1
|
Yaghoobi Z, Ataei S, Riahi E, Parviz M, Sehati F, Zare M, Angizeh R, Ashabi G, Hosseindoost S. Neuroprotective effects of MK-801 against cerebral ischemia reperfusion. Heliyon 2024; 10:e33821. [PMID: 39040387 PMCID: PMC11261850 DOI: 10.1016/j.heliyon.2024.e33821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction & Objective: Cerebral ischemia/reperfusion (I/R) injury, the second cause of death globally, involves increased NMDA receptor activity leading to neuronal damage due to excessive sodium and calcium ion entry. Therefore, targeting NMDA receptor may potentially reduce cell death induced by brain injury. Our study aimed to investigate the role of NMDA receptors in hippocampal neuronal activity induced by I/R. Methods In this study, Wistar rats were divided into four groups: sham, I/R, I/R + MK801, and I/R + NMDA. Cerebral I/R injury was induced by temporarily occluding the common and vertebral carotid arteries, followed by reperfusion. MK801 or NMDA was administered to the rats after a specific reperfusion time. Neuronal density and cell morphology in the hippocampal CA1 region were assessed using Nissl and H&E staining. The expression of BDNF, p-CREB, and c-fos was evaluated through Western blot analysis. Additionally, neuronal activity in CA1 pyramidal neurons were examined using single unit recording technique. Results Our results showed that cerebral I/R injury caused significant damage to CA1 pyramidal neurons compared to the sham group. However, treatment with MK-801 improved hippocampal cell survival compared to the I/R group. Furthermore, MK-801 administration in I/R rats increased BDNF, c-fos, and p-CREB levels while decreasing cleaved caspase-3 activity compared to the I/R group. Additionally, electrophysiological data showed that MK-801 increased firing rates of CA1 pyramidal neurons during the reperfusion phase. Conclusion MK-801 shows promise as a therapeutic agent for cerebral I/R injury by enhancing cell survival, upregulating neuroplasticity factors, and increasing firing rates of CA1 pyramidal neurons. It exerts a specific protective effect against cerebral I/R injury.
Collapse
Affiliation(s)
- Zahra Yaghoobi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-Universität München, München, Germany
| | - Saeid Ataei
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Parviz
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Sehati
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Meysam Zare
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Razieh Angizeh
- Department of Exercise Physiology & Health, Faculty of Exercise Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saereh Hosseindoost
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lucchesi M, Marracci S, Amato R, Lapi D, Santana-Garrido Á, Espinosa-Martín P, Vázquez CM, Mate A, Dal Monte M. The Anti-Inflammatory and Antioxidant Properties of Acebuche Oil Exert a Retinoprotective Effect in a Murine Model of High-Tension Glaucoma. Nutrients 2024; 16:409. [PMID: 38337691 PMCID: PMC10857689 DOI: 10.3390/nu16030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Glaucoma is characterized by cupping of the optic disc, apoptotic degeneration of retinal ganglion cells (RGCs) and their axons, and thinning of the retinal nerve fiber layer, with patchy loss of vision. Elevated intraocular pressure (IOP) is a major risk factor for hypertensive glaucoma and the only modifiable one. There is a need to find novel compounds that counteract other risk factors contributing to RGC degeneration. The oil derived from the wild olive tree (Olea europaea var. sylvestris), also called Acebuche (ACE), shows powerful anti-inflammatory, antioxidant and retinoprotective effects. We evaluated whether ACE oil could counteract glaucoma-related detrimental effects. To this aim, we fed mice either a regular or an ACE oil-enriched diet and then induced IOP elevation through intraocular injection of methylcellulose. An ACE oil-enriched diet suppressed glaucoma-dependent retinal glia reactivity and inflammation. The redox status of the glaucomatous retinas was restored to a control-like situation, and ischemia was alleviated by an ACE oil-enriched diet. Notably, retinal apoptosis was suppressed in the glaucomatous animals fed ACE oil. Furthermore, as shown by electroretinogram analyses, RGC electrophysiological functions were almost completely preserved by the ACE oil-enriched diet. These ameliorative effects were IOP-independent and might depend on ACE oil's peculiar composition. Although additional studies are needed, nutritional supplementation with ACE oil might represent an adjuvant in the management of glaucoma.
Collapse
Affiliation(s)
- Martina Lucchesi
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
| | - Silvia Marracci
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
| | - Rosario Amato
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
| | - Dominga Lapi
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
| | - Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (P.E.-M.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Pablo Espinosa-Martín
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (P.E.-M.); (C.M.V.)
| | - Carmen María Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (P.E.-M.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (P.E.-M.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
3
|
He Y, Wang Y, Yang K, Jiao J, Zhan H, Yang Y, Lv D, Li W, Ding W. Maslinic Acid: A New Compound for the Treatment of Multiple Organ Diseases. Molecules 2022; 27:8732. [PMID: 36557864 PMCID: PMC9786823 DOI: 10.3390/molecules27248732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Maslinic acid (MA) is a pentacyclic triterpene acid, which exists in many plants, including olive, and is highly safe for human beings. In recent years, it has been reported that MA has anti-inflammatory, antioxidant, anti-tumor, hypoglycemic, neuroprotective and other biological activities. More and more experimental data has shown that MA has a good therapeutic effect on multiple organ diseases, indicating that it has great clinical application potential. In this paper, the extraction, purification, identification and analysis, biological activity, pharmacokinetics in vivo and molecular mechanism of MA in treating various organ diseases are reviewed. It is hoped to provide a new idea for MA to treat various organ diseases.
Collapse
Affiliation(s)
- Yan He
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Yi Wang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Jia Jiao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Hong Zhan
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Youjun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - De Lv
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weihong Li
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
4
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
5
|
Ejarque D, Calvet T, Font-Bardia M, Pons J. Influence of a series of pyridine ligands on the structure and photophysical properties of Cd( ii) complexes. CrystEngComm 2022. [DOI: 10.1039/d1ce01584b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Five Cd(ii) complexes based on α-acetamidocinnamic acid (HACA) and a set of N,N^N and N^N^N-pyridine (dPy) yield complexes with diverse nuclearities and enhanced quantum yields, benefiting from the chelation enhanced effect (CHEF) of dPy.
Collapse
Affiliation(s)
- Daniel Ejarque
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Teresa Calvet
- Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raig-X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Josefina Pons
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
6
|
Wassink G, Davidson JO, Crisostomo A, Zhou KQ, Galinsky R, Dhillon SK, Lear CA, Bennet L, Gunn AJ. Recombinant erythropoietin does not augment hypothermic white matter protection after global cerebral ischaemia in near-term fetal sheep. Brain Commun 2021; 3:fcab172. [PMID: 34409290 PMCID: PMC8364665 DOI: 10.1093/braincomms/fcab172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
Therapeutic hypothermia for hypoxic-ischaemic encephalopathy provides partial white matter protection. Recombinant erythropoietin reduces demyelination after hypoxia-ischaemia, but it is unclear whether adjunct erythropoietin treatment can further improve outcomes after therapeutic hypothermia. Term-equivalent fetal sheep received sham-ischaemia (n = 9) or cerebral ischaemia for 30 min (ischaemia-vehicle, n = 8), followed by intravenous infusion of recombinant erythropoietin (ischaemia-Epo, n = 8; 5000 IU/kg bolus dose, then 833.3 IU/kg/h), cerebral hypothermia (ischaemia-hypothermia, n = 8), or recombinant erythropoietin plus hypothermia (ischaemia-Epo-hypothermia, n = 8), from 3 to 72 h post-ischaemia. Foetal brains were harvested at 7 days after cerebral ischaemia. Ischaemia was associated with marked loss of total Olig2-positive oligodendrocytes with reduced density of myelin and linearity of the white matter tracts (P < 0.01), and microglial induction and increased caspase-3-positive apoptosis. Cerebral hypothermia improved the total number of oligodendrocytes and restored myelin basic protein (P < 0.01), whereas recombinant erythropoietin partially improved myelin basic protein density and tract linearity. Both interventions suppressed microgliosis and caspase-3 (P < 0.05). Co-treatment improved 2′,3′-cyclic-nucleotide 3′-phosphodiesterase-myelin density compared to hypothermia, but had no other additive effect. These findings suggest that although hypothermia and recombinant erythropoietin independently protect white matter after severe hypoxia-ischaemia, they have partially overlapping anti-inflammatory and anti-apoptotic effects, with little additive benefit of combination therapy.
Collapse
Affiliation(s)
- Guido Wassink
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alyssa Crisostomo
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kelly Q Zhou
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
| | | | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Anesthesia and surgery induce a functional decrease in excitatory synaptic transmission in prefrontal cortex neurons, and intraoperative administration of dexmedetomidine does not elicit the synaptic dysfunction. Biochem Biophys Res Commun 2021; 572:27-34. [PMID: 34332326 DOI: 10.1016/j.bbrc.2021.07.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Postoperative delirium (POD), a syndrome of confusion and inattention, frequently occurs after anesthesia and surgery. The prefrontal cortex (PFC) plays key roles in executive functions and cognitive controls. However, the neuropathogenesis of POD in the PFC remains largely unknown. We investigated whether anesthesia and surgery induced neurofunctional changes in the mouse PFC. After laparotomy was performed under isoflurane anesthesia, PFC neuronal activities were compared at the synaptic level using whole-cell patch-clamp recordings. A battery of behavioral tests measuring natural and learned behaviors, and effects of intraoperative dexmedetomidine were also examined. In the anesthesia/surgery group showing changes in natural and learned behaviors, the frequency of excitatory synaptic responses in PFC pyramidal neurons was decreased after the surgery without any changes in the response kinetics. On the other hand, neuronal intrinsic properties and inhibitory synaptic responses were not changed. In the anesthesia/surgery group administered intraoperative dexmedetomidine, the excitatory synaptic transmission and the behaviors were not altered. These results suggest that anesthesia and surgery induce a functional reduction selectively in the PFC excitatory synaptic transmission, and intraoperative dexmedetomidine inhibits the plastic change in the PFC excitatory synaptic input.
Collapse
|
8
|
Akhoundzadeh K, Shafia S. Association between GFAP-positive astrocytes with clinically important parameters including neurological deficits and/or infarct volume in stroke-induced animals. Brain Res 2021; 1769:147566. [PMID: 34237322 DOI: 10.1016/j.brainres.2021.147566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The effect of GFAP-positive astrocytes, as positive or negative factors on stroke complications such as infarct volume and neurological deficits is currently under debate. This review was aimed to evaluate and compare the frequency of studies that showed a positive or negative relationship between astrocyte activation with the improvement of neurological deficits and/or the decrease of infarct volume. In addition, we reviewed two possible causes of differences in results including timepoint of stroke and stroke severity. Time of GFAP assessment was considered as time point and type of stroke induction and duration of stroke as stroke severity. According to our review in the most relevant English-language studies in the PubMed, Web of Science, and Google Scholar databases from 2005 to 2020, the majority of studies (77 vs. 28) showed a negative coincidence or correlation between GFAP-positive cells with neurological improvement as well as between GFAP-positive cells with infarct volume reduction. In most reviewed studies, GFAP expression was reported as a marker related to or coinciding with worse neurological function, or greater infarct volume. However, there were also studies that showed helpful effects of GFAP-positive cells on neurological function or stroke lesion. Although there are some elucidations that the difference in these findings is due to the time point of stroke and stroke severity, our review did not confirm these interpretations.
Collapse
Affiliation(s)
| | - Sakineh Shafia
- Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
9
|
Deng J, Wang H, Mu X, He X, Zhao F, Meng Q. Advances in Research on the Preparation and Biological Activity of Maslinic Acid. Mini Rev Med Chem 2021; 21:79-89. [PMID: 32703128 DOI: 10.2174/1389557520666200722134208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/26/2019] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Maslinic acid, a pentacyclic triterpene acid, is mainly isolated from olives. Maslinic acid and its derivatives exhibit a broad range of biological properties, such as anti-inflammatory, anticancer, anti-diabetic, antimicrobial, neuroprotective and hepatoprotective activities. In this minireview, the progress of research on maslinic acid with regard to its bioactivities, extraction, semisynthetic preparation and patents is reported. The relationships between the structure and the activity of maslinic acid and its derivatives are also discussed.
Collapse
Affiliation(s)
- Jianqiang Deng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Xiaodong Mu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Xiuting He
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| |
Collapse
|
10
|
Retinoprotective Effect of Wild Olive (Acebuche) Oil-Enriched Diet against Ocular Oxidative Stress Induced by Arterial Hypertension. Antioxidants (Basel) 2020; 9:antiox9090885. [PMID: 32961933 PMCID: PMC7555058 DOI: 10.3390/antiox9090885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of ocular diseases, including hypertensive eye diseases. The beneficial effects of olive oil on cardiovascular diseases might rely on minor constituents. Currently, very little is known about the chemical composition and/or therapeutic effects of the cultivated olive tree’s counterpart, wild olive (also known in Spain as acebuche—ACE). Here, we aimed to analyze the antioxidant and retinoprotective effects of ACE oil on the eye of hypertensive mice made hypertensive via administration of NG-nitro-L-arginine-methyl-ester (L-NAME), which were subjected to a dietary supplementation with either ACE oil or extra virgin olive oil (EVOO) for comparison purposes. Deep analyses of major and minor compounds present in both oils was accompanied by blood pressure monitoring, morphometric analyses, as well as different determinations of oxidative stress-related parameters in retinal layers. Aside from its antihypertensive effect, an ACE oil-enriched diet reduced NADPH (nicotinamide adenine dinucleotide phosphate) oxidase activity/gene/protein expression (with a major implication of NADPH oxidase (NOX)2 isoform) in the retinas of hypertensive mice. Supplementation with ACE oil in hypertensive animals also improved alterations in nitric oxide bioavailability and in antioxidant enzyme profile. Interestingly, our findings show that the use of ACE oil resulted in better outcomes, compared with reference EVOO, against hypertension-related oxidative retinal damage.
Collapse
|
11
|
Kim DY, Zhang H, Park S, Kim Y, Bae CR, Kim YM, Kwon YG. CU06-1004 (endothelial dysfunction blocker) ameliorates astrocyte end-feet swelling by stabilizing endothelial cell junctions in cerebral ischemia/reperfusion injury. J Mol Med (Berl) 2020; 98:875-886. [PMID: 32415357 PMCID: PMC7297708 DOI: 10.1007/s00109-020-01920-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Cerebral ischemia, or stroke, is widespread leading cause of death and disability. Surgical and pharmacological interventions that recover blood flow are the most effective treatment strategies for stroke patients. However, restoring the blood supply is accompanied by severe reperfusion injury, with edema and astrocyte end-feet disruption. Here, we report that the oral administration of CU06-1004 (previously Sac-1004), immediately after onset of ischemia/reperfusion (I/R), ameliorated cerebral damage. CU06-1004 stabilized blood‑brain barrier by inhibiting the disruption of the tight junction-related protein zona occludens-1 and the cortical actin ring in endothelial cells (ECs) after I/R. Interestingly, CU06-1004 significantly suppressed astrocyte end-feet swelling following I/R, by reducing aquaporin 4 and connexin 43 levels, which mediates swelling. Furthermore, the degradation of β1-integrin and β-dystroglycan, which anchors to the cortical actin ring in ECs, was inhibited by CU06-1004 administration after I/R. Consistently, CU06-1004 administration following I/R also suppressed the loss of laminin and collagen type IV, which bind to the cortical actin ring anchoring proteins. Unlike the protective effects of CU06-1004 in ECs, astrocyte viability and proliferation were not directly affected. Taken together, our observations suggest that CU06-1004 inhibits I/R-induced cerebral edema and astrocyte end-feet swelling by maintaining EC junction stability. KEY MESSAGES: • CU06-1004 ameliorates I/R-induced cerebral injury. • EC junction integrity was stabilized by CU06-1004 treatment after I/R. • CU06-1004 reduces astrocyte end-feet swelling following I/R. • EC junction stability affects astrocyte end-feet structure maintenance after I/R.
Collapse
Affiliation(s)
- Dong Young Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Haiying Zhang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- CURACLE Co., Ltd, Gyeonggi-do, Seongnam-si, Republic of Korea
| | - Songyi Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yeaji Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cho-Rong Bae
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Gangwon-do, Chuncheon-si, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
12
|
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019; 161:107559. [PMID: 30851309 PMCID: PMC6731169 DOI: 10.1016/j.neuropharm.2019.03.002] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) which initiates rapid signal transmission in the synapse before its re-uptake into the surrounding glia, specifically astrocytes. The astrocytic glutamate transporters glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) and their human homologs excitatory amino acid transporter 1 (EAAT1) and 2 (EAAT2), respectively, are the major transporters which take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with various neurological disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), manganism, ischemia, schizophrenia, epilepsy, and autism. While the mechanisms of neurological disorders are not well understood, the dysregulation of GLAST/GLT-1 may play a significant role in excitotoxicity and associated neuropathogenesis. The expression and function of GLAST/GLT-1 may be dysregulated at the genetic, epigenetic, transcriptional or translational levels, leading to high levels of extracellular glutamate and excitotoxicity. Consequently, understanding the regulatory mechanisms of GLAST/GLT-1 has been an area of interest in developing therapeutics for the treatment of neurological disorders. Pharmacological agents including β-lactam antibiotics, estrogen/selective estrogen receptor modulators (SERMs), growth factors, histone deacetylase inhibitors (HDACi), and translational activators have shown significant efficacy in enhancing the expression and function of GLAST/GLT-1 and glutamate uptake both in vitro and in vivo. This comprehensive review will discuss the regulatory mechanisms of GLAST/GLT-1, their association with neurological disorders, and the pharmacological agents which mediate their expression and function. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, MA, 02215, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA.
| |
Collapse
|
13
|
Fehér E, Szatmári I, Dudás T, Zalatnai A, Farkas T, Lőrinczi B, Fülöp F, Vécsei L, Toldi J. Structural Evaluation and Electrophysiological Effects of Some Kynurenic Acid Analogs. Molecules 2019; 24:molecules24193502. [PMID: 31561643 PMCID: PMC6803921 DOI: 10.3390/molecules24193502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/28/2023] Open
Abstract
Kynurenic acid (KYNA), a metabolite of tryptophan, as an excitatory amino acid receptor antagonist is an effective neuroprotective agent in case of excitotoxicity, which is the hallmark of brain ischemia and several neurodegenerative processes. Therefore, kynurenine pathway, KYNA itself, and its derivatives came into the focus of research. During the past fifteen years, our research group has developed several neuroactive KYNA derivatives, some of which proved to be neuroprotective in preclinical studies. In this study, the synthesis of these KYNA derivatives and their evaluation with divergent molecular characteristics are presented together with their most typical effects on the monosynaptic transmission in CA1 region of the hippocampus of the rat. Their effects on the basic neuronal activity (on the field excitatory postsynaptic potentials: fEPSP) were studied in in vitro hippocampal slices in 1 and 200 μM concentrations. KYNA and its derivative 4 in both 1 and 200 μM concentrations proved to be inhibitory, while derivative 8 only in 200 μM decreased the amplitudes of fEPSPs. Derivative 5 facilitated the fEPSPs in 200 μM concentration. This is the first comparative study which evaluates the structural and functional differences of formerly and newly developed KYNA analogs. Considerations on possible relations between molecular structures and their physiological effects are presented.
Collapse
Affiliation(s)
- Evelin Fehér
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary.
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary.
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Tamás Dudás
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Anna Zalatnai
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Tamás Farkas
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary.
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary.
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary.
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary.
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|
14
|
Wei Q, Zhang B, Li P, Wen X, Yang J. Maslinic Acid Inhibits Colon Tumorigenesis by the AMPK-mTOR Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4259-4272. [PMID: 30913881 DOI: 10.1021/acs.jafc.9b00170] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Maslinic acid (MA), a natural triterpenoid abundant in olives, has a variety of bioactivities. However, its effects and mechanisms on colorectal cancer (CRC) still need to be explored. This research evaluated the effects of MA on CRC progression from the aspect of the adenosine monophosphate (AMP)-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway. MA inhibited the proliferation and migration of HCT116 and SW480 cells while inducing apoptosis in these cells. Furthermore, it could activate AMPK and negatively regulate the mTOR pathway. Knockdown of AMPK abolished its inhibitory effect on cell proliferation and migration and blocked the MA-induced apoptosis, revealing that AMPK was associated with the anticancer activity of MA. In addition, MA significantly suppressed the tumorigenesis and regulated the AMPK-mTOR pathway in azoxymethane/dextran sulfate sodium mice and xenograft tumor mice. This study demonstrated that the regulation of AMPK-mTOR signaling could potentially contribute to the beneficial effects of MA, including the prevention of CRC.
Collapse
Affiliation(s)
- Qing Wei
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 639 Longmian Road , Nanjing , Jiangsu 211198 , People's Republic of China
| | - Biying Zhang
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 639 Longmian Road , Nanjing , Jiangsu 211198 , People's Republic of China
| | - Ping Li
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 639 Longmian Road , Nanjing , Jiangsu 211198 , People's Republic of China
| | - Xiaodong Wen
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 639 Longmian Road , Nanjing , Jiangsu 211198 , People's Republic of China
| | - Jie Yang
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 639 Longmian Road , Nanjing , Jiangsu 211198 , People's Republic of China
| |
Collapse
|
15
|
Ampofo E, Berg JJ, Menger MD, Laschke MW. Maslinic acid alleviates ischemia/reperfusion-induced inflammation by downregulation of NFκB-mediated adhesion molecule expression. Sci Rep 2019; 9:6119. [PMID: 30992483 PMCID: PMC6467883 DOI: 10.1038/s41598-019-42465-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 02/05/2019] [Indexed: 12/24/2022] Open
Abstract
Ischemia/reperfusion (I/R)-induced inflammation is associated with enhanced leukocyte rolling, adhesion and transmigration within the microcirculation. These steps are mediated by hypoxia-triggered signaling pathways, which upregulate adhesion molecule expression on endothelial cells and pericytes. We analyzed whether these cellular events are affected by maslinic acid (MA). Mitochondrial activity and viability of MA-exposed endothelial cells and pericytes were assessed by water-soluble tetrazolium (WST)-1 and lactate dehydrogenase (LDH) assays as well as Annexin V/propidium iodide (PI) stainings. Effects of MA on hypoxia and reoxygenation-induced expression of E-selectin, intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 were determined by flow cytometry. The subcellular localization of the NFκB subunit p65 was analyzed by immunofluorescence and Western blot. I/R-induced leukocytic inflammation was studied in MA- and vehicle-treated mouse dorsal skinfold chambers by intravital fluorescence microscopy and immunohistochemistry. MA did not affect viability, but suppressed the mitochondrial activity of endothelial cells. Furthermore, MA reduced adhesion molecule expression on endothelial cells and pericytes due to an inhibitory action on NFκB signaling. Numbers of adherent and transmigrated leukocytes were lower in post-ischemic tissue of MA-treated mice when compared to vehicle-treated controls. In addition, MA affected reactive oxygen species (ROS) formation, resulting in a diminished oxidative DNA damage. Hence, MA represents an attractive compound for the establishment of novel therapeutic approaches against I/R-induced inflammation.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany.
| | - Julian J Berg
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| |
Collapse
|
16
|
Yi NX, Zhou LY, Wang XY, Song YJ, Han HH, Zhang TS, Wang YJ, Shi Q, Xu H, Liang QQ, Zhang T. MK-801 attenuates lesion expansion following acute brain injury in rats: a meta-analysis. Neural Regen Res 2019; 14:1919-1931. [PMID: 31290450 PMCID: PMC6676887 DOI: 10.4103/1673-5374.259619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE: To evaluate the efficacy and safety of MK-801 and its effect on lesion volume in rat models of acute brain injury. DATA SOURCES: Key terms were “stroke”, “brain diseases”, “brain injuries”, “brain hemorrhage, traumatic”, “acute brain injury”, “dizocilpine maleate”, “dizocilpine”, “MK-801”, “MK801”, “rat”, “rats”, “rattus” and “murine”. PubMed, Cochrane library, EMBASE, the China National Knowledge Infrastructure, WanFang database, the VIP Journal Integration Platform (VJIP) and SinoMed databases were searched from their inception dates to March 2018. DATA SELECTION: Studies were selected if they reported the effects of MK-801 in experimental acute brain injury. Two investigators independently conducted literature screening, data extraction, and methodological quality assessments. OUTCOME MEASURES: The primary outcomes included lesion volume and brain edema. The secondary outcomes included behavioral assessments with the Bederson neurological grading system and the water maze test 24 hours after brain injury. RESULTS: A total of 52 studies with 2530 samples were included in the systematic review. Seventeen of these studies had a high methodological quality. Overall, the lesion volume (34 studies, n = 966, MD = −58.31, 95% CI: −66.55 to −50.07; P < 0.00001) and degree of cerebral edema (5 studies, n = 75, MD = −1.21, 95% CI: −1.50 to −0.91; P < 0.00001) were significantly decreased in the MK-801 group compared with the control group. MK-801 improved spatial cognition assessed with the water maze test (2 studies, n = 60, MD = −10.88, 95% CI: −20.75 to −1.00; P = 0.03) and neurological function 24 hours after brain injury (11 studies, n = 335, MD = −1.04, 95% CI: −1.47 to −0.60; P < 0.00001). Subgroup analysis suggested an association of reduction in lesion volume with various injury models (34 studies, n = 966, MD = −58.31, 95% CI: −66.55 to −50.07; P = 0.004). Further network analysis showed that 0–1 mg/kg MK-801 may be the optimal dose for treatment in the middle cerebral artery occlusion animal model. CONCLUSION: MK-801 effectively reduces brain lesion volume and the degree of cerebral edema in rat models of experimental acute brain injury, providing a good neuroprotective effect. Additionally, MK-801 has a good safety profile, and its mechanism of action is well known. Thus, MK-801 may be suitable for future clinical trials and applications.
Collapse
Affiliation(s)
- Nan-Xing Yi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Long-Yun Zhou
- Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education; School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Yun Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jia Song
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Hai-Hui Han
- Institute of Spine; Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Song Zhang
- Jing'an District Center Hospital, Fudan University, Shanghai, China
| | - Yong-Jun Wang
- Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education; Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Xu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qian-Qian Liang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Ting Zhang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Luo Y, Tang H, Li H, Zhao R, Huang Q, Liu J. Recent advances in the development of neuroprotective agents and therapeutic targets in the treatment of cerebral ischemia. Eur J Med Chem 2019; 162:132-146. [DOI: 10.1016/j.ejmech.2018.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
|
18
|
Chen Z, Wang X, Ashraf U, Zheng B, Ye J, Zhou D, Zhang H, Song Y, Chen H, Zhao S, Cao S. Activation of neuronal N-methyl-D-aspartate receptor plays a pivotal role in Japanese encephalitis virus-induced neuronal cell damage. J Neuroinflammation 2018; 15:238. [PMID: 30144801 PMCID: PMC6109458 DOI: 10.1186/s12974-018-1280-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Overstimulation of glutamate receptors, especially neuronal N-methyl-D-aspartate receptor (NMDAR), mediates excitatory neurotoxicity in multiple neurodegenerative diseases. However, the role of NMDAR in the regulation of Japanese encephalitis virus (JEV)-mediated neuropathogenesis remains undisclosed. The primary objective of this study was to understand the function of NMDAR to JEV-induced neuronal cell damage and inflammation in the central nervous system. METHODS The effect of JEV-induced NMDAR activation on the progression of Japanese encephalitis was evaluated using the primary mouse neuron/glia cultures and a mouse model of JEV infection. A high-affinity NMDAR antagonist MK-801 was employed to block the activity of NMDAR both in vitro and in vivo. The subsequent impact of NMDAR blockade was assessed by examining the neuronal cell death, glutamate and inflammatory cytokine production, and JEV-induced mice mortality. RESULTS JEV infection enhanced the activity of NMDAR which eventually led to increased neuronal cell damage. The data obtained from our in vitro and in vivo assays demonstrated that NMDAR blockade significantly abrogated the neuronal cell death and inflammatory response triggered by JEV infection. Moreover, administration of NMDAR antagonist protected the mice from JEV-induced lethality. CONCLUSION NMDAR plays an imperative role in regulating the JEV-induced neuronal cell damage and neuroinflammation. Thus, NMDAR targeting may constitute a captivating approach to rein in Japanese encephalitis.
Collapse
Affiliation(s)
- Zheng Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Xugang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Bohan Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China. .,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| | - Dengyuan Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Shuhong Zhao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.,Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China. .,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
19
|
Ahmadi-Eslamloo H, Dehghani GA, Moosavi SMS. Long-term treatment of diabetic rats with vanadyl sulfate or insulin attenuate acute focal cerebral ischemia/reperfusion injury via their antiglycemic effect. Metab Brain Dis 2018; 33:225-235. [PMID: 29151151 DOI: 10.1007/s11011-017-0153-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023]
Abstract
It is well-known that patients with diabetes mellitus have worse clinical outcomes following acute ischemic stroke. The intensifying effects of diabetes on ischemic brain injury have been shown to be mostly due to hyperglycemia, rather than the lack of insulin direct effects on brain. It is also well-approved that vanadium compounds have insulin-like and anti-diabetic effects, and the present study was designed to compare the protective effects of diabetes treatment with vanadium or insulin on ischemic/reperfused brain injury. Male Sprague-Dawley rats were divided into 4 groups (n = 21). Two groups of streptozotocin-induced diabetic rats were treated with either vanadyl sulfate or insulin at proper doses to similarly attenuate hyperglycemia during 45 days, while there was no treatment in the control diabetic and non-diabetic sham groups. Thereafter, all treated and non-treated diabetic rats were subjected to 60-min of the right middle cerebral artery occlusion followed by 12-h reperfusion, and then their brains were removed for evaluating blood-brain barrier leakage, tissue swelling, infarct size and oxidant status in both hemispheres. Vanadium and insulin that equally reduced blood glucose and water intake had some differences in their antidiabetic effects of ameliorating weight loss and hypertension during 45-days treatment period. However, they caused similar decrements in levels of Evans blue dye extravastion, edema, infarct volume and malondialdehyde in ischemic/reperfused cerebral hemisphere. Therefore, it can be suggested that insulin and vanadium via their antiglycemic effect cause reduction in cerebral production of oxidants following acute focal ischemia/reperfusion, which attenuate BBB disruption and brain tissue injury.
Collapse
Affiliation(s)
- Hossein Ahmadi-Eslamloo
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, 71365-1689, Iran
| | - Gholam Abbas Dehghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, 71365-1689, Iran
| | - Seyed Mostafa Shid Moosavi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, 71365-1689, Iran.
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Ahmadi-Eslamloo H, Moosavi SMS, Dehghani GA. Cerebral Ischemia-Reperfusion Injuries in Vanadyl-Treated Diabetic Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2017; 42:544-552. [PMID: 29184262 PMCID: PMC5684375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Ischemic stroke recovery is poor in diabetic mellitus (DM). Vanadium compounds (vanadium) relieve DM signs, but their influences on cerebral ischemia/reperfusion injury (I/RI) are inconclusive. Herein, the intensity of I/RI was inspected in vanadium-treated DM rats. METHODS Rats made diabetic with a single intravenous dose of streptozocin (39 mg/kg). Normal and DM rats used water or vanadyl solution for 45 days. Under isoflurane anesthesia, right middle cerebral artery occlusion was performed for 60 minutes and 12 hours reperfusion. Ischemic rats were divided into untreated-control normal (ICN) and diabetic (ICD), vanadium-treated normal (IVTN) and diabetic (IVTD) groups (n=14 each). After neurological deficit score (NDS) test, the rats were sacrificed and their brain removed and stained with triphenyltetrazolium chloride (TTC) to measure cerebral infarct volume (CIV, mm3) or Evans blue extravasation (EBE, μg/g wet-tissue). Data analysis was performed using one-way ANOVA and Tukey's test (SPSS software, version 21.0) and P values <0.05 were considered statistically significant. RESULTS Blood glucose (BG, mg/dL) was similar in ICN and IVTN, elevated in IVTD and ICD (245±6 vs. 344±2, P<0.001). The increased CIV in ICN and IVTN was similar (48±2 and 34±5), very high in ICD but lower in IVTD (249±37 vs. 110±16, P<0.001). EBE was absent in non-lesioned hemispheres, similarly increased in lesioned hemispheres of ICN and IVTN (14±1 and 13±1). EBE in IVTD was significantly lower than ICD (21±2 vs. 33±5, P=0.01). CONCLUSION I/RI was moderate in normoglycemia and did not change with vanadium. Hyperglycemia robustly intensified I/RI. Vanadium ameliorated hyperglycemia and reduced I/RI. Nonetheless, more investigations are required to link the mechanisms of vanadium on DM and stroke injuries.
Collapse
Affiliation(s)
| | | | - Gholam Abbas Dehghani
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence: Gholam Abbas Dehghani, PhD; Department of Physiology, School of Medicine, Zand Blv., Shiraz, Iran Tel: +98 917171966 Fax: +98 71 32302026
| |
Collapse
|
21
|
Maslinic acid promotes autophagy by disrupting the interaction between Bcl2 and Beclin1 in rat pheochromocytoma PC12 cells. Oncotarget 2017; 8:74527-74538. [PMID: 29088805 PMCID: PMC5650360 DOI: 10.18632/oncotarget.20210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/24/2017] [Indexed: 12/23/2022] Open
Abstract
Maslinic acid (2α, 3β-dihydroxyolean-12-en-28-oic acid, MA) was isolated from natural plants and showed anti-cancer activity in rat Pheochromocytoma PC12 cells in our previous studies. We now discover that MA disrupts the interaction between Bcl2 and autophagy scaffold protein Beclin1 in the above cell line, leading to the up-regulation of autophagy. We investigated the effect of MA on the interaction between Bcl2 and Beclin1 by biochemical and biophysical methods in combination with autophagy characterization in the above cell line. Our results suggest that MA may serve as an autophagy activator by directly blocking the Bcl2-Beclin1 interaction to release free Beclin1 required for the recruitment of autophagy positive regulators, implying MA may exert its anti-cancer activity by regulating autophagy.
Collapse
|
22
|
Abstract
Stroke is the second most common cause of death and the leading cause of disability worldwide. Brain injury following stroke results from a complex series of pathophysiological events including excitotoxicity, oxidative and nitrative stress, inflammation, and apoptosis. Moreover, there is a mechanistic link between brain ischemia, innate and adaptive immune cells, intracranial atherosclerosis, and also the gut microbiota in modifying the cerebral responses to ischemic insult. There are very few treatments for stroke injuries, partly owing to an incomplete understanding of the diverse cellular and molecular changes that occur following ischemic stroke and that are responsible for neuronal death. Experimental discoveries have begun to define the cellular and molecular mechanisms involved in stroke injury, leading to the development of numerous agents that target various injury pathways. In the present article, we review the underlying pathophysiology of ischemic stroke and reveal the intertwined pathways that are promising therapeutic targets.
Collapse
|