1
|
Baei B, Askari P, Askari FS, Kiani SJ, Mohebbi A. Pharmacophore modeling and QSAR analysis of anti-HBV flavonols. PLoS One 2025; 20:e0316765. [PMID: 39804828 PMCID: PMC11730388 DOI: 10.1371/journal.pone.0316765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Due to its global burden, Targeting Hepatitis B virus (HBV) infection in humans is crucial. Herbal medicine has long been significant, with flavonoids demonstrating promising results. Hence, the present study aimed to establish a way of identifying flavonoids with anti-HBV activities. Flavonoid structures with anti-HBV activities were retrieved. A flavonol-based pharmacophore model was established using LigandScout v4.4. Screening was performed using the PharmIt server. A QSAR equation was developed and validated with independent sets of compounds. The applicability domain (AD) was defined using Euclidean distance calculations for model validation. The best model, consisting of 57 features, was generated. High-throughput screening (HTS) using the flavonol-based model resulted in 509 unique hits. The model's accuracy was further validated using a set of FDA-approved chemicals, demonstrating a sensitivity of 71% and a specificity of 100%. Additionally, the QSAR model with two predictors, x4a and qed, exhibited predictive solid performance with an adjusted-R2 value of 0.85 and 0.90 of Q2. PCA showed essential patterns and relationships within the dataset, with the first two components explaining nearly 98% of the total variance. Current HBV therapies tend to fail to provide a complete cure, emphasizing the need for new therapies. This study's importance was to highlight flavonols as potential anti-HBV medicines, presenting a supplementary option for existing therapy. The QSAR model has been validated with two separate chemical sets, guaranteeing its reproducibility and usefulness for other flavonols by utilizing the predictive characteristics of X4A and qed. These results provide new possibilities for discovering future anti-HBV drugs by integrating modeling and experimental research.
Collapse
Affiliation(s)
- Basireh Baei
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parnia Askari
- Department of Life and Science, York University, Toronto, Ontario, Canada
| | | | - Seyed Jalal Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mohebbi
- Vista Aria Rena Gene Inc., Gorgan, Golestan, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Naderi M, Salavatiha Z, Gogoi U, Mohebbi A. An overview of anti-Hepatitis B virus flavonoids and their mechanisms of action. Front Cell Infect Microbiol 2024; 14:1356003. [PMID: 38487354 PMCID: PMC10937540 DOI: 10.3389/fcimb.2024.1356003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Flavonoids, a diverse group of polyphenolic compounds found in various plant-based foods, have garnered attention for their potential in combating Hepatitis B Virus (HBV) infection. Flavonoids have demonstrated promising anti-HBV activities by interfering with multiple stages of the HBV life cycle, making them promising candidates for novel antiviral agents. Certain plant families, such as Theaceae, Asteraceae, Lamiaceae, and Gentianaceae, are of particular interest for their flavonoid-rich members with anti-HBV activities. Evidences, both in vitro and in vivo, supports the anti-HBV potential of flavonoids. These subsets of compound exert their anti-HBV effects through various mechanisms, including inhibiting viral entry, disrupting viral replication, modulating transcription factors, enhancing the immune response, and inducing autophagy. The antioxidant properties of flavonoids play a crucial role in modulating oxidative stress associated with HBV infection. Several flavonoids like epigallocatechin gallate (EGCG), proanthocyanidin (PAC), hexamethoxyflavone, wogonin, and baicalin have shown significant anti-HBV potential, holding promise as therapeutic agents. Synergistic effects between flavonoids and existing antiviral therapies offer a promising approach to enhance antiviral efficacy and reduce drug resistance. Challenges, including limited bioavailability, translation from preclinical studies to clinical practice, and understanding precise targets, need to be addressed. Future research should focus on clinical trials, combination therapies, and the development of flavonoid derivatives with improved bioavailability, and optimizing their effectiveness in managing chronic HBV infections.
Collapse
Affiliation(s)
- Malihe Naderi
- Department of Microbiology & Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Salavatiha
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Alireza Mohebbi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vista Aria Rena Gene Inc., Gorgan, Golestan, Iran
| |
Collapse
|
3
|
Boora S, Sharma V, Kaushik S, Bhupatiraju AV, Singh S, Kaushik S. Hepatitis B virus-induced hepatocellular carcinoma: a persistent global problem. Braz J Microbiol 2023; 54:679-689. [PMID: 37059940 PMCID: PMC10235410 DOI: 10.1007/s42770-023-00970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/05/2023] [Indexed: 04/16/2023] Open
Abstract
Hepatitis B virus (HBV) infections are highly prevalent globally, representing a serious public health problem. The diverse modes of transmission and the burden of the chronic carrier population pose challenges to the effective management of HBV. Vaccination is the most effective preventive measure available in the current scenario. Still, HBV is one of the significant health issues in various parts of the globe due to non-response to vaccines, the high number of concealed carriers, and the lack of access and awareness. Universal vaccination programs must be scaled up in neonates, especially in the developing parts of the world, to prevent new HBV infections. Novel treatments like combinational therapy, gene silencing, and new antivirals must be available for effective management. The prolonged infection of HBV, direct and indirect, can promote the growth of hepatocellular carcinoma (HCC). The present review emphasizes the problems and probable solutions for better managing HBV infections, causal risk factors of HCC, and mechanisms of HCC.
Collapse
Affiliation(s)
- Sanjit Boora
- Centre for Biotechnology, Maharshi Dayanand University, 124001, Haryana, Rohtak, India
| | - Vikrant Sharma
- Centre for Biotechnology, Maharshi Dayanand University, 124001, Haryana, Rohtak, India
| | | | | | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, 124001, Haryana, Rohtak, India.
| |
Collapse
|
4
|
“Malancha” [Alternanthera philoxeroides (Mart.) Griseb.]: A Potential Therapeutic Option against Viral Diseases. Biomolecules 2022; 12:biom12040582. [PMID: 35454170 PMCID: PMC9025398 DOI: 10.3390/biom12040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Alternanthera philoxeroides (Mart.) Griseb., commonly known as “Alligator weed” in English, and “Malancha” in Bengali, is a leafy vegetable from the family Amaranthaceae A. L. de Jussieu. This species is native to China, particularly to the provinces around the Yangtze River, other Far East and South-East Asian countries, and countries from other continents (e.g., South America). This plant also grows in certain areas in Australia, New Zealand, and the USA. While in Bangladesh the leaves of this plant are consumed as a vegetable, in China, this plant has been used widely as a traditional remedy for the treatment of various viral diseases (e.g., measles, influenza, and haemorrhagic fever). Flavonoids and saponins are the two largest groups of phytochemicals produced by this plant, and the antiviral property of this plant and its compounds has been studied extensively. This review article reviews all published literature on this plant and critically appraises its phytochemical profile linking to biomolecular interactions and therapeutic potential, particularly, against viral diseases.
Collapse
|
5
|
Singla RK, Dhir V, Madaan R, Kumar D, Singh Bola S, Bansal M, Kumar S, Dubey AK, Singla S, Shen B. The Genus Alternanthera: Phytochemical and Ethnopharmacological Perspectives. Front Pharmacol 2022; 13:769111. [PMID: 35479320 PMCID: PMC9036189 DOI: 10.3389/fphar.2022.769111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Ethnopharmacological relevance: The genus Alternanthera (Amaranthaceae) comprises 139 species including 14 species used traditionally for the treatment of various ailments such as hypertension, pain, inflammation, diabetes, cancer, microbial and mental disorders. Aim of the review: To search research gaps through critical assessment of pharmacological activities not performed to validate traditional claims of various species of Alternanthera. This review will aid natural product researchers in identifying Alternanthera species with therapeutic potential for future investigation. Materials and methods: Scattered raw data on ethnopharmacological, morphological, phytochemical, pharmacological, toxicological, and clinical studies of various species of the genus Alternanthera have been compiled utilizing search engines like SciFinder, Google Scholar, PubMed, Science Direct, and Open J-Gate for 100 years up to April 2021. Results: Few species of Alternanthera genus have been exhaustively investigated phytochemically, and about 129 chemical constituents related to different classes such as flavonoids, steroids, saponins, alkaloids, triterpenoids, glycosides, and phenolic compounds have been isolated from 9 species. Anticancer, antioxidant, antibacterial, CNS depressive, antidiabetic, analgesic, anti-inflammatory, and immunomodulator effects have been explored in the twelve species of the genus. A toxicity study has been conducted on 3 species and a clinical study on 2 species. Conclusions: The available literature on pharmacological studies of Alternanthera species reveals that few species have been selected based on ethnobotanical surveys for scientific validation of their traditional claims. But most of these studies have been conducted on uncharacterized and non-standardized crude extracts. A roadmap of research needs to be developed for the isolation of new bioactive compounds from Alternanthera species, which can emerge out as clinically potential medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Vivek Dhir
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| | - Deepak Kumar
- Department of Health and Family Welfare, Civil Hospital, Rampura Phul, India
| | - Simranjit Singh Bola
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Monika Bansal
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| |
Collapse
|
6
|
Nanotechnology Applications of Flavonoids for Viral Diseases. Pharmaceutics 2021; 13:pharmaceutics13111895. [PMID: 34834309 PMCID: PMC8625292 DOI: 10.3390/pharmaceutics13111895] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Recent years have witnessed the emergence of several viral diseases, including various zoonotic diseases such as the current pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Other viruses, which possess pandemic-causing potential include avian flu, Ebola, dengue, Zika, and Nipah virus, as well as the re-emergence of SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) coronaviruses. Notably, effective drugs or vaccines against these viruses are still to be discovered. All the newly approved vaccines against the SARS-CoV-2-induced disease COVID-19 possess real-time possibility of becoming obsolete because of the development of ‘variants of concern’. Flavonoids are being increasingly recognized as prophylactic and therapeutic agents against emerging and old viral diseases. Around 10,000 natural flavonoid compounds have been identified, being phytochemicals, all plant-based. Flavonoids have been reported to have lesser side effects than conventional anti-viral agents and are effective against more viral diseases than currently used anti-virals. Despite their abundance in plants, which are a part of human diet, flavonoids have the problem of low bioavailability. Various attempts are in progress to increase the bioavailability of flavonoids, one of the promising fields being nanotechnology. This review is a narrative of some anti-viral dietary flavonoids, their bioavailability, and various means with an emphasis on the nanotechnology system(s) being experimented with to deliver anti-viral flavonoids, whose systems show potential in the efficient delivery of flavonoids, resulting in increased bioavailability.
Collapse
|
7
|
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35:3447-3483. [PMID: 33590931 PMCID: PMC8013762 DOI: 10.1002/ptr.7039] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity's survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite significant progress made in immunization and regenerative medicine, numerous viruses still lack prophylactic vaccines and specific antiviral treatments that are so often influenced by the generation of viral escape mutants. Of importance, medicinal herbs offer a wide variety of therapeutic antiviral chemotypes that can inhibit viral replication by preventing viral adsorption, adhering to cell receptors, inhibiting virus penetration in the host cell, and competing for pathways of activation of intracellular signals. The present review will comprehensively summarize the promising antiviral activities of medicinal plants and their bioactive molecules. Furthermore, it will elucidate their mechanism of action and possible implications in the treatment/prevention of viral diseases even when their mechanism of action is not fully understood, which could serve as the base for the future development of novel or complementary antiviral treatments.
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| |
Collapse
|
8
|
Zhang J, Liu X, Zhou W, Cheng G, Wu J, Guo S, Jia S, Liu Y, Li B, Zhang X, Wang M. A bioinformatics investigation into molecular mechanism of Yinzhihuang granules for treating hepatitis B by network pharmacology and molecular docking verification. Sci Rep 2020; 10:11448. [PMID: 32651427 PMCID: PMC7351787 DOI: 10.1038/s41598-020-68224-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Yinzhihuang granules (YZHG) is a patented Chinese medicine for the treatment of hepatitis B. This study aimed to investigate the intrinsic mechanisms of YZHG in the treatment of hepatitis B and to provide new evidence and insights for its clinical application. The chemical compounds of YZHG were searched in the CNKI and PUBMED databases, and their putative targets were then predicted through a search of the SuperPred and Swiss Target Prediction databases. In addition, the targets of hepatitis B were obtained from TTD, PharmGKB and DisGeNET. The abovementioned data were visualized using Cytoscape 3.7.1, and network construction identified a total of 13 potential targets of YZHG in the treatment of hepatitis B. Molecular docking verification showed that CDK6, CDK2, TP53 and BRCA1 might be strongly correlated with hepatitis B treatment. Furthermore, GO and KEGG analyses indicated that the treatment of hepatitis B by YZHG might be related to positive regulation of transcription, positive regulation of gene expression, the hepatitis B pathway and the viral carcinogenesis pathway. Network pharmacology intuitively shows the multicomponent, multitarget and multichannel pharmacological effects of YZHG in the treatment of hepatitis B and provides a scientific basis for its mechanism of action.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xinkui Liu
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wei Zhou
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000, China
| | - Jiarui Wu
- Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Siyu Guo
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shanshan Jia
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yingying Liu
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Bingbing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000, China
| | - Xiaomeng Zhang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Miaomiao Wang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| |
Collapse
|
9
|
Zhao Q, Ren X, Chen M, Yue SJ, Zhang MQ, Chen KX, Guo YW, Shao CL, Wang CY. Effects of traditional Chinese medicine formula Le-Cao-Shi on hepatitis B: In vivo and in vitro studies. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112132. [PMID: 31381954 DOI: 10.1016/j.jep.2019.112132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Formula Le-Cao-Shi (LCS) is a traditional Chinese medicine (TCM), which has long been used as a folk remedy against hepatitis B in China. The present study was conducted to evaluate the anti-hepatitis B effects of aqueous extract of LCS in vivo and in vitro. MATERIALS AND METHOD we investigated the anti-HBV effects of LCS in vivo and in vitro with duck hepatitis B model and HepG2.2.15 cell line model, respectively. The serologic and cellular biomarkers and the histopathological changes were examined. RESULTS By a duck hepatitis B model, the extract of LCS was found to restrain the expressions of duck hepatitis B surface antigen (DHBsAg), hepatitis B e antigen (DHBeAg), and HBV-DNA (DHBV-DNA). Moreover, LCS could decrease the levels of aspartate and alanine aminotransferases (AST and ALT) and ameliorate duck liver histological lesions. Correspondingly, in a HepG2.2.15 cellular model, LCS could also significantly inhibit the secretions of HBsAg and HBeAg. CONCLUSION LCS exerted potent anti-hepatitis effects against the infection of HBV. The above results demonstrated the first-hand experimental evidences for the anti-hepatitis B efficiency of LCS. Our study provides a basis for further exploration and development of this promising compound prescription to treat hepatitis B disease.
Collapse
MESH Headings
- Animals
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Cell Line, Tumor
- Cell Survival/drug effects
- DNA, Viral
- Drugs, Chinese Herbal/therapeutic use
- Ducks
- Hepatitis B/drug therapy
- Hepatitis B/immunology
- Hepatitis B/pathology
- Hepatitis B/virology
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Virus, Duck/drug effects
- Hepatitis B Virus, Duck/genetics
- Hepatitis B Virus, Duck/immunology
- Hepatitis B e Antigens/immunology
- Hepatitis, Viral, Animal/drug therapy
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/pathology
- Hepatitis, Viral, Animal/virology
- Humans
- Liver/drug effects
- Liver/pathology
- Medicine, Chinese Traditional
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Xia Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Min Chen
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Shi-Jun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Meng-Qi Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Kai-Xian Chen
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yue-Wei Guo
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
10
|
Das D, Sengupta I, Sarkar N, Pal A, Saha D, Bandopadhyay M, Das C, Narayan J, Singh SP, Chakrabarti S, Chakravarty R. Anti-hepatitis B virus (HBV) response of imiquimod based toll like receptor 7 ligand in hbv-positive human hepatocelluar carcinoma cell line. BMC Infect Dis 2017; 17:76. [PMID: 28088184 PMCID: PMC5237519 DOI: 10.1186/s12879-017-2189-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/05/2017] [Indexed: 12/16/2022] Open
Abstract
Background Toll like receptors (TLRs) play an important role in innate immunity and various studies suggest that TLRs play a crucial role in pathogenesis of hepatitis B virus (HBV) infection. The present study aims in looking into the status of crucial host and viral gene expression on inciting TLR7. Methods The transcription of TLR7 pathway signaling molecules and HBV DNA viral load were quantified by Real Time-PCR after stimulation of TLR7 with its imiquimod based ligand, R837. Cell cycle analysis was performed using flow-cytometry. Expression of TLR7 and chief cell cycle regulator governing G1/S transition, p53 was also seen in liver biopsysss samples of CHB patients. HBV induced alteration in histone modifications in HepG2 cells and its restoration on TLR7 activation was determined using western blot. Results The TLR7 expression remains downregulated in HepG2.2.15 cells and in liver biopsy samples from CHB patients. Interestingly HBV DNA viral load showed an inverse relationship with the TLR7 expression in the biopsy samples. We also evaluated the anti-viral activity of R837, an agonist of TLR7. It was observed that there was a suppression of HBV replication and viral protein production upon TLR7 stimulation. R837 triggers the anti-viral action probably through the Jun N-terminal Kinase (JNK) pathway. We also observed a downregulation of histone H3K9Me3 repression mark upon R837 treatment in HBV replicating HepG2.2.15 cells, mimicking that of un-infected HepG2 cells. Additionally, the G1/S cell cycle arrest introduced by HBV in HepG2.2.15 cells was released upon ligand treatment. Conclusion The study thus holds a close insight into the changes in hepatocyte micro-environment on TLR7 stimulation in HBV infection. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2189-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dipanwita Das
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, ICMR Virus Unit, GB 4, 700010, Kolkata, India
| | - Isha Sengupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Neelakshi Sarkar
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, ICMR Virus Unit, GB 4, 700010, Kolkata, India
| | - Ananya Pal
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, ICMR Virus Unit, GB 4, 700010, Kolkata, India
| | - Debraj Saha
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, ICMR Virus Unit, GB 4, 700010, Kolkata, India
| | - Manikankana Bandopadhyay
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, ICMR Virus Unit, GB 4, 700010, Kolkata, India
| | - Chandrima Das
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Jimmy Narayan
- Department of Gastroenterology, SCB Medical College, Cuttack, India
| | - Shivaram Prasad Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, India.,Kalinga Gastroenterology Foundation, Beam Diagnostics Premises, Cuttack, India
| | - Sekhar Chakrabarti
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, ICMR Virus Unit, GB 4, 700010, Kolkata, India.,National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Runu Chakravarty
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, ICMR Virus Unit, GB 4, 700010, Kolkata, India.
| |
Collapse
|
11
|
Siddiqui MH, Alamri SA, Al-Whaibi MH, Hussain Z, Ali HM, El-Zaidy ME. A mini-review of anti-hepatitis B virus activity of medicinal plants. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1240593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud A. Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed H. Al-Whaibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zahid Hussain
- Centre of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed E. El-Zaidy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|