercetin-rutine, and resveratrol. The role of the Mediterranean diet in the prevention of colorectal cancer and future perspectives are discussed in terms of food polyphenol content, the effectiveness, the plasma level, and the importance of other factors, such as the polyphenol metabolites and the influence of the microbiome. Perspectives are discussed in terms of microbiome-dependency of the brain-second brain axis. The emergence of polyphenol formulations may strengthen the efficiency of the Mediterranean diet in the prevention of cancer.
Collapse
Affiliation(s)
- Aline Yammine
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Amira Namsi
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comté, 21000 Dijon, France;
| | - John J. Mackrill
- Department of Physiology, University College Cork, BioScience Institute, College Road, T12 YT20 Cork, Ireland;
| | - Gérard Lizard
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Norbert Latruffe
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| |
Collapse
|
39
|
Pavlović N, Milošević N, Đjanić M, Goločorbin-Kon S, Stanimirov B, Stankov K, Mikov M. Antimetastatic Potential of Quercetin Analogues with Improved Pharmacokinetic Profile: Pharmacoinformatic Preliminary Study. Anticancer Agents Med Chem 2021; 22:1407-1413. [PMID: 34102994 DOI: 10.2174/1871520621666210608102452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/13/2021] [Accepted: 05/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Urokinase-type plasminogen activator (uPA) system is a crucial pathway for tumor invasion and metastasis. Recently, multiple anticancer effects of quercetin have been described, including inhibitory activity against uPA. However, the clinical use of this flavonoid has been limited due to its low oral bioavailability. OBJECTIVE The objectives of the study were to assess the antimetastatic potential of quercetin analogues by analyzing their binding affinity for uPA and to select the compounds with improved pharmacological profiles. METHODS Binding affinities of structural analogues of quercetin to uPA receptor were determined by molecular docking analysis using Molegro Virtual Docker software, and molecular descriptors relevant for estimating pharmacological profile were calculated from ligand structures using computational models. RESULTS Among 44 quercetin analogues, only one quercetin analogue (3,6,2',4',5'-pentahydroxyflavone) was found to possess both higher aqueous solubility and membrane permeability, and a stronger affinity for uPA than quercetin, which makes it the potential lead compound for anticancer drug development. Like quercetin, this compound has five hydroxyl groups but is arranged differently, which contributes to the higher aqueous solubility and higher amphiphilic moment compared to quercetin. Since membrane permeability is not recognized as the limiting factor for quercetin absorption, analogues with higher aqueous solubility and retained or stronger uPA inhibitory activity should also be further experimentally validated for potential therapeutic use. CONCLUSION Identified quercetin analogues with better physicochemical and pharmacological properties have a high potential to succeed in later stages of research in biological systems as potential anticancer agents with antimetastatic activity.
Collapse
Affiliation(s)
- Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad. Serbia
| | - Nastasija Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad. Serbia
| | - Maja Đjanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad. Serbia
| | | | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad. Serbia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad. Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad. Serbia
| |
Collapse
|
40
|
Talarico L, Consumi M, Leone G, Tamasi G, Magnani A. Solid Lipid Nanoparticles Produced via a Coacervation Method as Promising Carriers for Controlled Release of Quercetin. Molecules 2021; 26:2694. [PMID: 34064488 PMCID: PMC8125226 DOI: 10.3390/molecules26092694] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/25/2022] Open
Abstract
Quercetin is a poorly water-soluble flavonoid with many benefits to human health. Besides the natural food resources that may provide Quercetin, the interest in delivery systems that could enhance its bioavailability in the human body has seen growth in recent years. Promising delivery system candidates are represented by Solid Lipid Nanoparticles (SLNs) which are composed of well-tolerated compounds and provide a relatively high encapsulation efficiency and suitable controlled release. In this study, Quercetin-loaded and negatively charged Solid Lipid Nanoparticles were synthesized based on a coacervation method, using stearic acid as a core lipid and Arabic Gum as a stabilizer. Samples were qualitatively characterized by Dynamic light scattering (DLS), Zeta Potential, Surface infrared spectroscopy (FTIR-ATR), and Time of flight secondary ion mass spectrometry (ToF-SIMS). Encapsulation efficiency, drug release, and antioxidant effect against ABTS•+ were evaluated in vitro by UV-VIS spectrophotometry.
Collapse
Affiliation(s)
- Luigi Talarico
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
41
|
Jain A, Madu CO, Lu Y. Phytochemicals in Chemoprevention: A Cost-Effective Complementary Approach. J Cancer 2021; 12:3686-3700. [PMID: 33995644 PMCID: PMC8120178 DOI: 10.7150/jca.57776] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the leading causes of death across the world. Although conventional cancer treatments such as chemotherapy and radiotherapy have effectively decreased cancer progression, they come with many dose-limiting side-effects. Phytochemicals that naturally occur in spices, fruits, vegetables, grains, legumes, and other common foods are surprisingly effective complements to conventional cancer treatments. These biologically active compounds demonstrate anticancer effects via cell signaling pathway interference in cancerous cells. In addition, phytochemicals protect non-cancerous cells from chemotherapy-induced side-effects. This paper addresses the not only the potential of phytochemicals quercetin, isoflavones, curcumin, catechins, and hesperidin in terms of cancer treatment and protection against side-effects of chemotherapy, but also methods for increasing phytochemical bioavailability.
Collapse
Affiliation(s)
- Aayush Jain
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152. USA
| | - Chikezie O. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152. USA
| | - Yi Lu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163. USA
| |
Collapse
|
42
|
Ramli N, Ali N, Hamzah S, Yatim N. Physicochemical characteristics of liposome encapsulation of stingless bees' propolis. Heliyon 2021; 7:e06649. [PMID: 33898810 PMCID: PMC8060604 DOI: 10.1016/j.heliyon.2021.e06649] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Nutraceuticals from natural sources have shown potential new leads in functional food products. Despite a broad range of health-promoting effects, these compounds are easily oxidized and unstable, making their utilization as nutraceutical ingredients limited. In this study, the encapsulated stingless bees' propolis in liposome was prepared using soy phosphatidylcholine and cholesterol by thin-film hydration technique. Three different formulations of phosphatidylcholine composition and cholesterol prepared by weight ratio was conducted to extract high propolis encapsulation. Physicochemical changes in the result of the encapsulation process are briefly discussed using scanning electron microscopy and Fourier Transform Infrared Spectroscopy. A dynamic light-scattering instrument was used to measure the hydrodynamic diameter, polydispersity index, and zeta potential. The increment of the liposomal size was observed when the concentration of extract loaded increased. In comparing three formulations, F2 (8:1 w/w) presented the best formulation as it yielded small nanoparticles of 275.9 nm with high encapsulation efficiency (66.9%). F1 (6:1 w/w) formed large particles of liposomes with 422.8 nm, while F3 (10:1 w/w) showed low encapsulation efficiency with (by) 38.7%. The liposome encapsulation will provide an effective nanocarrier system to protect and deliver the flavonoids extracted from stingless bees' propolis.
Collapse
Affiliation(s)
- N.A. Ramli
- Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia
| | - N. Ali
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - S. Hamzah
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - N.I. Yatim
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
43
|
Chen L, Xia JS, Wu JH, Chen YG, Qiu CJ. Quercetin suppresses cell survival and invasion in oral squamous cell carcinoma via the miR-1254/CD36 cascade in vitro. Hum Exp Toxicol 2021; 40:1413-1421. [PMID: 33686878 DOI: 10.1177/0960327121991912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE This study aimed to investigate the effects of quercetin on the proliferation and invasion in oral squamous cell carcinoma (OSCC) and examine its effect on the activation of the miR-1254/CD36 signaling pathway. METHODS Proliferation and invasion experiments were performed in the OSCC cell line CAL-27 in which miR-1254 was overexpressed or inhibited. The levels of miR-1254 and CD36 were determined using quantitative real-time polymerase chain reaction and Western blotting assays. RESULTS Quercetin significantly suppressed the proliferation and invasion of CAL-27 cells in a dose-dependent manner, while up-regulating miR-1254 and down-regulating CD36. The overexpression of miR-1254 also considerably down-regulated CD36 and enhanced the ability of quercetin to inhibit CAL-27 cell survival and invasion. Conversely, the inhibition of miR-1254 significantly up-regulated CD36 and antagonized the inhibitory effects of quercetin. CONCLUSION Our study suggests that quercetin might suppress the progression of OSCC by activating the miR-1254/CD36 signaling pathway, indicating its potential as a treatment against OSCC.
Collapse
Affiliation(s)
- L Chen
- Department of Pharmacy, The People's Hospital of Hanchuan (Hanchuan Hospital of People's Hospital Affiliated to Wuhan University), Hanchuan, Hubei, China.,Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, China
| | - J-S Xia
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, China
| | - J-H Wu
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, China
| | - Y-G Chen
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, China
| | - C-J Qiu
- Department of Pharmacy, The People's Hospital of Hanchuan (Hanchuan Hospital of People's Hospital Affiliated to Wuhan University), Hanchuan, Hubei, China
| |
Collapse
|
44
|
Zhao L, Wang H, Du X. The therapeutic use of quercetin in ophthalmology: recent applications. Biomed Pharmacother 2021; 137:111371. [PMID: 33561647 DOI: 10.1016/j.biopha.2021.111371] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Quercetin is a natural flavonol antioxidant found in various plant sources and food samples. It is well known for its notable curative effects on the treatment of ophthalmic diseases due to various biological activities, such as antioxidant, anti-inflammatory, and anti-fibrosis activities. This review will discuss the latest developments in therapeutic quercetin for the treatment of keratoconus, Graves' orbitopathy, ocular surface, cataracts, glaucoma, retinoblastoma, and other retinal diseases.
Collapse
Affiliation(s)
- Lianghui Zhao
- Weifang Medical University, Weifang, Shandong 261021, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China
| | - Hongwei Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong 266071, China.
| | - Xianli Du
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong 266071, China.
| |
Collapse
|
45
|
AbouAitah K, Lojkowski W. Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharmaceutics 2021; 13:143. [PMID: 33499150 PMCID: PMC7912645 DOI: 10.3390/pharmaceutics13020143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Natural prodrugs derived from different natural origins (e.g., medicinal plants, microbes, animals) have a long history in traditional medicine. They exhibit a broad range of pharmacological activities, including anticancer effects in vitro and in vivo. They have potential as safe, cost-effective treatments with few side effects, but are lacking in solubility, bioavailability, specific targeting and have short half-lives. These are barriers to clinical application. Nanomedicine has the potential to offer solutions to circumvent these limitations and allow the use of natural pro-drugs in cancer therapy. Mesoporous silica nanoparticles (MSNs) of various morphology have attracted considerable attention in the search for targeted drug delivery systems. MSNs are characterized by chemical stability, easy synthesis and functionalization, large surface area, tunable pore sizes and volumes, good biocompatibility, controlled drug release under different conditions, and high drug-loading capacity, enabling multifunctional purposes. In vivo pre-clinical evaluations, a significant majority of results indicate the safety profile of MSNs if they are synthesized in an optimized way. Here, we present an overview of synthesis methods, possible surface functionalization, cellular uptake, biodistribution, toxicity, loading strategies, delivery designs with controlled release, and cancer targeting and discuss the future of anticancer nanotechnology-based natural prodrug delivery systems.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), 33 El-Behouth St., Dokki 12622, Giza, Egypt
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| |
Collapse
|
46
|
Krstić L, González-García MJ, Diebold Y. Ocular Delivery of Polyphenols: Meeting the Unmet Needs. Molecules 2021; 26:molecules26020370. [PMID: 33445725 PMCID: PMC7828190 DOI: 10.3390/molecules26020370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nature has become one of the main sources of exploration for researchers that search for new potential molecules to be used in therapy. Polyphenols are emerging as a class of compounds that have attracted the attention of pharmaceutical and biomedical scientists. Thanks to their structural peculiarities, polyphenolic compounds are characterized as good scavengers of free radical species. This, among other medicinal effects, permits them to interfere with different molecular pathways that are involved in the inflammatory process. Unfortunately, many compounds of this class possess low solubility in aqueous solvents and low stability. Ocular pathologies are spread worldwide. It is estimated that every individual at least once in their lifetime experiences some kind of eye disorder. Oxidative stress or inflammatory processes are the basic etiological mechanisms of many ocular pathologies. A variety of polyphenolic compounds have been proved to be efficient in suppressing some of the indicators of these pathologies in in vitro and in vivo models. Further application of polyphenolic compounds in ocular therapy lacks an adequate formulation approach. Therefore, more emphasis should be put in advanced delivery strategies that will overcome the limits of the delivery site as well as the ones related to the polyphenols in use. This review analyzes different drug delivery strategies that are employed for the formulation of polyphenolic compounds when used to treat ocular pathologies related to oxidative stress and inflammation.
Collapse
Affiliation(s)
- Luna Krstić
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
| | - María J. González-García
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yolanda Diebold
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-883423274
| |
Collapse
|
47
|
Zang X, Cheng M, Zhang X, Chen X. Quercetin nanoformulations: a promising strategy for tumor therapy. Food Funct 2021; 12:6664-6681. [PMID: 34152346 DOI: 10.1039/d1fo00851j] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phytochemicals as dietary constituents are being widely explored for the prevention and treatment of various diseases. Quercetin, a major constituent of various dietary products, has attracted extensive interest due to its anti-proliferative capability, reversal of multidrug resistance, autophagy promotion and tumor microenvironment modulation on different cancer types. Although quercetin has shown potent medical value, its application as an antitumor drug is limited. Problems like poor solubility, bioavailability and stability, short half-life and weak tumor-targeting biodistribution make quercetin an unreliable candidate for cancer therapy. Nanoparticle based platforms have shown a number of advantages in delivering a hydrophobic drug like quercetin to diseased tissues. Quercetin nanoparticles have demonstrated high encapsulation efficiency, stability, sustained release, prolonged circulation time, improved accumulation at tumor sites and therapeutic efficiency. Moreover, a combination of quercetin with other diagnostic or therapeutic agents in one nanocarrier has achieved enhancements in detecting or treating tumors. In this review, we have tried to summarize the pharmacological activities of quercetin with regard to tumor cells and microenvironments in vitro and in vivo. Furthermore, various nanoformulations have been highlighted for quercetin delivery for cancer treatment. These results suggest that quercetin nanoparticles may be a promising antitumor therapeutic agent.
Collapse
Affiliation(s)
- Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China.
| | | | | | | |
Collapse
|
48
|
Bhaskara VK, Mittal B, Mysorekar VV, Amaresh N, Simal-Gandara J. Resveratrol, cancer and cancer stem cells: A review on past to future. Curr Res Food Sci 2020; 3:284-295. [PMID: 33305295 PMCID: PMC7718213 DOI: 10.1016/j.crfs.2020.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer remains to be an unresolved medical challenge despite of tremendous advancement in basic science research and clinical medicine. One of the major limitations is due to the side effects of chemotherapy which remains to be palliative without offering any permanent cure for cancer. Cancer stem cells (CSCs) are the subpopulation of cells in tumors that remain viable even after surgery, chemo- and radio-therapy that eventually responsible for tumor relapse. Hence, by eliminating non-stem cancer cells and cancer stem cells from the patient, permanent cure is expected. Phytochemicals have been under the intensive study to target these CSCs effectively and permanently as they do not cause any side effects. Resveratrol (RSV) is one such compound attaining lot of interest in recent days to target CSCs either alone or in combination. RSV has been used by several researchers to target cancer cells in a variety of disease models, however its CSC targeting abilities are under intensive study at present. This review is to summarize the effects of RSV under in vitro and in vivo conditions along with advantages and disadvantages of its uses against cancer cells and cancer stem cells. From the first reports on phytochemical applications against cancer and cancer stem cells in 1997 and 2002 respectively followed by later reports, up to date observations and developments are enlisted from PubMed in this comprehensive review. RSV is shown to be a potential compound having impact on altering the signal transduction pathways in cancer cells. However, the effects are variable under in vitro and in vivo conditions, and also with its use alone or in combination with other small molecules. Past research on RSV is emphasizing the importance of in vivo experimental models and clinical trials with different prospective combinations, is a hope for future promising treatment regimen.
Collapse
Affiliation(s)
- Vasanth K Bhaskara
- Department of Biochemistry-PG, Ramaiah Post Graduate Center, Ramaiah College - RCASC, Bengaluru 560054, India
| | - Bharti Mittal
- Immuniteit Lab Pvt Ltd., Electronic City, Bengaluru 560024, India
| | - Vijaya V Mysorekar
- Department of Pathology, Ramaiah Medical College & Hospitals (RMCH), Bengaluru 560054, India
| | - Nagarathna Amaresh
- Department of Biotechnology, Ramaiah Post Graduate Center, Ramaiah College - RCASC, Bengaluru 560054, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
49
|
Lipophilic effect of various pluronic-grafted gelatin copolymers on the quercetin delivery efficiency in these self-assembly nanogels. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02216-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Jampilek J, Kralova K. Potential of Nanonutraceuticals in Increasing Immunity. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2224. [PMID: 33182343 PMCID: PMC7695278 DOI: 10.3390/nano10112224] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Nutraceuticals are defined as foods or their extracts that have a demonstrably positive effect on human health. According to the decision of the European Food Safety Authority, this positive effect, the so-called health claim, must be clearly demonstrated best by performed tests. Nutraceuticals include dietary supplements and functional foods. These special foods thus affect human health and can positively affect the immune system and strengthen it even in these turbulent times, when the human population is exposed to the COVID-19 pandemic. Many of these special foods are supplemented with nanoparticles of active substances or processed into nanoformulations. The benefits of nanoparticles in this case include enhanced bioavailability, controlled release, and increased stability. Lipid-based delivery systems and the encapsulation of nutraceuticals are mainly used for the enrichment of food products with these health-promoting compounds. This contribution summarizes the current state of the research and development of effective nanonutraceuticals influencing the body's immune responses, such as vitamins (C, D, E, B12, folic acid), minerals (Zn, Fe, Se), antioxidants (carotenoids, coenzyme Q10, polyphenols, curcumin), omega-3 fatty acids, and probiotics.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|