1
|
Mansour AM, Abou Hammad AB, El Nahrawy AM. Exploring nanoarchitectonics and optical properties of PAA-ZnO@BCP wide-band-gap organic semiconductors. Sci Rep 2024; 14:3060. [PMID: 38321100 PMCID: PMC10847419 DOI: 10.1038/s41598-024-53469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024] Open
Abstract
This work reports the formation of polyacrylic acid (PAA)-zinc oxide (ZnO)-bromocresol purple (BCP), (PAA-ZnO@ (0.00-0.01) BCP wide-bandgap organic semiconductors deposited onto glass substrates via a sol-gel polymerization process. These semiconductor films were deposited on glass substrates using a spin coating and then dried at 60 °C. The PAA-ZnO film appeared to be of amorphous phase, and films loaded with BCP revealed semicrystalline behavior. The surface of the films exhibited adherence and extended grains. The hydrogen bonds formed between PAA-ZnO and the BCP dye within the PAA-ZnO@BCP films was performed using FTIR-spectroscopy. The prepared nanocomposites demonstrate an indirect band transition which is affected slightly by adding ZnO and BCP dye. Optical parameters such as the absorption coefficient, the refractive index, the dielectric constant, optical conductivity, optical depth, and optical electronegativity of the prepared nanocomposites were studied as functions of incident light energy (wavelength). The PAA carbonyl group n-π* transition and BCP aromatic ring π-π* transitions were detected at about 285 (for all samples) and 432 nm (for BCP loaded samples), respectively. The superior photoluminescence characteristics observed in the BCP/PAA-Zn films excited with a wavelength of 250 nm indicated the successful loading of the BCP dye during the self-aggregation of the PAA-Zn film.
Collapse
Affiliation(s)
- A M Mansour
- Solid State Physics Department, Physics Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Ali B Abou Hammad
- Solid State Physics Department, Physics Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Amany M El Nahrawy
- Solid State Physics Department, Physics Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
2
|
Waqas M, Shahzadi A, Haider A, Hamid AU, Algaradah MM, Abd-Rabboh HSM, Ikram M. Chitosan grafted polyacrylic acid doped MnO 2 nanocomposite an efficient dye degrader and antimicrobial agent. Int J Biol Macromol 2023; 251:126343. [PMID: 37586627 DOI: 10.1016/j.ijbiomac.2023.126343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Manganese dioxide (MnO2) nanorods and (3, 6, and 9 mL) chitosan grafted polyacrylic acid (CS-g-PAA) doped MnO2 were prepared hydrothermally. The study objective is to decrease the recombination rate of MnO2 upon doping to enhance the dye degradation efficiency and antimicrobial activity. The doping-dependent properties of CS-g-PAA on phase identification, functional groups, optical characteristics, elemental compositions, and morphological analyses of MnO2 nanorods were conducted using systematic characterization techniques. XRD pattern shows that MnO2 has a tetragonal structure, with increased crystallite size (15.87 to 29.36 nm) upon doping. The TEM analysis showed that MnO2 has nanorods and that CS-g-PAA doped MnO2 displayed nanoflakes-like structures. The decrease in electron-hole pair recombination rate on doping was verified by PL spectroscopy, demonstrating the enhanced catalytic activity. Moreover, adding grafted binary polymers to MnO2 inhibits bacterial cell growth by binding with the negatively charged cell wall and preventing biofilm formation. The 9 mL doped sample displayed a maximum degradation (99.27 %) in a neutral medium and 85.84 % antimicrobial efficiency against E. coli. The enoyl-acyl carrier protein reductase (FabIE. coli) and DNA gyrase(E. coli) were inhibited by these CS-g-PAA doped MnO2 nanostructures (NSs), as shown by in silico molecular docking studies.
Collapse
Affiliation(s)
- Muhammad Waqas
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000 Multan, Punjab, Pakistan
| | - Anwar Ul Hamid
- Core Research Facilities, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | | | - Hisham S M Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University, P.O.Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan.
| |
Collapse
|
3
|
Aziz T, Imran M, Haider A, Shahzadi A, Ul Abidin MZ, Ul-Hamid A, Nabgan W, Algaradah MM, Fouda AM, Ikram M. Catalytic performance and antibacterial behaviour with molecular docking analysis of silver and polyacrylic acid doped graphene quantum dots. RSC Adv 2023; 13:28008-28020. [PMID: 37746345 PMCID: PMC10517100 DOI: 10.1039/d3ra04741e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023] Open
Abstract
In this research, a fixed concentration (3 wt%) of Ag/PAA and PAA/Ag doped graphene quantum dots (GQDs) were synthesized using the co-precipitation technique. A variety of characterization techniques were employed to synthesize samples to investigate their optical, morphological, structural, and compositional analyses, antimicrobial efficacy, and dye degradation potential with molecular docking analysis. GQDs have high solubility, narrow band gaps, and are suitable for electron acceptors and donors but show less adsorption and catalytic behavior. Incorporating polyacrylic acid (PAA) into GQDs increases the catalytic and antibacterial activities due to the carboxylic group (-COOH). Furthermore, introducing silver (Ag) increased the degradation of dye and microbes as it had a high surface-to-volume ratio. In addition, molecular docking studies were used to decipher the mechanism underlying the bactericidal action of silver and polyacrylic acid-doped graphene quantum dots and revealed inhibition of β-lactamase and DNA gyrase.
Collapse
Affiliation(s)
- Tahreem Aziz
- Department of Chemistry, Government College University, Faisalabad Pakpattan Road Sahiwal Punjab 57000 Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University, Faisalabad Pakpattan Road Sahiwal Punjab 57000 Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan 66000 Punjab Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore Lahore 54000 Pakistan
| | - Muhammad Zain Ul Abidin
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili Av Països Catalans 26 43007 Tarragona Spain
| | | | - Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| |
Collapse
|
4
|
Elzahaby DA, Farrag HA, Haikal RR, Alkordi MH, Abdeltawab NF, Ramadan MA. Inhibition of Adherence and Biofilm Formation of Pseudomonas aeruginosa by Immobilized ZnO Nanoparticles on Silicone Urinary Catheter Grafted by Gamma Irradiation. Microorganisms 2023; 11:microorganisms11040913. [PMID: 37110336 PMCID: PMC10142706 DOI: 10.3390/microorganisms11040913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Nosocomial infections caused by microbial biofilm formation on biomaterial surfaces such as urinary catheters are complicated by antibiotic resistance, representing a common problem in hospitalized patients. Therefore, we aimed to modify silicone catheters to resist microbial adherence and biofilm formation by the tested microorganisms. This study used a simple direct method to graft poly-acrylic acid onto silicone rubber films using gamma irradiation to endow the silicone surface with hydrophilic carboxylic acid functional groups. This modification allowed the silicone to immobilize ZnO nanoparticles (ZnO NPs) as an anti-biofilm. The modified silicone films were characterized by FT-IR, SEM, and TGA. The anti-adherence ability of the modified silicone films was evidenced by the inhibition of biofilm formation by otherwise strong biofilm-producing Gram-positive, Gram-negative, and yeast clinical isolates. The modified ZnO NPs grafted silicone showed good cytocompatibility with the human epithelial cell line. Moreover, studying the molecular basis of the inhibitory effect of the modified silicone surface on biofilm-associated genes in a selected Pseudomonas aeruginosa isolate showed that anti-adherence activity might be due to the significant downregulation of the expression of lasR, lasI, and lecB genes by 2, 2, and 3.3-fold, respectively. In conclusion, the modified silicone catheters were low-cost, offering broad-spectrum anti-biofilm activity with possible future applications in hospital settings.
Collapse
|
5
|
Dunning SG, Chen B, Zhu L, Cody GD, Chariton S, Prakapenka VB, Zhang D, Strobel TA. Synthesis and Post-Processing of Chemically Homogeneous Nanothreads from 2,5-Furandicarboxylic Acid. Angew Chem Int Ed Engl 2023; 62:e202217023. [PMID: 36757113 DOI: 10.1002/anie.202217023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Compared with conventional, solution-phase approaches, solid-state reaction methods can provide unique access to novel synthetic targets. Nanothreads-one-dimensional diamondoid polymers formed through the compression of small molecules-represent a new class of materials produced via solid-state reactions, however, the formation of chemically homogeneous products with targeted functionalization represents a persistent challenge. Through careful consideration of molecular precursor stacking geometry and functionalization, we report here the scalable synthesis of chemically homogeneous, functionalized nanothreads through the solid-state polymerization of 2,5-furandicarboxylic acid. The resulting product possesses high-density, pendant carboxyl functionalization along both sides of the backbone, enabling new opportunities for the post-synthetic processing and chemical modification of nanothread materials applicable to a broad range of potential applications.
Collapse
Affiliation(s)
- Samuel G Dunning
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC-20015, USA
| | - Bo Chen
- Donostia International Physics Center, Paseo Manuel de Lardizabal, 4, 20018, Donostia-San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Li Zhu
- Physics Department, Rutgers University-Newark, 101 Warren Street, Newark, NJ-07102, USA
| | - George D Cody
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC-20015, USA
| | - Stella Chariton
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL-60637, USA
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL-60637, USA
| | - Dongzhou Zhang
- Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI-96822, USA
| | - Timothy A Strobel
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC-20015, USA
| |
Collapse
|
6
|
Ikram M, Haider A, Imran M, Haider J, Naz S, Ul-Hamid A, Shahzadi A, Ghazanfar K, Nabgan W, Moeen S, Ali S. Assessment of catalytic, antimicrobial and molecular docking analysis of starch-grafted polyacrylic acid doped BaO nanostructures. Int J Biol Macromol 2023; 230:123190. [PMID: 36623614 DOI: 10.1016/j.ijbiomac.2023.123190] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
The removal of cationic dyes from water has received a great attention of researchers considering their influence on environment and ecosystem. In current work, starch-grafted-poly acrylic acid (St-g-PAA) doped BaO nanostrucutures have been synthesized by co-precipitation approach. The aim of this research was to reduce the harmful methylene blue dye and evaluate the antibacterial activity of St-g-PAA doped BaO. XRD spectra exhibited the tetragonal structure of BaO and no variations occurred upon doping. The optical properties of St-g-PAA doped BaO have been evaluated by UV-Vis spectrophotometer. The existence of a dopant in the product was verified using EDS spectroscopy. TEM revealed the formation of cubic-shaped NPs of BaO and upon the addition of St-g-PAA, a few nanorod-like structures. The higher concentration of St-g-PAA doped BaO exhibit a remarkable reduction of methylene blue in a basic environment. Furthermore, St-g-PAA doped BaO revealed higher antimicrobial efficacy against Staphylococcus aureus in comparison to Escherichia coli. In silico studies were conducted against enoyl-[acylcarrier-protein] reductase (FabI) and beta-lactamase enzyme to evaluate the potential of both St-g-PAA and St-g-PAA doped BaO nanocomposites as their inhibitors and to rationalize their possible mode of action.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Pakistan.
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University Faisalabad, Pakpattan Road, Sahiwal, Punjab 57000, Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Sadia Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Kinza Ghazanfar
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain.
| | - Sawaira Moeen
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Pakistan
| | - Salamat Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| |
Collapse
|
7
|
Mayuri Gupta, Tyagi AK, Raula M. Synthesis of Bis-GMA Grafted Co-Polymer of Acrylic–Itaconic Acid and its Composite. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Facile synthesis of silver and polyacrylic acid doped magnesium oxide nanostructure for photocatalytic dye degradation and bactericidal behavior. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
González-Henríquez CM, Rodríguez-Umanzor FE, Alegría-Gómez MN, Terraza-Inostroza CA, Martínez-Campos E, Cue-López R, Sarabia-Vallejos MA, García-Herrera C, Rodríguez-Hernández J. Wrinkling on Stimuli-Responsive Functional Polymer Surfaces as a Promising Strategy for the Preparation of Effective Antibacterial/Antibiofouling Surfaces. Polymers (Basel) 2021; 13:4262. [PMID: 34883766 PMCID: PMC8659726 DOI: 10.3390/polym13234262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
Biocompatible smart interfaces play a crucial role in biomedical or tissue engineering applications, where their ability to actively change their conformation or physico-chemical properties permits finely tuning their surface attributes. Polyelectrolytes, such as acrylic acid, are a particular type of smart polymers that present pH responsiveness. This work aims to fabricate stable hydrogel films with reversible pH responsiveness that could spontaneously form wrinkled surface patterns. For this purpose, the photosensitive reaction mixtures were deposited via spin-coating over functionalized glasses. Following vacuum, UV, or either plasma treatments, it is possible to spontaneously form wrinkles, which could increase cell adherence. The pH responsiveness of the material was evaluated, observing an abrupt variation in the film thickness as a function of the environmental pH. Moreover, the presence of the carboxylic acid functional groups at the interface was evidenced by analyzing the adsorption/desorption capacity using methylene blue as a cationic dye model. The results demonstrated that increasing the acrylic acid in the microwrinkled hydrogel effectively improved the adsorption and release capacity and the ability of the carboxylic groups to establish ionic interactions with methylene blue. Finally, the role of the acrylic acid groups and the surface topography (smooth or wrinkled) on the final antibacterial properties were investigated, demonstrating their efficacy against both gram-positive and gram-negative bacteria model strains (E. coli and S. Aureus). According to our findings, microwrinkled hydrogels presented excellent antibacterial properties improving the results obtained for planar (smooth) hydrogels.
Collapse
Affiliation(s)
- Carmen M. González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile; (F.E.R.-U.); (M.N.A.-G.)
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| | - Fernando E. Rodríguez-Umanzor
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile; (F.E.R.-U.); (M.N.A.-G.)
- Programa PhD en Ciencia de Materiales e Ingeniería de Procesos, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| | - Matías N. Alegría-Gómez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile; (F.E.R.-U.); (M.N.A.-G.)
- Programa PhD en Ciencia de Materiales e Ingeniería de Procesos, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| | - Claudio A. Terraza-Inostroza
- Research Laboratory for Organic Polymer (RLOP), Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile;
| | - Enrique Martínez-Campos
- Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Associated Unit to the ICTP-IQM-CSIC, 28040 Madrid, Spain; (E.M.-C.); (R.C.-L.)
| | - Raquel Cue-López
- Group of Organic Synthesis and Bioevaluation, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Associated Unit to the ICTP-IQM-CSIC, 28040 Madrid, Spain; (E.M.-C.); (R.C.-L.)
| | - Mauricio A. Sarabia-Vallejos
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago 9170022, Chile; (M.A.S.-V.); (C.G.-H.)
| | - Claudio García-Herrera
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago 9170022, Chile; (M.A.S.-V.); (C.G.-H.)
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006 Madrid, Spain;
| |
Collapse
|
10
|
Zhao Z, Yue J, Ji X, Nian M, Kang K, Qiao H, Zheng X. Research progress in biological activities of succinimide derivatives. Bioorg Chem 2020; 108:104557. [PMID: 33376010 DOI: 10.1016/j.bioorg.2020.104557] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Succinimides are well recognized heterocyclic compounds in drug discovery which produce diverse therapeutically related applications in pharmacological practices. Researches in medicinal chemistry field have isolated and synthesized succinimide derivatives with multiple medicinal properties including anticonvulsant, anti-inflammatory, antitumor and antimicrobial agents, 5-HT receptor ligands and enzyme inhibitors. Simultaneously, SAR (Structure-Activity Relationship) analysis has been gradually possessed, along with a great deal of derivatives have been derived for potential targets. In this article, we comprehensively summarize the biological activities and SAR for succinimide derivatives, along with the featuring bioactive molecules reported in patents, wishing to provide an overall retrospect and prospect on the succinimide analogues.
Collapse
Affiliation(s)
- Zefeng Zhao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China; School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an 710069, PR China
| | - Jiangxin Yue
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Xiaotong Ji
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Meng Nian
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Kaiwen Kang
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Haifa Qiao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China.
| | - Xiaohui Zheng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an 710069, PR China
| |
Collapse
|
11
|
Synthesis and characterization of copper (II)-poly(acrylic acid)/M-MCM-41 nanocomposite as a novel mesoporous solid acid catalyst for the one-pot synthesis of polyhydroquinoline derivatives. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Oliver Urrutia C, Rosales-Ibáñez R, Dominguez García MV, Flores-Estrada J, Flores-Merino MV. Synthesis and assessment of poly(acrylic acid)/polyvinylpyrrolidone interpenetrating network as a matrix for oral mucosa cells. J Biomater Appl 2019; 34:998-1008. [PMID: 31684792 DOI: 10.1177/0885328219883482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Carolina Oliver Urrutia
- Faculty of Chemistry, Universidad Autónoma del Estado de México (UAEMéx), Toluca, México.,Facultad de Enfermería y Obstetricia, Universidad Autónoma del Estado de México (UAEMéx), Toluca, México
| | - Raúl Rosales-Ibáñez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de México, Ciudad de México, México
| | | | - Jaime Flores-Estrada
- Faculty of Chemistry, Universidad Autónoma del Estado de México (UAEMéx), Toluca, México
| | - Miriam V Flores-Merino
- Faculty of Chemistry, Universidad Autónoma del Estado de México (UAEMéx), Toluca, México
| |
Collapse
|
13
|
Zhao J, Shu D, Ma Z. Target-inspired Zn 2+-dependent DNAzyme for ultrasensitive impedimetric aptasensor based on polyacrylic acid nanogel as amplifier. Biosens Bioelectron 2018; 127:161-166. [PMID: 30599384 DOI: 10.1016/j.bios.2018.12.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/27/2018] [Accepted: 12/16/2018] [Indexed: 02/08/2023]
Abstract
In general, the traditional impedimetric aptasensor for detecting protein is based on its high molecular weight and low dielectric constant. Yet, the efficiency of these aptasensors is hindered by the slight resistance change in the trace concentration range because of the high initial resistance (the electrostatic repulsion between the compact negatively charged DNA on the electrode and [Fe(CN)6]3-/4-). To effectively and simply circumvent this issue and improve the detection sensitivity, we design an impedimetric aptasensor by reducing the substrate DNA's density on the electrode through the target-inspired recycling DNA cleavage. In order to enlarge the differences in resistance, the polyacrylic acid (PAA) nanogel is implemented as amplifier due to its poor conduction and negative charge that can hinder electron transfer and repulse the mediator [Fe(CN)6]3-/4-, respectively. Based on the target-inspired DNAzyme and PAA nanogel as amplifier, the ultrasensitive impedimetric aptasensor of carcinoembryonic antigen (CEA) in the buffer solution possesses a wide dynamic range of 10 fg mL-1 to 10 ng mL-1 and ultra-low detection limit of 7.9 fg mL-1 (10-fold relative to equivalent aptasensors). When tested in human serum, the proposed aptasensor exhibits good performance with an ultra-low detection limit of 1.4 fg mL-1, which is slightly higher than that in buffer solution.
Collapse
Affiliation(s)
- Juncai Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Di Shu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|