1
|
Hodges JK, Sasaki GY, Vodovotz Y, Bruno RS. Gallation and B-Ring Dihydroxylation Increase Green Tea Catechin Residence Time in Plasma by Differentially Affecting Tissue-Specific Trafficking: Compartmental Model of Catechin Kinetics in Healthy Adults. Nutrients 2023; 15:4021. [PMID: 37764804 PMCID: PMC10536004 DOI: 10.3390/nu15184021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Catechins in green tea extract (GTE) (epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin (EC), epicatechin gallate (ECG)) vary in bioactivity. We developed a physiologically relevant mathematical model of catechin metabolism to test the hypothesis that fractional catabolic rates of catechins would be differentially affected by their structural attributes. Pharmacokinetic data of plasma and urine catechin concentrations were used from healthy adults (n = 19) who ingested confections containing 0.5 g GTE (290 mg EGCG, 87 mg EGC, 39 mg EC, 28 mg ECG). A 7-compartmental model of catechin metabolism comprised of the gastrointestinal tract (stomach, small and large intestine), liver, plasma, extravascular tissues, and kidneys was developed using a mean fraction dose of EGCG, ECG, EGC, and EC. Fitting was by iterative least squares regression analysis, and goodness of fit was ascertained by the estimated variability of parameters (FSD < 0.5). The interaction of gallation and B-ring dihydroxylation most greatly extended plasma residence time such that EGC > EC = EGCG > EGC. The interaction between gallation and B-ring dihydroxylation accelerated the transfer from the upper gastrointestinal tract to the small intestine but delayed subsequent transfers from the small intestine through the liver to plasma and from kidneys to urine. Gallation and B-ring dihydroxylation independently delayed the transfer from plasma to extravascular tissues, except the uptake to kidneys, which was slowed by gallation only. This multi-compartment model, to be validated in a future study, suggests that gallation and B-ring dihydroxylation affect catechin catabolism in a tissue-specific manner and thus their potential bioactivity.
Collapse
Affiliation(s)
- Joanna K Hodges
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Geoffrey Y Sasaki
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Lněničková K, Šadibolová M, Matoušková P, Szotáková B, Skálová L, Boušová I. The Modulation of Phase II Drug-Metabolizing Enzymes in Proliferating and Differentiated CaCo-2 Cells by Hop-Derived Prenylflavonoids. Nutrients 2020; 12:nu12072138. [PMID: 32708388 PMCID: PMC7400824 DOI: 10.3390/nu12072138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Prenylflavonoids in the human organism exhibit various health-beneficial activities, although they may interfere with drugs via the modulation of the expression and/or activity of drug-metabolizing enzymes. As intestinal cells are exposed to the highest concentrations of prenylflavonoids, we decided to study the cytotoxicity and modulatory effects of the four main hop-derived prenylflavonoids on the activities and mRNA expression of the main drug-conjugating enzymes in human CaCo-2 cells. Proliferating CaCo-2 cells were used for these purposes as a model of colorectal cancer cells, and differentiated CaCo-2 cells were used as an enterocyte-like model. All the tested prenylflavonoids inhibited the CaCo-2 cells proliferation, with xanthohumol proving the most effective (IC50 8.5 µM). The prenylflavonoids modulated the activities and expressions of the studied enzymes to a greater extent in the differentiated, as opposed to the proliferating, CaCo-2 cells. In the differentiated cells, all the prenylflavonoids caused a marked increase in glutathione S-transferase and catechol-O-methyltransferase activities, while the activity of sulfotransferase was significantly inhibited. Moreover, the prenylflavonoids upregulated the mRNA expression of uridine diphosphate (UDP)-glucuronosyl transferase 1A6 and downregulated that of glutathione S-transferase 1A1/2.
Collapse
Affiliation(s)
- Kateřina Lněničková
- Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic;
| | - Michaela Šadibolová
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Š.); (P.M.); (B.S.); (L.S.)
| | - Petra Matoušková
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Š.); (P.M.); (B.S.); (L.S.)
| | - Barbora Szotáková
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Š.); (P.M.); (B.S.); (L.S.)
| | - Lenka Skálová
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Š.); (P.M.); (B.S.); (L.S.)
| | - Iva Boušová
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Š.); (P.M.); (B.S.); (L.S.)
- Correspondence: ; Tel.: +420-495-067-406
| |
Collapse
|
3
|
Prokop J, Lněničková K, Cibiček N, Kosina P, Tománková V, Jourová L, Láníčková T, Skálová L, Szotáková B, Anzenbacher P, Zapletalová I, Rácová Z, Anzenbacherová E, Ulrichová J. Effect of bilberry extract (Vaccinium myrtillus L.) on drug-metabolizing enzymes in rats. Food Chem Toxicol 2019; 129:382-390. [PMID: 31059744 DOI: 10.1016/j.fct.2019.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/12/2023]
Abstract
Vaccinium myrtillus L. (bilberry) fruit is a blue-colored berry with a high content of anthocyanins. These bioactive secondary metabolites are considered to play a major role in the health-promoting properties of bilberries. Our in vivo study was designed to assess the possible influence of bilberry extract on drug-metabolizing enzymes (DMEs). Rats were exposed to bilberry extract in drinking water at two concentrations (0.15 and 1.5 g/L). Selected DMEs were determined (mRNA expression and enzymatic activity) after 29 and 58 days in rat liver. In addition, a panel of antioxidant, physiological, biochemical and hematological parameters was studied; these parameters did not demonstrate any impact of bilberry extract on the health status of rats. A significant increase in activity was observed in cytochrome P450 (CYP) 2C11 (131% of control) and CYP2E1 (122% of control) after a 29-day administration, while the consumption of a higher concentration for a longer time led to a mild activity decrease. Slight changes were observed in some other DMEs, but they remained insignificant from a physiological perspective. According to our results, we conclude that the consumption of bilberries as a food supplement should not pose a risk of interacting with co-administered drugs based on their metabolism.
Collapse
Affiliation(s)
- Jiří Prokop
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Kateřina Lněničková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Norbert Cibiček
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Pavel Kosina
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Veronika Tománková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Lenka Jourová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Tereza Láníčková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Iveta Zapletalová
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Zuzana Rácová
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Eva Anzenbacherová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic.
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| |
Collapse
|
4
|
Induction of xenobiotic-metabolizing enzymes in hepatocytes by beta-naphthoflavone: Time-dependent changes in activities, protein and mRNA levels. ACTA PHARMACEUTICA 2018; 68:75-85. [PMID: 29453911 DOI: 10.2478/acph-2018-0005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
In the present study, time-dependency of the induction effect of a selective inducer on the activity, protein and mRNA levels of cytochromes P450 1A1/2 (CYP1A1/2), NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione S-transferases (GSTA), in primary culture of rat hepatocytes was tested and evaluated. To show the differences in responses of tested enzymes, the common aryl hydrocarbon receptor (AhR) ligand agonist, beta-naphthoflavone (BNF), was used. Induction of CYP1A1/2 by BNF was detected at all time intervals and at all levels (i.e., mRNA, protein, enzyme activity). Different responses of NQO1 and GSTA upon BNF treatment were observed. Our results demonstrate that the responses of different xenobiotic-metabolizing enzymes to the inducer vary in time and depend on the measured parameter. For these reasons, an induction study featuring only one-time interval treatment and/ or one parameter testing could produce misleading information.
Collapse
|
5
|
Raisová Stuchlíková L, Králová V, Lněničková K, Zárybnický T, Matoušková P, Hanušová V, Ambrož M, Šubrt Z, Skálová L. The metabolism of flubendazole in human liver and cancer cell lines. Drug Test Anal 2018; 10:1139-1146. [PMID: 29426058 DOI: 10.1002/dta.2369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/06/2022]
Abstract
Flubendazole (FLU), a benzimidazole anthelmintic drug widely used in veterinary medicine, has been approved for the treatment of gut-residing nematodes in humans. In addition, FLU is now considered a promising anti-cancer agent. Despite this, information about biotransformation of this compound in human is lacking. Moreover, there is no information regarding whether cancer cells are able to metabolize FLU in order to deactivate it. For these reasons, the present study was designed to identify all metabolites of Phase I and Phase II of FLU in human liver and in various cancer cells using ultra high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. Precision-cut human liver slices and 9 cell lines of different origin (breast, colon, oral cavity) were used as in vitro model systems. Our study showed that FLU with a reduced carbonyl group (FLUR) is the only FLU metabolite formed in the human liver. All human cancer cell lines were able to form FLUR. In addition, methylated FLUR was detected in breast cells MCF7 and intestinal SW480 cells. The accumulation of FLU and its reduction to FLUR markedly differed among cells. The extent of FLU reduction was in a good correlation with the detected expression level of carbonyl reductase 1. In most cases, FLU entered in a higher amount and was reduced to a lesser extent in proliferating (metastatic) cells than in differentiated (non-cancerous, non-metastatic) ones. These results support the promising potential of FLU in anti-cancer therapy.
Collapse
Affiliation(s)
- Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Věra Králová
- Department of Biology, Faculty of Medicine, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Lněničková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Zárybnický
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Veronika Hanušová
- Department of Biology, Faculty of Medicine, Charles University, Hradec Králové, Czech Republic
| | - Martin Ambrož
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Zdeněk Šubrt
- Department of Surgery, Faculty of Medicine, Charles University, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Ghietto LM, Toigo D'Angelo AP, Viale FA, Adamo MP. Human bocavirus 1 infection of CACO-2 cell line cultures. Virology 2017; 510:273-280. [PMID: 28777951 PMCID: PMC7172243 DOI: 10.1016/j.virol.2017.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023]
Abstract
Human bocavirus 1 (HBoV1) is a parvovirus associated with pneumonia in infants. It has been detected in different tissues, including colorectal tumors. In this study, we investigated whether Caco-2 cell line, derived from human colon cancer, can be utilized as a model for HBoV1 replication. We demonstrate HBoV1 replication in Caco-2 cultures supplemented with DEAE-dextran after inoculation with respiratory material from infected patients presenting with acute respiratory infection. A viral cycle of rapid development is displayed. However, in spite of HBoV1 DNA 4-fold increment in the supernatants and monolayers by day 1, evidencing that the system allows the virus genome replication after the entry occurred, infectious progeny particles were not produced. These results are consistent with an infection that is limited to a single growth cycle, which can be associated to mutations in the NS1 and VP1/VP2 regions of HBoV1 genome. Further research will contribute to fully elucidate these observations. HBoV1 replicates within 24 h in standard and differentiated Caco-2 cells. DNA is detected in attached cell and supernatant medium. Immunofluorescence tests evidences HBoV1 infection. DNA replication occurred but infectious progeny particles were not produced. The viral genome presents deleterious mutations at NS1 and VP1/VP2 regions.
Collapse
Affiliation(s)
- Lucía María Ghietto
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Ana Paola Toigo D'Angelo
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Franco Agustin Viale
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - María Pilar Adamo
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|