1
|
Yang S, Zhao M, Feng Y, Zhang X, Li Q, Jiang W, Wang D. Exploring the molecular mechanism of Toddalia asiatica (L.) lam on the treatment of thrombosis based on zebrafish models, network pharmacology and experimental verification. Fitoterapia 2024; 179:106224. [PMID: 39321855 DOI: 10.1016/j.fitote.2024.106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Toddalia asiatica (L.) Lam. (TA) is a traditional folk medicine of ethnic minorities in the southwest of China. It is widely used in the treatment of dispersing blood stasis and activating blood. However, the effective substance and pharmacological mechanism have not been fully elucidated. The zebrafish larvae were treated with Phenylhydrazine (PHZ) to establish a thrombus model, and the staining intensity of zebrafish red blood cells was analyzed. The antithrombotic activity of TA was verified for the first time, and it was found that the inhibition rate of TA on thrombosis was up to 60.85 %. The chemical ingredients of TA were collected by combining UPLC-HRMS analysis and the literature research. Network pharmacology revealed that six key targets were obtained, which including TNF, AKT1, EGFR, PTGS2, PPARG, and IFNG. It showed that the PI3K-Akt pathway was a core signaling pathway. Coagulation factor III(TF), playing an important role in the process of hemostasis and thrombosis, which ranks high in the PPI network. Moreover, the results of molecular docking showed that the active components had a strong binding force with TF, which indicated that TF might be the key target of TA in treating thrombosis. In vitro experiments showed that TA could inhibit TNF-α-induced high expression of TF in EA.hy926 cells. In addition, TA could inhibit TNF-α-activated expression of Akt, IκBα and P65 protein phosphorylation in PI3K-Akt pathway. The results showed that TA had antithrombotic activity and exerted an antithrombotic effect by inhibiting the expression of TF through the PI3K-Akt-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Songqin Yang
- School of Pharmaceutical Sciences, Guizhou University, Guizhou, Guiyang 550025, PR China
| | - Mao Zhao
- School of Pharmaceutical Sciences, Guizhou University, Guizhou, Guiyang 550025, PR China
| | - Yuhan Feng
- School of Pharmaceutical Sciences, Guizhou University, Guizhou, Guiyang 550025, PR China
| | - Xia Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guizhou, Guiyang 550025, PR China
| | - Qiuhong Li
- School of Pharmaceutical Sciences, Guizhou University, Guizhou, Guiyang 550025, PR China
| | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guizhou, Guiyang 550025, PR China..
| | - Daoping Wang
- Key Laboratory of Natural Products Chemistry of Guizhou Academy of Sciences, Guiyang 550014, China..
| |
Collapse
|
2
|
Al-Othman R, Al-Jarallah A, Babiker F. High-density lipoprotein protects normotensive and hypertensive rats against ischemia-reperfusion injury through differential regulation of mTORC1 and mTORC2 signaling. Front Pharmacol 2024; 15:1398630. [PMID: 39611167 PMCID: PMC11603114 DOI: 10.3389/fphar.2024.1398630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Background High-density lipoprotein (HDL) protects against myocardial ischemia-reperfusion (I/R) injury. Mammalian target of rapamycin complexes 1 and 2 (mTORC1 and mTORC2) play opposing roles in protecting against I/R injury, whereby mTORC1 appears to be detrimental while mTORC2 is protective. However, the role of HDL and mTORC signaling in protecting against I/R in hypertensive rodents is not clearly understood. In this study, we investigated the involvement of mTORC1 and mTORC2 in HDL-mediated protection against myocardial I/R injury in normotensive Wistar Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). Methods Hearts from WKY and SHR were subjected to I/R injury using a modified Langendorff system. Hemodynamics data were collected, and infarct size was measured. Rapamycin and JR-AB2-011 were used to test the role of mTORC1 and mTORC2, respectively. MK-2206 was used to test the role of Akt in HDL-mediated cardiac protection. The expression levels and the activation states of mediators of mTORC1 and mTORC2 signaling and myocardial apoptosis were measured by immunoblotting and/or enzyme-linked immunosorbent assay (ELISA). Results HDL protected hearts from WKY and SHR against I/R injury as indicated by significant improvements in cardiac hemodynamics and reduction in infarct size. HDL induced greater protection in WKY compared to SHR. HDL treatment attenuated mTORC1 signaling in WKY by reducing the phosphorylation of P70S6K (mTORC1 substrate). In SHR however, HDL attenuated mTORC1 signaling by reducing the levels of phospho-mTORC1, Rag C (mTORC1 activator), and phospho-PRAS40 (mTORC1 inhibitor). HDL increased the phosphorylation of mTORC2 substrate Akt, specifically the Akt2 isoform in SHR and to a greater extent in WKY. HDL-induced protection was abolished in the presence of Akt antagonist and involved attenuation of GSK, caspases 7 and 8 activation, and cytochrome C release. Conclusion HDL mediates cardiac protection via attenuation of mTORC1, activation of mTORC2-Akt2, and inhibition of myocardial apoptosis. HDL regulates mTORC1 and mTORC2 signaling via distinct mechanisms in normotensive and hypertensive rats. HDL attenuation of mTORC1 and activation of mTORC2-Akt2 signaling could be a mechanism by which HDL protects against myocardial I/R injury in hypertension.
Collapse
Affiliation(s)
- Reham Al-Othman
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aishah Al-Jarallah
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Fawzi Babiker
- Department of Physiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
3
|
Guo Q, Li Q, Liang W, Zhang Y, Jiang C, Zhang Y, Tan J, Zhao H. Asiatic acid and madecassic acid cause cardiotoxicity via inflammation and production of excessive reactive oxygen species in zebrafish. J Appl Toxicol 2024; 44:1028-1039. [PMID: 38527925 DOI: 10.1002/jat.4602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Centella asiatica (L.) Urban is a famous Chinese traditional medicine, which is widely used for treating various chronic inflammatory diseases. Although there are reports that Centella total glycosides exhibit heart-protective properties, our previous experiment showed that it has cardiac toxic effects in zebrafish. The components of Centella total glycosides are complex, so we recommend further research to determine their key components and mechanisms. In this study, sample quantification was done using liquid chromatography-tandem mass spectrometry. The cardiotoxicity of Centella total glycosides, asiaticoside, madecassoside, asiatic acid, and madecassic acid was evaluated using zebrafish and cell models. The zebrafish oxidative stress model and myocarditis model were used to explore further the mechanisms through which cardiotoxicity is achieved. Asiatic acid and madecassic acid caused zebrafish cardiotoxicity and H9C2 cell death. However, no toxicity effects were observed for asiaticoside and madecassoside in zebrafish, until the solution was saturated. The results from the cell model study showed that asiatic acid and madecassic acid changed the expression of apoptosis-related genes in myocardial cells. In the zebrafish model, high concentrations of these components raised the levels of induced systemic inflammation, neutrophils gathered in the heart, and oxidative stress injury. Asiatic acid and madecassic acid are the main components causing cardiotoxicity in zebrafish. This may be due to enhanced inflammation and reactive oxygen species injury, which causes myocardial cell apoptosis, which further leads to cardiac toxicity.
Collapse
Affiliation(s)
- Qingquan Guo
- Guangdong University of Technology, Guangzhou, China
| | - Qiuru Li
- Guangdong University of Technology, Guangzhou, China
| | - Wenyao Liang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Yudong Zhang
- Guangdong University of Technology, Guangzhou, China
| | | | - Yihan Zhang
- BYHEALTH Institute of Nutrition and Health, Guangzhou, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Haishan Zhao
- Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
4
|
Pang H, Wu H, Zhan Z, Wu T, Xiang M, Wang Z, Song L, Wei B. Exploration of anti‑osteosarcoma activity of asiatic acid based on network pharmacology and in vitro experiments. Oncol Rep 2024; 51:33. [PMID: 38186298 PMCID: PMC10777446 DOI: 10.3892/or.2023.8692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/02/2023] [Indexed: 01/09/2024] Open
Abstract
Osteosarcomas are malignant bone tumors that typically originate in the epiphyses of the long bones of the extremities in adolescents. Asiatic acid has been reported to possess anti‑inflammatory, neuroprotective, antidiabetic, antitumor and antimicrobial activities. The present study used a combination of network pharmacological prediction and in vitro experimental validation to explore the potential pharmacological mechanism of asiatic acid against osteosarcoma. A total of 78 potential asiatic acid targets in osteosarcoma were identified using databases. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the PI3K/AKT and MAPK signaling pathways are essential in the treatment of osteosarcoma with asiatic acid. Molecular docking revealed binding of asiatic acid to EGFR, Caspase‑3, ESR1, HSP90AA1, IL‑6 and SRC proteins. asiatic acid inhibited proliferation through G2/M cell cycle arrest in osteosarcoma cells. In addition, asiatic acid induced mitochondria‑dependent apoptosis as demonstrated by increases in Bax and VDAC1 expression, and a decrease in Bcl‑2 protein expression. The increased autophagosomes, increased LC3‑II/I ratios and decreased p62 expression in the treatment group indicated that asiatic acid triggered autophagy. In addition, asiatic acid decreased the levels of phosphorylated (p‑)PI3K/PI3K and p‑AKT/AKT, increased reactive oxygen species (ROS) and upregulated the levels of p‑ERK1/2/ERK1/2, p‑p38/p38 and p‑JNK/JNK in osteosarcoma cells. These results demonstrated that asiatic acid inhibited osteosarcoma cells proliferation by inhibiting PI3K/AKT and activating ROS/MAPK signaling pathways, suggesting asiatic acid is a potential agent against osteosarcoma.
Collapse
Affiliation(s)
- He Pang
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hang Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Zeyu Zhan
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Tingrui Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Min Xiang
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Zhiyan Wang
- Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Bo Wei
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
5
|
Hambali A, Jusril NA, Md Hashim NF, Abd Manan N, Adam SK, Mehat MZ, Adenan MI, Stanslas J, Abdul Hamid H. The Standardized Extract of Centella asiatica and Its Fractions Exert Antioxidative and Anti-Neuroinflammatory Effects on Microglial Cells and Regulate the Nrf2/HO-1 Signaling Pathway. J Alzheimers Dis 2024; 99:S119-S138. [PMID: 38250772 DOI: 10.3233/jad-230875] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Background Neuroinflammation and oxidative stress can aggravate the progression of Alzheimer's disease (AD). Centella asiatica has been traditionally consumed for memory and cognition. The triterpenes (asiaticoside, madecassoside, asiatic acid, madecassic acid) have been standardized in the ethanolic extract of Centella asiatica (SECA). The bioactivity of the triterpenes in different solvent polarities of SECA is still unknown. Objective In this study, the antioxidative and anti-neuroinflammatory effects of SECA and its fractions were explored on lipopolysaccharides (LPS)-induced microglial cells. Methods HPLC measured the four triterpenes in SECA and its fractions. SECA and its fractions were tested for cytotoxicity on microglial cells using MTT assay. NO, pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), ROS, and MDA (lipid peroxidation) produced by LPS-induced microglial cells were measured by colorimetric assays and ELISA. Nrf2 and HO-1 protein expressions were measured using western blotting. Results The SECA and its fractions were non-toxic to BV2 microglial cells at tested concentrations. The levels of NO, TNF-α, IL-6, ROS, and lipid peroxidation in LPS-induced BV2 microglial cells were significantly reduced (p < 0.001) by SECA and its fractions. SECA and some of its fractions can activate the Nrf2/HO-1 signaling pathway by significantly enhancing (p < 0.05) the Nrf2 and HO-1 protein expressions. Conclusions This study suggests that the inhibitory activity of SECA and its fractions on pro-inflammatory and oxidative stress events may be the result of the activation of antioxidant defense systems. The potential of SECA and its fractions in reducing neuroinflammation and oxidative stress can be further studied as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Aqilah Hambali
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nor Atiqah Jusril
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nizar Abd Manan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti Khadijah Adam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Ilham Adenan
- Universiti Teknologi MARA, Cawangan Pahang, Bandar Tun Abdul Razak, Jengka, Pahang, Malaysia
| | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Ding L, Liu T, Ma J. Neuroprotective mechanisms of Asiatic acid. Heliyon 2023; 9:e15853. [PMID: 37180926 PMCID: PMC10172897 DOI: 10.1016/j.heliyon.2023.e15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Asiatic acid (AA) is the most crucial component of Asiaticoside in many edible and medicinal plants. It has diverse biological activities such as anti-inflammatory, antioxidant, anti-infective, and anti-tumor. Additionally, AA has been intensively studied in the last decades. It has shown great potential in the treatment of various neurological diseases such as spinal cord injury (SCI), cerebral ischemia, epilepsy, traumatic brain injury (TBI), neural tumors, Alzheimer's disease (AD), and Parkinson's disease (PD). Moreover, AA provides pertinent data for neuroprotective signaling pathways, and its substantial neuroprotective ability makes it a novel candidate for developing drugs that target the central nervous system.
Collapse
Affiliation(s)
- Liuyun Ding
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
| | - Tiantian Liu
- Shanghai Seventh's People's Hospital, An Affiliate of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Jin Ma
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
- Corresponding author. Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 91 Qianjin West Road, Kunshan, 215300, China.
| |
Collapse
|
7
|
[Shikonin induces hepatocellular carcinoma cell apoptosis by suppressing PKM2/PHD3/HIF-1 α signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:92-98. [PMID: 36856215 DOI: 10.12122/j.issn.1673-4254.2023.01.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To investigate the mechanism of shikonin-induced death of human hepatocellular carcinoma SMMC-7721 cells. METHODS Cultured SMMC-7721 cells and normal hepatocytes (L-02 cells) were treated with 4, 8, or 16 μmol/L shikonin, and the changes in cell viability was assessed using MTT assay. The levels of ATP and lactic acid in the cell cultures were detected using commercial kits. Co-immunoprecipitation and immunofluorescence staining were used to determine the relationship among pyruvate kinase M2 (PKM2), prolyl hydroxylase 3 (PHD3), and hypoxia-inducible factor-1α (HIF-1α). The expressions of PHD3, PKM2, HIF-1α, Bax, cleaved caspase-3, and Bcl-2 in SMMC-7721 cells were detected with Western blotting, and cell apoptosis was analyzed with annexin V-FITC/PI staining. The effects of RNA interference of PKM2 on PHD3 and HIF-1α expressions in SMMC-7721 cells were detected using Western blotting. RESULTS The IC50 of shikonin against SMMC-7721 and L-02 cells was 8.041 μmol/L and 31.75 μmol/L, respectively. Treatment with shikonin significantly inhibited the protein expressions of PKM2, HIF-1α and PHD3 and nuclear translocation of PKM2 and HIF-1α in SMMC-7721 cells. Coimmunoprecipitation and immunofluorescence staining confirmed that shikonin inhibited the formation of PKM2/PHD3/HIF-1α complex and significantly reduced the contents of lactic acid and ATP in SMMC-7721 cells (P < 0.05). The expressions of PHD3 and HIF-1α decreased significantly after PKM2 knockdown (P < 0.05). Shikonin treatment significantly increased the apoptosis rate, enhanced the expressions of Bax and cleaved caspase-3, and decreased Bcl-2 expression in SMMC-7721 cells (P < 0.05). CONCLUSIONS Shikonin induces apoptosis of SMMC-7721 cells possibly by inhibiting aerobic glycolysis through the PKM2/PHD3/HIF-1α signaling pathway to cause energy supply dysfunction in the cells.
Collapse
|
8
|
Ma XJ, Tan Y, Chen L, Qu H, Shi DZ. Elucidation of the mechanism of Gualou-Xiebai-Banxia decoction for the treatment of unstable angina based on network pharmacology and molecular docking. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2023. [DOI: 10.4103/2311-8571.364411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
9
|
Wan J, Jiang Z, Liu D, Pan S, Zhou S, Liu Z. Inhibition of the glycogen synthase kinase 3β-hypoxia-inducible factor 1α pathway alleviates NLRP3-mediated pyroptosis induced by high glucose in renal tubular epithelial cells. Exp Physiol 2022; 107:1493-1506. [PMID: 36056793 DOI: 10.1113/ep090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Activation of the glycogen synthase kinase 3 β (GSK-3β)-hypoxia-inducible factor 1 α (HIF-1α) pathway results in stimulation of pyroptosis under high glucose, and exerts actions in a number renal diseases: does this pathway have a role in renal tubular epithelial cells? What is the main finding and its importance? Down-regulation of GSK-3β can inhibit pyroptosis of renal tubular epithelial cells induced by high glucose and this may be related to down-regulation of HIF-1α. This role of the GSK-3β-HIF-1α pathway has not previously been reported and identifies a potential new therapeutic target in diabetic nephropathy. ABSTRACT Diabetic nephropathy (DN) is not only one of the main complications of diabetes, but also has a high incidence rate and a high mortality rate. Glycogen synthase kinase 3 β (GSK-3β) and hypoxia-inducible factor 1 α (HIF-1α) have been demonstrated to influence DN by regulating pyroptosis. This study aimed to investigate the effect of the GSK-3β-HIF-1α pathway on pyroptosis of high-glucose (HG)-induced renal tubular cells. Mouse renal proximal tubular epithelial cells (TKPT cells) were induced by HG to simulate DN cell and we transfected TKPT cells with GSK-3β knockdown lentivirus. Western blot analysis confirmed the transfection effects and detected the expression of GSK-3β, HIF-1α, Nod-like receptor protein 3 (NLRP3), cleaved-caspase-1, pro-caspase-1, gasdermin D (GSDMD) and GSDMD-N. The expression of GSDMD-N and HIF-1α were also verified by immunofluorescence. The levels of interleukin (IL)-1β and IL-18 were measured by enzyme linked immunosorbent assay. Flow cytometric analysis determined the apoptosis rate. Results showed that HIF-1α expression was increased in HG-induced TKPT cells, and GSK-3β knockdown could decrease the levels of NLRP3, cleaved-caspase-1, GSDMD-N and HIF-1α, verified by immunofluorescence. Moreover, GSK-3β knockdown suppressed the expression of IL-1β and IL-18, and reduced the apoptosis rate. Lithium chloride (LiCl) interference could cause the same changes as GSK-3β knockdown for HG-induced TKPT cells, and dimethyloxallyl glycine could reverse the effect of GSK-3β-knockdown interference. Our studies definitively demonstrate that the GSK-3β-HIF-1α signalling pathway mediates HG-stimulated pyroptosis in renal tubular epithelial cells and that down-regulation of GSK-3β inhibited HG-induced pyroptosis by inhibiting the expression of HIF-1α. These findings suggest a new potential target for the treatment of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Ziming Jiang
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| |
Collapse
|
10
|
Li Y, Li X, Xu S, Zhao Y, Pang M, Zhang X, Wang X, Wang Y. 1,25-D3 attenuates cerebral ischemia injury by regulating mitochondrial metabolism via the AMPK/AKT/GSK3β pathway. Front Aging Neurosci 2022; 14:1015453. [PMID: 36325190 PMCID: PMC9618954 DOI: 10.3389/fnagi.2022.1015453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
The brain injury caused by cerebral ischemia-reperfusion is related to mitochondrial damage. Maintaining the normal function of mitochondria, promoting angiogenesis, protecting neuronal cells, and resisting oxidative stress are the keys to functional recovery after acute ischemic stroke. In this study, we established a middle cerebral artery occlusion (MCAO) model and investigated the effects of 1α,25-dihydroxyvitamin D3 (VitD or 1,25-D3) on mitochondrial function via the adenosine 5'-monophosphate-activated protein kinase (AMPK)/protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β) signaling pathway in rats with cerebral ischemia-reperfusion injury. The neurological function and infarct size were measured in each group. Hematoxylin-eosin, neuronal nucleus, and Nissl staining procedures were conducted to observe the morphology and number of the cerebral cortical neurons. Western blotting was then used to analyze p-AMPK, vitamin D receptor (VDR), p-GSK-3β, p-AKT, P53, cytochrome C (CytC), TGF-β, and vascular endothelial growth factor (VEGF) in mitochondria. Immunofluorescence staining was used to observe the expression of CytC and caspase-3. Succinate dehydrogenase, ATPase, reactive oxygen species, and malondialdehyde were detected by kits. RT-qPCR was used to analyze TGF-β, VEGF, P53, and CytC mRNA. The results revealed that the cerebral infarct volume, neurological function score, apoptotic protein P53, CytC, caspase-3, reactive oxygen species, and malondialdehyde were significantly increased in MCAO rats. 1,25-D3 reduced the infarct size and neurological function score, activated VDR, upregulated TGF-β, p-AMPK, p-AKT, p-GSK-3β, VEGF, ATP, and succinate dehydrogenase, and downregulated P53, CytC, caspase-3, reactive oxygen species, and malondialdehyde. As an antagonist of VDRs, pyridoxal-5-phosphate could partially block the neuroprotective effect of 1,25-D3. In conclusion, 1,25-D3 activated AMPK/AKT/GSK-3β signaling and VDRs, inhibited P53, CytC, and caspase-3, increased TGF-β and VEGF, regulated mitochondrial metabolism, reduced neuronal apoptosis, promoted vascular growth, and exerted neuroprotective effects. These findings suggest that this signaling pathway may be an effective target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yutian Li
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xiangling Li
- Department of Internal Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Shuangli Xu
- Emergency Department, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yingzhe Zhao
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Meng Pang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaojun Zhang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xuejian Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
- Xuejian Wang
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Yanqiang Wang ;
| |
Collapse
|
11
|
Ai Y, He M, Wan C, Luo H, Xin H, Wang Y, Liang Q. Nanoplatform‐Based Reactive Oxygen Species Scavengers for Therapy of Ischemia‐Reperfusion Injury. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University‐Peking University Joint Centre for Life Sciences Beijing Key Lab of Microanalytical Methods & Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 P. R. China
| | - Meng‐Qi He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University‐Peking University Joint Centre for Life Sciences Beijing Key Lab of Microanalytical Methods & Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 P. R. China
| | - Chengxian Wan
- Jiangxi Provincial People's Hospital The First Affiliated Hospital of Nanchang Medical College The Affiliated People's Hospital of Nanchang University Nanchang Jiangxi 330006 P. R. China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau SAR 999078 China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 P. R. China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau SAR 999078 China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University‐Peking University Joint Centre for Life Sciences Beijing Key Lab of Microanalytical Methods & Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
12
|
Asiatic Acid Alleviates Myocardial Ischemia-Reperfusion Injury by Inhibiting the ROS-Mediated Mitochondria-Dependent Apoptosis Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3267450. [PMID: 35198095 PMCID: PMC8860531 DOI: 10.1155/2022/3267450] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a major cause of heart failure in patients with coronary heart disease (CHD). Mitochondrial dysfunction is the crucial factor of MIRI; oxidative stress caused by mitochondrial reactive oxygen species (ROS) aggravates myocardial cell damage through the mitochondria-dependent apoptosis pathway. Asiatic acid (AA) is a type of pentacyclic triterpene compound purified from the traditional Chinese medicine Centella asiatica, and its protective pharmacological activities have been reported in various disease models. This study is aimed at investigating the protective effects of AA and the underlying mechanisms in MIRI. To achieve this goal, an animal model of MIRI in vivo and a cell model of oxygen-glucose deprivation/reperfusion (OGD/R) in vitro were established. The results show that AA exerts a protective effect on MIRI by improving cardiac function and reducing cardiomyocyte damage. Due to its antioxidant properties, AA alleviates mitochondrial oxidative stress, as evidenced by the stable mitochondrial structure, maintained mitochondrial membrane potential (MMP), and reduced ROS generation, otherwise due to its antiapoptotic properties. AA inhibits the mitogen-activated protein kinase (MAPK)/mitochondria-dependent apoptosis pathway, as evidenced by the limited phosphorylation of p38-MAPK and JNK-MAPK, balanced proportion of Bcl-2/Bax, reduced cytochrome c release, inhibition of caspase cascade, and reduced apoptosis. In conclusion, our study confirms that AA exerts cardiac-protective effects by regulating ROS-induced oxidative stress via the MAPK/mitochondria-dependent apoptosis pathway; the results provide new evidence that AA may represent a potential treatment for CHD patients.
Collapse
|
13
|
Xu H, Cui Y, Liu X, Zheng X, Liu J, Hu X, Gao F, Hu X, Li M, Wei X, Gao Y, Zhao Y. miR-1290 promotes IL-8-mediated vascular endothelial cell adhesion by targeting GSK-3β. Mol Biol Rep 2021; 49:1871-1882. [PMID: 34837150 DOI: 10.1007/s11033-021-06998-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND MicroRNA-1290 (miR-1290) has been reported to be involved in many diseases and play a key role during the development process. However, the role of miR-1290 in atherosclerosis (AS) is still unclear. METHODS AND RESULTS The current study showed that the expressions of miR-1290 were high in serum of patients with hyperlipidemia. The functional role of miR-1290 were then investigated in human umbilical vein endothelial cells (HUVECs). Here, we found that miR-1290 expressions were notably enhanced in HUVECs mediated by IL-8. miR-1290 inhibitor repressed monocytic THP-1 cells adhesion to HUVECs by regulating ICAM-1 and VCAM-1, inhibited proliferation through regulating cyclinD1 and PCNA, and inhibited inflammatory response by regulating IL-1β. Mechanistically, we verified that miR-1290 mimic was able to directly target the 3'-UTR of GSK-3β mRNA using luciferase reporter assay. Knockdown of GSK-3β (si-GSK-3β) promoted HUVECs adhesion and the expression of IL-1β, and partially restore the depression effect of miR-1290 inhibitor on HUVECs adhesion and inflammation. In contrast, si-GSK-3β inhibited the proliferation of HUVECs and the expression of cyclinD1 and PCNA. CONCLUSIONS In summary, our study revealed that miR-1290 promotes IL-8-mediated the adhesion of HUVECs by targeting GSK-3β. However, GSK-3β is not the target protein for miR-1290 to regulate the proliferation of HUVECs. Our findings may provide potential target in atherosclerosis treatment.
Collapse
Affiliation(s)
- Hongxin Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ying Cui
- Molecular Medical Laboratory, College of Basic Medical Science, Dalian Medical University, Dalian, China.,Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, China
| | - Xianwei Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiao Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jiaqing Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xinxin Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Fuhua Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiaoyan Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Mei Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiaoqing Wei
- Molecular Medical Laboratory, College of Basic Medical Science, Dalian Medical University, Dalian, China.,Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, China
| | - Ying Gao
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, China. .,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Ying Zhao
- Molecular Medical Laboratory, College of Basic Medical Science, Dalian Medical University, Dalian, China. .,Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, China.
| |
Collapse
|
14
|
Wu Q, Liu F, Shen T, Zhang W. Multiple pathways are responsible to the inhibitory effect of butorphanol on OGD/R-induced apoptosis in AC16 cardiomyocytes. J Appl Toxicol 2021; 42:830-840. [PMID: 34708435 DOI: 10.1002/jat.4260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Ischemic heart disease is the leading cause of cardiovascular mortality, which is related to cardiac myocyte apoptosis. Butorphanol is an opioid receptor agonist with potential cardioprotective function. The purpose of this work is to explore the function and mechanism of butorphanol in oxygen and glucose deprivation/reperfusion (OGD/R)-induced cardiomyocyte apoptosis. The overlapping targets of ischemic heart disease and butorphanol were analyzed according to GeneCards, ParmMapper, Cytoscape, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Human cardiomyocyte AC16 cells were incubated with butorphanol and then stimulated with OGD/R. Cell injury was investigated by Cell Counting Kit-8, lactate dehydrogenase (LDH) assay kit, TUNEL staining, caspase-3 activity assay kit, and Western blotting. The proteins in signaling pathways were measured using Western blotting. A total of 93 overlapping targets of ischemic heart disease and butorphanol were obtained. Pathway analysis exhibited that these targets might be involved in multiple signaling pathways. Butorphanol alone showed little cytotoxicity to cardiomyocytes, and it protected against OGD/R-induced viability inhibition, LDH release, cell apoptosis, and increase of caspase-3 activity and expression levels of cleaved caspase-3 and Bim. Butorphanol promoted the activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/forkhead box O (FoxO) and hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathways and attenuated the activation of the mitogen-activated protein kinase (MAPK) signaling in OGD/R-treated cardiomyocytes. In conclusion, butorphanol prevents OGD/R-induced cardiomyocyte apoptosis through activating the PI3K/Akt/FoxO and HIF-1α/VEGF pathways and inactivating the MAPK pathway.
Collapse
Affiliation(s)
- Qiaoling Wu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Feifei Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tu Shen
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
15
|
Hambali A, Kumar J, Hashim NFM, Maniam S, Mehat MZ, Cheema MS, Mustapha M, Adenan MI, Stanslas J, Hamid HA. Hypoxia-Induced Neuroinflammation in Alzheimer's Disease: Potential Neuroprotective Effects of Centella asiatica. Front Physiol 2021; 12:712317. [PMID: 34721056 PMCID: PMC8551388 DOI: 10.3389/fphys.2021.712317] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterised by the presence of extracellular beta-amyloid fibrillary plaques and intraneuronal neurofibrillary tau tangles in the brain. Recurring failures of drug candidates targeting these pathways have prompted research in AD multifactorial pathogenesis, including the role of neuroinflammation. Triggered by various factors, such as hypoxia, neuroinflammation is strongly linked to AD susceptibility and/or progression to dementia. Chronic hypoxia induces neuroinflammation by activating microglia, the resident immune cells in the brain, along with an increased in reactive oxygen species and pro-inflammatory cytokines, features that are common to many degenerative central nervous system (CNS) disorders. Hence, interests are emerging on therapeutic agents and plant derivatives for AD that target the hypoxia-neuroinflammation pathway. Centella asiatica is one of the natural products reported to show neuroprotective effects in various models of CNS diseases. Here, we review the complex hypoxia-induced neuroinflammation in the pathogenesis of AD and the potential application of Centella asiatica as a therapeutic agent in AD or dementia.
Collapse
Affiliation(s)
- Aqilah Hambali
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
16
|
Qian XP, Zhang XH, Sun LN, Xing WF, Wang Y, Sun SY, Ma MY, Cheng ZP, Wu ZD, Xing C, Chen BN, Wang YQ. Corosolic acid and its structural analogs: A systematic review of their biological activities and underlying mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153696. [PMID: 34456116 DOI: 10.1016/j.phymed.2021.153696] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The corosolic acid (CA), also known as plant insulin, is a pentacyclic triterpenoid extracted from plants such as Lagerstroemia speciosa. It has been shown to have anti-diabetic, anti-inflammatory and anti-tumor effects. Its structural analogs ursolic acid (UA), oleanolic acid (OA), maslinic acid (MA), asiatic acid (AA) and betulinic acid (BA) display similar individual pharmacological activities to those of CA. However, there is no systematic review documenting pharmacological activities of CA and its structural analogues. This study aims to fill this gap in literature. PURPOSE This systematic review aims to summarize the medical applications of CA and its analogues. METHODS A systematic review summarizes and compares the extraction techniques, pharmacokinetic parameters, and pharmacological effects of CA and its structural analogs. Hypoglycemic effect is one of the key inclusion criteria for searching Web of Science, PubMed, Embase and Cochrane databases up to October 2020 without language restrictions. 'corosolic acid', 'ursolic acid', 'oleanolic acid', 'maslinic acid', 'asiatic acid', 'betulinic acid', 'extraction', 'pharmacokinetic', 'pharmacological' were used to extract relevant literature. The PRISMA guidelines were followed. RESULTS At the end of the searching process, 140 articles were selected for the systematic review. Information of CA and five of its structural analogs including UA, OA, MA, AA and BA were included in this review. CA and its structural analogs are pentacyclic triterpenes extracted from plants and they have low solubilities in water due to their rigid scaffold and hydrophobic properties. The introduction of water-soluble groups such as sugar or amino groups could increase the solubility of CA and its structural analogs. Their biological activities and underlying mechanism of action are reviewed and compared. CONCLUSION CA and its structural analogs UA, OA, MA, AA and BA are demonstrated to show activities in lowering blood sugar, anti-inflammation and anti-tumor. Their oral absorption and bioavailability can be improved through structural modification and formulation design. CA and its structural analogs are promising natural product-based lead compounds for further development and mechanistic studies.
Collapse
Affiliation(s)
- Xu-Ping Qian
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Xuzhou Medical University, Xuzhou, China
| | - Xue-Hui Zhang
- Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Wei-Fan Xing
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Yu Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Shi-Yu Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Meng-Yuan Ma
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Xuzhou Medical University, Xuzhou, China
| | - Zi-Ping Cheng
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Zu-Dong Wu
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Chen Xing
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Bei-Ning Chen
- Department of Chemistry, University of Sheffield, Brookhill, Sheffield S3 7HF, United Kingdom.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
17
|
Actions and Therapeutic Potential of Madecassoside and Other Major Constituents of Centella asiatica: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Centella asiatica is a popular herb well-known for its wide range of therapeutic effects and its use as a folk medicine for many years. Its therapeutic properties have been well correlated with the presence of asiaticoside, madecassoside, asiatic and madecassic acids, the pentacyclic triterpenes. The herb has been extensively known to treat skin conditions; nevertheless, several pre-clinical and clinical studies have scientifically demonstrated its effectiveness in other disorders. Among the active constituents that have been identified in Centella asiatica, madecassoside has been the subject of only a relatively small number of scientific reports. Therefore, this review, while including other major constituents of this plant, focuses on the therapeutic potential, pharmacokinetics and toxicity of madecassoside.
Collapse
|
18
|
Zheng J, Chen P, Zhong J, Cheng Y, Chen H, He Y, Chen C. HIF‑1α in myocardial ischemia‑reperfusion injury (Review). Mol Med Rep 2021; 23:352. [PMID: 33760122 PMCID: PMC7974458 DOI: 10.3892/mmr.2021.11991] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a severe injury to the ischemic myocardium following the recovery of blood flow. Currently, there is no effective treatment for MIRI in clinical practice. Over the past two decades, biological studies of hypoxia and hypoxia-inducible factor-1α (HIF-1α) have notably improved understanding of oxygen homeostasis. HIF-1α is an oxygen-sensitive transcription factor that mediates adaptive metabolic responses to hypoxia and serves a pivotal role in MIRI. In particular, previous studies have demonstrated that HIF-1α improves mitochondrial function, decreases cellular oxidative stress, activates cardioprotective signaling pathways and downstream protective genes and interacts with non-coding RNAs. The present review summarizes the roles and associated mechanisms of action of HIF-1α in MIRI. In addition, HIF-1α-associated MIRI intervention, including natural compounds, exosomes, ischemic preconditioning and ischemic post-processing are presented. The present review provides evidence for the roles of HIF-1α activation in MIRI and supports its use as a therapeutic target.
Collapse
Affiliation(s)
- Jie Zheng
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Peier Chen
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jianfeng Zhong
- Guangdong Key Laboratory of Age‑related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yu Cheng
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Hao Chen
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Can Chen
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524003, P.R. China
| |
Collapse
|
19
|
Overexpression of TGR5 alleviates myocardial ischemia/reperfusion injury via AKT/GSK-3β mediated inflammation and mitochondrial pathway. Biosci Rep 2021; 40:221795. [PMID: 31909787 PMCID: PMC6981096 DOI: 10.1042/bsr20193482] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 12/31/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury reduces cell proliferation, triggers inflammation, promotes cell apoptosis and necrosis, which are the leading reasons of morbidity and mortality in patients with cardiac disease. TGR5 is shown to express in hearts, but its functional role in I/R-induced myocardial injury is unclear. In the present study, we aimed to explore the underlying molecular mechanism of TGR5 in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury in vitro. The results showed that TGR5 was significantly up-regulated in H9C2 (rat cardiomyocyte cells) and human cardiomyocytes (HCMs) after H/R. Overexpression of TGR5 significantly improved cell proliferation, alleviated apoptosis rate, the activities of caspase-3, cleaved caspases-3 and Bax protein expression levels, and increased Bcl-2 level. Overexpression of TGR5 significantly up-regulated ROS generation, stabilized the mitochondrial membrane potential (MMP), and reduced the concentration of intracellular Ca2+ as well as cytosolic translocation of mitochondrial cytochrome c (cyto-c). Meanwhile, overexpressed TGR5 also enhanced the mRNA and protein levels of interleukin (IL)-10, and decreased the mRNA and protein levels of IL-6 and tumor necrosis factor α (TNF-α). The shTGR5+H/R group followed opposite trends. In addition, overexpressed TGR5 induced an increase in the levels of p-AKT and p-GSK-3β. The protective effects of TGR5 were partially reversed by AKT inhibitor MK-2206. Taken together, these results suggest that TGR5 attenuates I/R-induced mitochondrial dysfunction and cell apoptosis as well as inflammation, and these protections may through AKT/GSK-3β pathway.
Collapse
|
20
|
Yang CC, Yang CM. Chinese Herbs and Repurposing Old Drugs as Therapeutic Agents in the Regulation of Oxidative Stress and Inflammation in Pulmonary Diseases. J Inflamm Res 2021; 14:657-687. [PMID: 33707963 PMCID: PMC7940992 DOI: 10.2147/jir.s293135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Several pro-inflammatory factors and proteins have been characterized that are involved in the pathogenesis of inflammatory diseases, including acute respiratory distress syndrome, chronic obstructive pulmonary disease, and asthma, induced by oxidative stress, cytokines, bacterial toxins, and viruses. Reactive oxygen species (ROS) act as secondary messengers and are products of normal cellular metabolism. Under physiological conditions, ROS protect cells against oxidative stress through the maintenance of cellular redox homeostasis, which is important for proliferation, viability, cell activation, and organ function. However, overproduction of ROS is most frequently due to excessive stimulation of either the mitochondrial electron transport chain and xanthine oxidase or reduced nicotinamide adenine dinucleotide phosphate (NADPH) by pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor α. NADPH oxidase activation and ROS overproduction could further induce numerous inflammatory target proteins that are potentially mediated via Nox/ROS-related transcription factors triggered by various intracellular signaling pathways. Thus, oxidative stress is considered important in pulmonary inflammatory processes. Previous studies have demonstrated that redox signals can induce pulmonary inflammatory diseases. Thus, therapeutic strategies directly targeting oxidative stress may be effective for pulmonary inflammatory diseases. Therefore, drugs with anti-inflammatory and anti-oxidative properties may be beneficial to these diseases. Recent studies have suggested that traditional Chinese medicines, statins, and peroxisome proliferation-activated receptor agonists could modulate inflammation-related signaling processes and may be beneficial for pulmonary inflammatory diseases. In particular, several herbal medicines have attracted attention for the management of pulmonary inflammatory diseases. Therefore, we reviewed the pharmacological effects of these drugs to dissect how they induce host defense mechanisms against oxidative injury to combat pulmonary inflammation. Moreover, the cytotoxicity of oxidative stress and apoptotic cell death can be protected via the induction of HO-1 by these drugs. The main objective of this review is to focus on Chinese herbs and old drugs to develop anti-inflammatory drugs able to induce HO-1 expression for the management of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, 33302, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan.,Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
21
|
Prostaglandin E1 attenuates post‑cardiac arrest myocardial dysfunction through inhibition of mitochondria‑mediated cardiomyocyte apoptosis. Mol Med Rep 2020; 23:110. [PMID: 33300050 PMCID: PMC7723157 DOI: 10.3892/mmr.2020.11749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Post‑cardiac arrest myocardial dysfunction (PAMD) is a leading cause of death in patients undergoing resuscitation patients following cardiac arrest (CA). Although prostaglandin E1 (PGE1) is a clinical drug used to mitigate ischemia injury, its effect on PAMD remains unknown. In the present study, the protective effects of PGE1 on PAMD were evaluated in a rat model of CA and in a hypoxia‑reoxygenation (H/R) in vitro model. Rats were randomly assigned to CA, CA+PGE1 or sham groups. Asphyxia for 8 min followed by cardiopulmonary resuscitation were performed in the CA and CA+PGE1 groups. PGE1 was intravenously administered at the onset of return of spontaneous circulation (ROSC). PGE1 treatment significantly increased the ejection fraction and cardiac output within 4 h following ROSC and improved the survival rate, compared with the CA group. Moreover, PGE1 inactivated GSK3β, prevented mitochondrial permeability transition pore (mPTP) opening, while reducing cytochrome c and cleaved caspase‑3 expression, as well as cardiomyocyte apoptosis in the rat model. To examine the underlying mechanism, H/R H9c2 cells were treated with PGE1 at the start of reoxygenation. The changes in GSK3β activity, mPTP opening, cytochrome c and cleaved caspase‑3 expression, and apoptosis of H9c2 cells were consistent with those noted in vivo. The results indicated that PGE1 attenuated PAMD by inhibiting mitochondria‑mediated cardiomyocyte apoptosis.
Collapse
|
22
|
Yi C, Si L, Xu J, Yang J, Wang Q, Wang X. Effect and mechanism of asiatic acid on autophagy in myocardial ischemia-reperfusion injury in vivo and in vitro. Exp Ther Med 2020; 20:54. [PMID: 32952644 PMCID: PMC7485304 DOI: 10.3892/etm.2020.9182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a major cause of heart failure in patients with coronary heart disease. The excessive accumulation of reactive oxygen species (ROS) during MIRI induces the overactivation of an autophagic response, which aggravates myocardial cell damage. Asiatic acid (AA) is a triterpenoid compound, which is extracted from Centella asiatica and exhibits a variety of pharmacological effects such as hepatoprotective, neuroprotective and antioxidant. However, the association of AA with autophagy in MIRI is not fully understood. In the present study, the positive effects of AA in MIRI injury were determined via establishing a MIRI mouse model. Pre-treatment with AA was indicated to improve cardiac function and decrease cardiomyocyte autophagy in mice subjected to MIRI. To examine the protective effects of AA and the underlying mechanisms in MIRI, a cardiomyocyte glucose deprivation/reperfusion (OGD) model was established. The administration of AA decreased the levels of ROS and malondialdehyde and increased the levels of superoxide dismutase activity in OGD-treated cells. Using western blotting, it was demonstrated that treatment with AA decreased the phosphorylation of p38 and increased the expression of Bcl-2 in OGD-treated cells. Additionally, the expression of autophagy markers, including beclin-1 and the microtubule-associated proteins 1A/1B light chain 3B II/I ratio, were also decreased in AA treated cells compared with OGD-treated cells. These results demonstrated that AA pretreatment protected cardiomyocytes from ROS-mediated autophagy via a p38 mitogen-activated protein kinase/Bcl-2/beclin-1 signaling pathway in MIRI.
Collapse
Affiliation(s)
- Chenlong Yi
- Department of Cardiovascular Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Linjie Si
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Junyi Yang
- Department of Thoracic and Cardiovascular Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine (TCM), Nanjing, Jiangsu 210029, P.R. China
| | - Qiang Wang
- Department of Cardiovascular Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaowei Wang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
23
|
Hu Y, Wang X, Li Q, Pan Y, Xu L. Salvianolic acid B alleviates myocardial ischemic injury by promoting mitophagy and inhibiting activation of the NLRP3 inflammasome. Mol Med Rep 2020; 22:5199-5208. [PMID: 33174042 PMCID: PMC7646978 DOI: 10.3892/mmr.2020.11589] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023] Open
Abstract
Ischemic heart disease is a major cause of mortality and disability worldwide. Salvianolic acid B (Sal B) is one of the main water-soluble components of Salvia miltiorrhiza Bge. Numerous studies have demonstrated that Sal B could exert significant anti-inflammatory and cardiovascular protective effects; however, the underlying mechanisms remain unclear. To elucidate the association between myocardial ischemia and inflammation, and to develop effective protective drugs, a rat model of myocardial ischemia was induced using isoproterenol (ISO) and an inflammation model in H9C2 cells was induced with lipopolysaccharide + adenosine triphosphate. Both of these models were treated with different concentrations of Sal B (5, 10 and 15 mg/kg in vivo; 1, 5 and 25 µM in vitro). In vivo, the serum levels of creatine kinase isoenzyme MB, glutamic oxaloacetic transaminase and IL-1β, the cardiac function and the mRNA expression levels of NLR family pyrin domain-containing 3 (NLRP3) inflammasome components were evaluated using ELISAs, an electrocardiogram, hematoxylin and eosin staining and reverse transcription-quantitative PCR, respectively. The results demonstrated that treatment with Sal B markedly alleviated the acute myocardial ischemic injury induced by hypodermic injection of ISO in rats. In vitro, the results of reactive oxygen species (ROS) detection, JC-1 staining, western blotting and TUNEL assays showed that Sal B treatment significantly inhibited intracellular ROS production, increased the mitochondrial membrane potential, regulated the expression of mitophagy-related proteins, inhibited the activation of the NLRP3 inflammasome and inhibited apoptosis in H9C2 cells. In conclusion, these findings indicated that Sal B exerted protective effects against myocardial ischemic injury by promoting mitophagy and maintaining mitochondrial function.
Collapse
Affiliation(s)
- Yang Hu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xinyu Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Qingju Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yunzheng Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Li Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
24
|
Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, Kudo M, Gao M, Liu T. Therapeutic Potential of Centella asiatica and Its Triterpenes: A Review. Front Pharmacol 2020; 11:568032. [PMID: 33013406 PMCID: PMC7498642 DOI: 10.3389/fphar.2020.568032] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Centella asiatica (also known as Centella asiatica (L.) Urb. or Gotu kola) is a traditional Chinese medicine with extensive medicinal value, which is commonly used in Southeast Asian countries. This study aimed to summarize the effects of C. asiatica and its main components on neurological diseases, endocrine diseases, skin diseases, cardiovascular diseases, gastrointestinal diseases, immune diseases, and gynecological diseases, as well as potential molecular mechanisms, to study the pathological mechanism of these diseases based on the changes at the molecular level. The results showed that C. asiatica and its triterpenoids had extensive beneficial effects on neurological and skin diseases, which were confirmed through clinical studies. They exhibited anti-inflammatory, anti-oxidative stress, anti-apoptotic effects, and improvement in mitochondrial function. However, further clinical studies are urgently required due to the low level of evidence and lack of patients.
Collapse
Affiliation(s)
- Boju Sun
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - You Wu
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Chengfei Zhang
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Technology Department, Beijing University of Chinese Medicine, Beijing, China
| | - Misa Hayashi
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Maya Kudo
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Ming Gao
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Tonghua Liu
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Sun W, Li A, Wang Z, Sun X, Dong M, Qi F, Wang L, Zhang Y, Du P. Tetramethylpyrazine alleviates acute kidney injury by inhibiting NLRP3/HIF‑1α and apoptosis. Mol Med Rep 2020; 22:2655-2664. [PMID: 32945382 PMCID: PMC7453617 DOI: 10.3892/mmr.2020.11378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the protective effect and underlying mechanism of tetramethylpyrazine (TMP) on renal ischemia reperfusion injury (RIRI) in rats, which refers to the injury caused by the restoration of blood supply and reperfusion of the kidney after a period of ischemia. Sprague‑Dawley rats were randomly divided into a Sham group, renal ischemia‑reperfusion (I/R) group and TMP group. TMP hydrochloride (40 mg/kg, 6 h intervals) was given via intraperitoneal injection immediately after reperfusion in the TMP group, after 24 h the kidney tissues were taken for follow‑up experiments. Pathological changes in the kidney tissues were observed by periodic acid‑Schiff staining. Renal function was assessed by measuring levels of serum creatinine and blood urea nitrogen, and inflammatory cytokines tumor necrosis factor (TNF)‑α and interleukin (IL)‑6. Renal cell apoptosis was detected by TUNEL‑DAPI double staining, mRNA and protein changes were analyzed by reverse transcription‑quantitative PCR and western blotting. Cell viability was measured using a CCK‑8 assay. It was found that the renal tissues of the sham operation group were notably abnormal, and the renal tissues of the I/R group were damaged, while the renal tissues of the TMP group were less damaged compared with those of the I/R group. Compared with the I/R group, the serum creatinine and blood urea nitrogen levels in the TMP group were low (all P<0.05), levels of inflammatory cytokines TNF‑α and IL‑6 decreased, the apoptotic rate was low (all P<0.05), and the relative expression levels of nucleotide‑oligomerization domain‑like receptor 3 (NLRP3) protein and mRNA in renal tissues were low (all P<0.05). The expression levels of hypoxia‑inducible factor 1‑α and NLRP3 increased after oxygen and glucose deprivation (OGD), and reduced after treatment with OGD and TMP (all P<0.05). It was concluded that TMP can reduce renal injury and improve renal function in RIRI rats, and its mechanism may be related to the reduction of NLRP3 expression in renal tissues.
Collapse
Affiliation(s)
- Wangnan Sun
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Aiqun Li
- Emergency Department, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhiqiang Wang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xuhong Sun
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Menghua Dong
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Fu Qi
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Lin Wang
- Department of Geriatrics, the Second Hospital of Shandong University, Jinan, Shandong 264001, P.R. China
| | - Yueheng Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Pengchao Du
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
26
|
Li M, Li X, Zhou L, Jin Y. Effects of total saponins from Panacis majoris Rhizoma and its degradation products on myocardial ischemia-reperfusion injury in rats. Biomed Pharmacother 2020; 130:110538. [PMID: 32731133 DOI: 10.1016/j.biopha.2020.110538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 02/02/2023] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panacis majoris Rhizoma, which is a member of herbal medicine, is known for many years to remove blood stasis, promote blood circulation, and enrich the blood. The active ingredients of this plant are mainly attributed to saponins. AIM OF THE STUDY The total saponins from Panacis majoris Rhizoma (TSPJ), and the degradation products of TSPJ (DTSPJ), were designed in this study to compare the protective effects on myocardial ischemia-reperfusion injury, and the aim of this approach is to discover more effective agents for the treatment of ischemic heart diseases. We analyzed the main constituents of TSPJ and DTSPJ, aiming to make clear which saponins played important roles in this protective effect, and also investigated the possible mechanisms. MATERIALS AND METHODS DTSPJ was prepared by the method of alkaline hydrolysis. High performance liquid chromatography (HPLC) were used to analyze the main chemical constituents of TSPJ and DTSPJ, which were isolated by chromatographic techniques and identified by comparison with the Nuclear Magnetic Resonance (NMR) data in reported literature. Male Wistar rats were randomized to sham-operated group, ischemia-reperfusion group, three TSPJ (50, 100 and 200 mg/kg) groups, three DTSPJ (50, 100 and 200 mg/kg) groups, and isosorbide dinitrate tablet (5.0 mg/kg) group. The rats in all groups were intragastrically administrated once per day for three successive days. The establishment of the model of myocardial ischemia-reperfusion injury was used the following method: firstly, the left coronary artery of experimental rat was ligated for 30 min and then reperfused for 120 min. Then the myocardial infarct size, hemorheological and biochemical parameters, whole blood viscosity, plasma viscosity, platelet adhesion rate, platelet aggregation and histopathology changes were assessed. RESULTS Five C3,C28-bidesmosidic oleanane-type saponins and ginsenoside Rd were the main constituents of TSPJ, and their total content in TSPJ was 79.2 %. The main constituents of DTSPJ were five C3-monodesmosidic oleanane-type saponins and ginsenoside Rd, and their total content in DTSPJ was 72.6 %. The HPLC analysis revealed that the five C3,C28-bidesmosidic oleanane-type saponins in TSPJ were completely turned into five C3-monodesmosidic oleanane-type saponins in DTSPJ through the method of alkaline hydrolysis, but ginsenoside Rd remained unchanged. Both TSPJ and DTSPJ could significantly reduced myocardial infarct size, and improved heart function, and lowered the activities of aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and creatine kinase isoenzymes (CK-MB), and malonyldialdehyde (MDA) content, as well as the levels of whole blood viscosity, plasma viscosity, platelet adhesion rate, and platelet aggregation; on the contrary, both the level of glutathione peroxidase (GSH-Px) and the activity of superoxide dismutase (SOD) were notablely increased. The results of histopathological examination further supported the cardioprotective effects of TSPJ and DTSPJ. CONCLUSION Both TSPJ and DTSPJ can guard cardiomyocytes against myocardial ischemia-reperfusion injury. The underlying mechanisms may be closely related to its enhancing anti-oxidative properties, modifying blood viscosity, and inhibiting platelet aggregation and platelet adhesion. As a whole, the protection of DTSPJ against myocardial ischemia-reperfusion injury was a little stronger than those of TSPJ. The results display the prospect of DTSPJ as a drug candidate for treating ischemic heart disease.
Collapse
Affiliation(s)
- Min Li
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, Henan, PR China
| | - Xuwen Li
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, PR China
| | - Limei Zhou
- Jilin Modern Chinese Medicine Engineering and Research Center Co., Ltd, Changchun, 130012, Jilin, PR China
| | - Yongri Jin
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, PR China.
| |
Collapse
|
27
|
Vahabzadeh G, Soltani H, Barati M, Golab F, Jafari-Sabet M, Safari S, Moazam A, Mohamadrezaei H. Noscapine protects the H9c2 cardiomyocytes of rats against oxygen-glucose deprivation/reperfusion injury. Mol Biol Rep 2020; 47:5711-5719. [PMID: 32648076 DOI: 10.1007/s11033-020-05549-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/23/2020] [Indexed: 11/29/2022]
Abstract
Noscapine is an antitumor alkaloid derived from Papaver somniferum plants. Our previous study has demonstrated that exposure of noscapine on primary murine fetal cortical neurons exposed to oxygen-glucose deprivation/reperfusion (OGD/R) has neuroprotective effects. In current study, the effects of noscapine on cardiomyocytes (H9c2 cells) damage caused by 120 minutes (min) of OGD/R were evaluated and we determined whether the addition of BD1047, sigma-one receptor antagonist, prevents the protective effects of noscapine in H9c2 cells through the production of nitric oxide (NO) and apoptosis. To initiate OGD, H9c2 cells was transferred to glucose-free DMEM, and placed in a humidified incubation chamber. Cell viability was assessed with noscapine (1-5 μM) in the presence or absence of BD1047, 24 hours (h) after OGD/R. Cell viability, NO production and apoptosis ratio were evaluated by the MTT assay, the Griess method and the quantitative real-time PCR. Noscapine considerably improved the survival of H9c2 cells compared to OGD/R. Also, noscapine was extremely capable of reducing the concentrations of NO and Bax/Bcl-2 ratio expression. While the BD1047 administration alone diminished cell viability and increased the Bax/Bcl-2 ratio and NO levels. The addition of noscapine in the presence of BD1047 did not increase the cell viability relative to noscapine alone. Noscapine exerted cardioprotective effects exposed to OGD/R-induced injury in H9c2 cells, at least partly via attenuation of NO production and Bax/Bcl-2 ratio, which indicates that the sigma-one receptor activation is involved in the protection by noscapine of H9c2 cells injured by OGD/R.
Collapse
Affiliation(s)
- Gelareh Vahabzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran.
| | - Hamidreza Soltani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Safari
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ashrafolsadat Moazam
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hananeh Mohamadrezaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| |
Collapse
|
28
|
Wu X, Huang W, Quan M, Chen Y, Tu J, Zhou J, Xin HB, Qian Y. Inhibition of brain-type glycogen phosphorylase ameliorates high glucose-induced cardiomyocyte apoptosis via Akt-HIF-1α activation. Biochem Cell Biol 2020; 98:458-465. [PMID: 31905009 DOI: 10.1139/bcb-2019-0247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain-type glycogen phosphorylase (pygb) is one of the rate-limiting enzymes in glycogenolysis that plays a crucial role in the pathogenesis of type 2 diabetes mellitus. Here we investigated the role of pygb in high-glucose (HG)-induced cardiomyocyte apoptosis and explored the underlying mechanisms, by using the specific pygb inhibitors or pygb siRNA. Our results show that inhibition of pygb significantly attenuates cell apoptosis and oxidative stress induced by HG in H9c2 cardiomyocytes. Inhibition of pygb improved glucose metabolism in cardiacmyocytes, as evidenced by increased glycogen content, glucose consumption, and glucose transport. Mechanistically, pygb inhibition activates the Akt-GSK-3β signaling pathway and suppresses the activation of NF-κB in H9c2 cells exposed to HG. Additionally, pygb inhibition promotes the expression and the translocation of hypoxia-inducible factor-1α (HIF-1α) after HG stimulation. However, the changes in glucose metabolism and HIF-1α activation mediated by pygb inhibition are significantly reversed in the presence of the Akt inhibitor MK2206. In conclusion, this study found that inhibition of pygb prevents HG-induced cardiomyocyte apoptosis via activation of Akt-HIF-α.
Collapse
Affiliation(s)
- Xuehan Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang 330031, P.R. China
| | - Weilu Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang 330031, P.R. China
| | - Minxue Quan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang 330031, P.R. China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang 330031, P.R. China
| | - Yongqi Chen
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang 330031, P.R. China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang 330031, P.R. China
| | - Jiaxin Tu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang 330031, P.R. China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang 330031, P.R. China
| | - Jialu Zhou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang 330031, P.R. China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang 330031, P.R. China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang 330031, P.R. China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang 330031, P.R. China
| | - Yisong Qian
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang 330031, P.R. China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang 330031, P.R. China
| |
Collapse
|
29
|
Qi JJ, Li XX, Diao YF, Liu PL, Wang DL, Bai CY, Yuan B, Liang S, Sun BX. Asiatic acid supplementation during the in vitro culture period improves early embryonic development of porcine embryos produced by parthenogenetic activation, somatic cell nuclear transfer and in vitro fertilization. Theriogenology 2019; 142:26-33. [PMID: 31574397 DOI: 10.1016/j.theriogenology.2019.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/08/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022]
Abstract
Asiatic acid is a pentacyclic triterpene enriched in the medicinal herb Centella asiatica, and it has been suggested to possess free radical scavenging and anti-apoptotic properties. The purpose of the current study was to explore the effects of asiatic acid on porcine early-stage embryonic development and the potential mechanisms for any observed effects. The results showed that 10 μM asiatic acid supplementation during the in vitro culture period dramatically improved developmental competence in porcine embryos derived from parthenogenetic activation (PA), somatic cell nuclear transfer (SCNT) and in vitro fertilization (IVF). Further analysis revealed that asiatic acid attenuated H2O2-induced intracellular reactive oxygen species (ROS) generation. Notably, asiatic acid not only enhanced intracellular GSH levels but also attenuated mitochondrial dysfunction. Gene expression analysis revealed that asiatic acid upregulated expression of the antioxidant-related gene Sod-1 and the blastocyst formation related gene Cox-2, while downregulating expression of the apoptosis-related gene Caspase-9 in SCNT blastocysts. These results suggest that asiatic acid exerts beneficial effects on early embryonic development in porcine embryos and that asiatic acid may be useful for improving the in vitro production of porcine embryos.
Collapse
Affiliation(s)
- Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiao Xia Li
- Institute of Special Animal & Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yun Fei Diao
- Institute of Special Animal & Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peng-Lei Liu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Da-Li Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Chun-Yan Bai
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| |
Collapse
|
30
|
Liu DW, Zhang YN, Hu HJ, Zhang PQ, Cui W. Downregulation of microRNA‑199a‑5p attenuates hypoxia/reoxygenation‑induced cytotoxicity in cardiomyocytes by targeting the HIF‑1α‑GSK3β‑mPTP axis. Mol Med Rep 2019; 19:5335-5344. [PMID: 31059047 PMCID: PMC6522876 DOI: 10.3892/mmr.2019.10197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRs) have been identified as critical regulatory molecules in myocardial ischemia/reperfusion injury; however, the exact expression profile of miR-199a-5p in reperfusion injury and the underlying pathogenic mechanisms remain unclear. In the present study, it was revealed that miR-199a-5p expression was significantly increased in the plasma of patients with acute myocardial infarction and in a H9c2 cell model of oxygen-glucose deprivation and reperfusion (OGD/R) via reverse transcription-quantitative PCR. H9c2 cells were transfected with miR-199a-5p mimic or inhibitor, or short interfering RNA (siRNA) specific to hypoxia-inducible factor-1α (HIF-1α). MTS, lactate dehydrogenase (LDH), TUNEL staining and flow cytometry assays were performed to determine the proliferation, LDH activity, apoptosis and mitochondrial membrane potential (ΔΨm) of H9c2 cells, respectively. The overexpression of miR-199a-5p in the OGD/R cell model significantly decreased the viability and increased the lactate dehydrogenase leakage of cells; whereas knockdown of miR-199-5p induced the opposing effects. Additionally, inhibition of miR-199-5p significantly attenuated OGD/R-induced alterations to the mitochondrial transmembrane potential (ΔΨm) and increases in the apoptosis of cells. Furthermore, the overexpression or knockdown of miR-199a-5p decreased or increased the expression of HIF-1α and phosphorylation of glycogen synthase kinase 3β (GSK3β) in OGD/R-treated H9c2 cells. Additionally, siRNA-mediated downregulation of HIF-1α decreased phosphorylated (p)-GSK3β (Ser9) levels and reversed the protective effects of miR-199a-5p inhibition on OGD/R-injured H9c2 cells. Similarly, treatment with LiCl (a specific inhibitor of p-GSK3β) also attenuated the protective effects of miR-199a-5p knockdown on OGD/R-injured H9c2 cells. Mechanistic studies revealed that HIF-1α was a target of miR-199a-5p, and that HIF-1α downregulation suppressed the expression of p-GSK3β in OGD/R-injured H9c2 cells. Furthermore, an miR-199a-5p inhibitor increased the interaction between p-GSK3β and adenine nucleotide transferase (ANT), which was decreased by OGD/R. Additionally, miR-199a-5p inhibitor reduced the OGD/R-induced interaction between ANT and cyclophilin D (Cyp-D), potentially leading to the increased mitochondrial membrane potential in inhibitor-transfected OGD/R-injured H9c2 cells. Collectively, the present study identified a novel regulatory pathway in which the upregulation of miR-199a-5p reduced the expression of HIF-1α and p-GSK3β, and potentially suppresses the interaction between p-GSK3β and ANT, thus promoting the interaction between ANT and Cyp-D and potentially inducing cytotoxicity in OGD/R-injured H9c2 cells.
Collapse
Affiliation(s)
- Da-Wei Liu
- Department of Cardiology, Second Hospital of Hebei Medical University and Hebei Institute of Cardiovascular Research, Shijiazhuang, Hebei 050011, P.R. China
| | - Ya-Nan Zhang
- Department of Cardiology, Second Hospital of Hebei Medical University and Hebei Institute of Cardiovascular Research, Shijiazhuang, Hebei 050011, P.R. China
| | - Hai-Juan Hu
- Department of Cardiology, Second Hospital of Hebei Medical University and Hebei Institute of Cardiovascular Research, Shijiazhuang, Hebei 050011, P.R. China
| | - Pu-Qiang Zhang
- Department of Cardiology, Second Hospital of Hebei Medical University and Hebei Institute of Cardiovascular Research, Shijiazhuang, Hebei 050011, P.R. China
| | - Wei Cui
- Department of Cardiology, Second Hospital of Hebei Medical University and Hebei Institute of Cardiovascular Research, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
31
|
Yasuda J, Okada M, Yamawaki H. Protective effect of T3 peptide, an active fragment of tumstatin, against ischemia/reperfusion injury in rat heart. J Pharmacol Sci 2019; 139:193-200. [PMID: 30827890 DOI: 10.1016/j.jphs.2019.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Ischemia/reperfusion (I/R)-induced oxidative stress is a serious clinical problem in the reperfusion therapy for ischemic diseases. Tumstatin is an endogenous bioactive peptide cleaved from type IV collagen α3 chain. We previously reported that T3 peptide, an active subfragment of tumstatin, exerts cytoprotective effects on H2O2-induced apoptosis through the inhibition of intracellular reactive oxygen species (ROS) production in H9c2 cardiomyoblasts. In this study, we investigated whether T3 peptide has cardioprotective effects against I/R injury by using in vitro and ex vivo experimental models. H9c2 cardiomyoblasts were stimulated with oxygen and glucose deprivation (OGD) for 12 h followed by reoxygenation for 1-8 h (OGD/R; in vitro model). The cells were treated with T3 peptide (30-1000 ng/ml) during OGD. Ten minutes after the pre-perfusion of T3 peptide (300 ng/ml), Langendorff perfused rat hearts were exposed to ischemia for 30 min followed by reperfusion for 1 h (ex vivo model). T3 peptide inhibited OGD/R-induced apoptosis through the inhibition of mitochondrial ROS production and dysfunction in H9c2 cardiomyoblasts. T3 peptide also prevented I/R-induced cardiac dysfunction, arrhythmia and myocardial infarction in the perfused rat heart. In conclusion, we for the first time demonstrated that T3 peptide exerts cardioprotective effects against I/R injury.
Collapse
Affiliation(s)
- Jumpei Yasuda
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada City, Aomori, 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada City, Aomori, 034-8628, Japan.
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada City, Aomori, 034-8628, Japan
| |
Collapse
|
32
|
Cao LM, Dong ZQ, Li Q, Chen X. Treadmill training improves neurological deficits and suppresses neuronal apoptosis in cerebral ischemic stroke rats. Neural Regen Res 2019; 14:1387-1393. [PMID: 30964064 PMCID: PMC6524516 DOI: 10.4103/1673-5374.253523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rehabilitation training is believed to be beneficial to patients with stroke, but its molecular mechanism is still unclear. Rat models of cerebral ischemic stroke were established by middle cerebral artery occlusion/reperfusion, and then received treadmill training of different intensities, twice a day for 30 minutes for 1 week. Low-intensity training was conducted at 5 m/min, with a 10-minute running, 10-minute rest, and 10-minute running cycle. In the moderate-intensity training, the intensity gradually increased from 5 m/min to 10 m/min in 5 minutes, with the same rest cycle as above. In high-intensity training, the intensity gradually increased from 5 m/min to 25 m/min in 5 minutes, with the same rest cycle as above. The Bederson scale was used to evaluate the improvement of motor function. Infarct volume was detected using 2,3,5-triphenyltetrazolium chloride staining. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining was applied to detect the apoptosis of nerve cells in brain tissue. Western blot assay was employed to analyze the activation of cyclic adenosine monophosphate (cAMP)/protein kinase A and Akt/glycogen synthase kinase-3β signaling pathways in rat brain tissue. All training intensities reduced the neurological deficit score, infarct volume, and apoptosis in nerve cells in brain tissue of stroke rats. Training intensities activated the cAMP/protein kinase A and Akt/glycogen synthase kinase-3 beta signaling pathways. This activation was more obvious with higher training intensities. These changes were reversed by intracerebroventricular injection of protein kinase A inhibitor Rp-cAMP. Our findings indicate that the neuroprotective effect of rehabilitation training is achieved via activation of the cAMP/protein kinase A and Akt/glycogen synthase kinase-3 beta signaling pathways. This study was approved by the Ethics Committee of Animal Experimentation in Shanghai No. 8 People’s Hospital, China.
Collapse
Affiliation(s)
- Li-Mei Cao
- Department of Neurology, Shanghai No. 8 People's Hospital, Shanghai, China
| | - Zhi-Qiang Dong
- Department of Neurology, Shanghai No. 8 People's Hospital, Shanghai, China
| | - Qiang Li
- Department of Neurology, Shanghai No. 8 People's Hospital, Shanghai, China
| | - Xu Chen
- Department of Neurology, Shanghai No. 8 People's Hospital, Shanghai, China
| |
Collapse
|
33
|
Dai Y, Wang Z, Quan M, Lv Y, Li Y, Xin HB, Qian Y. Asiatic acid protests against myocardial ischemia/reperfusion injury via modulation of glycometabolism in rat cardiomyocyte. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3573-3582. [PMID: 30498333 PMCID: PMC6207266 DOI: 10.2147/dddt.s175116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Asiatic acid is a reported glycogen phosphorylase inhibitor derived from the tropical medicinal plant Centella asiatica and exhibits myocardial protection both in vivo and in vitro. The purpose of this study was to evaluate the effects of asiatic acid on myocardial ischemia/reperfusion (MI/R) injury and investigate the underlying mechanisms associated with the modulation of glycometabolism in cardiomyocyte. Materials and methods The rats were subjected to MI/R with or without asiatic acid pretreatment. The cardiac function indexes, the size of myocardial infarction, and plasma lactate dehydrogenase (LDH) and creatine kinase (CK) activities were detected. Cardiomyocyte apoptosis was analyzed by TUNEL assay. The Akt/GSK-3β activation was measured by Western blot. The glycogen content, plasma glucose and lactate concentrations were determined following MI/R. The mRNA and protein levels of PPARγ and GLUT4 were determined by real-time PCR and Western blot, respectively. Results Asiatic acid pretreatment significantly improved the cardiac function indexes, attenuated the size of myocardial infarction, reduced LDH and CK activities, and suppressed cardiomyocyte apoptosis after MI/R. Asiatic acid activated Akt/GSK-3β signal pathway in the myocardium following MI/R injury. In addition, asiatic acid effectively suppressed MI/R-induced glycogen breakdown and inhibited the elevation of plasma glucose and lactate concentrations. Asiatic acid treatment increased PPARγ expression at both mRNA and protein levels, and promoted the translocation of GLUT4 to plasma membrane after MI/R insult. However, the effects mediated by asiatic acid on glycometabolism and GLUT4 translocation were reversed by the administration of LY294002, the Akt inhibitor. Conclusion These findings demonstrated that asiatic acid exerts beneficial effects on MI/R injury in rats. This protection may be related to the modulation of glycometabolism via Akt-dependent GLUT4 translocation and PPARγ activation in ischemic cardiomyocyte.
Collapse
Affiliation(s)
- Yang Dai
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China, ;
| | - Ziwei Wang
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China, ;
| | - Minxue Quan
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China, ;
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330046, China
| | - Yunman Li
- Department of Physiology, China Pharmaceutical University, Nanjing 210009, China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China, ;
| | - Yisong Qian
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China, ;
| |
Collapse
|
34
|
Peng YW, Mohammed A, Deatrick KB, Major T, Cheng D, Charpie I, Charpie JR. Differential Effects of Normoxic and Hyperoxic Reperfusion on Global Myocardial Ischemia-Reperfusion Injury. Semin Thorac Cardiovasc Surg 2018; 31:188-198. [PMID: 30278268 DOI: 10.1053/j.semtcvs.2018.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/21/2018] [Indexed: 11/11/2022]
Abstract
The objectives were to investigate if after hypoxia or ischemia, normoxic reperfusion is associated with less oxidant stress (OS), inflammation, and myocardial injury than hyperoxic reperfusion. In this study, cardiomyocytes (H9c2 cells) were cultured in hypoxia, followed by reoxygenation in normoxia or hyperoxia. Cardiomyocyte OS, inflammation, and apoptosis were measured. In parallel experiments, rabbits were cannulated for cardiopulmonary bypass (CPB). Following cardioplegic arrest and aortic cross-clamp removal, hearts were reperfused under normoxic or hyperoxic conditions. Left ventricular developed pressure and contractility (LV +dP/dt) were recorded, and blood samples and heart tissues were collected for measurement of OS, inflammation, and cardiac injury. Results showed that H9c2 cells exposed to hyperoxic reoxygenation showed significant increases in OS, inflammation, and apoptosis compared to normoxic reoxygenation. Following CPB and 2-hour hyperoxic reperfusion, LV +dP/dt and left ventricular developed pressure were significantly decreased compared with pre-CPB values (to 36 ± 21%, P = 0.002; and 53 ± 20%, P = 0.02, respectively), associated with significant increases in all plasma and tissue biomarkers for OS, inflammation, and myocardial injury. In contrast, LV +dP/dt was relatively well preserved under normoxic reperfusion conditions (to 70 ± 14% after 2-hour reperfusion), and was associated with an attenuated myocardial OS, inflammatory, apoptotic, and injury response compared to the hyperoxia group (eg, cTn-I: 5.9 ± 1.5 vs 20.2 ± 7.6 ng/mL, respectively, P < 0.0001). Overall, in both in vitro and in vivo experiments, normoxic reperfusion/reoxygenation was associated with less robust OS, inflammation, apoptosis, and myocardial injury compared with hyperoxic reperfusion/reoxygenation. These results suggest that hyperoxia should be avoided to minimize myocardial OS, inflammation, and ventricular dysfunction after CPB.
Collapse
Affiliation(s)
- Yun-Wen Peng
- Division of Pediatric Cardiology, Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | - Azmath Mohammed
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Terry Major
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dorothy Cheng
- Division of Pediatric Cardiology, Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ian Charpie
- Division of Pediatric Cardiology, Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | - John R Charpie
- Division of Pediatric Cardiology, Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
35
|
Trichosanthis Pericarpium Aqueous Extract Protects H9c2 Cardiomyocytes from Hypoxia/Reoxygenation Injury by Regulating PI3K/Akt/NO Pathway. Molecules 2018; 23:molecules23102409. [PMID: 30241309 PMCID: PMC6222483 DOI: 10.3390/molecules23102409] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Trichosanthis Pericarpium (TP) is a traditional Chinese medicine for treating cardiovascular diseases. In this study, we investigated the effects of TP aqueous extract (TPAE) on hypoxia/reoxygenation (H/R) induced injury in H9c2 cardiomyocytes and explored the underlying mechanisms. H9c2 cells were cultured under the hypoxia condition induced by sodium hydrosulfite for 30 min and reoxygenated for 4 h. Cell viability was measured by MTT assay. The amounts of LDH, NO, eNOS, and iNOS were tested by ELISA kits. Apoptotic rate was detected by Annexin V-FITC/PI staining. QRT-PCR was performed to analyze the relative mRNA expression of Akt, Bcl-2, Bax, eNOS, and iNOS. Western blotting was used to detect the expression of key members in the PI3K/Akt pathway. Results showed that the pretreatment of TPAE remarkably enhanced cell viability and decreased apoptosis induced by H/R. Moreover, TPAE decreased the release of LDH and expression of iNOS. In addition, TPAE increased NO production and Bcl-2/Bax ratio. Furthermore, the mRNA and protein expression of p-Akt and eNOS were activated by TPAE pretreatment. On the contrary, a specific inhibitor of PI3K, LY294002 not only inhibited TPAE-induced p-Akt/eNOS upregulation but alleviated its anti-apoptotic effects. In conclusion, results indicated that TPAE protected against H/R injury in cardiomyocytes, which consequently activated the PI3K/Akt/NO signaling pathway.
Collapse
|
36
|
Chen T, Vunjak-Novakovic G. In vitro Models of Ischemia-Reperfusion Injury. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 4:142-153. [PMID: 30393757 PMCID: PMC6208331 DOI: 10.1007/s40883-018-0056-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/25/2018] [Indexed: 01/23/2023]
Abstract
Timely reperfusion after a myocardial infarction is necessary to salvage the ischemic region; however, reperfusion itself is also a major contributor to the final tissue damage. Currently, there is no clinically relevant therapy available to reduce ischemia-reperfusion injury (IRI). While many drugs have shown promise in reducing IRI in preclinical studies, none of these drugs have demonstrated benefit in large clinical trials. Part of this failure to translate therapies can be attributed to the reliance on small animal models for preclinical studies. While animal models encapsulate the complexity of the systemic in vivo environment, they do not fully recapitulate human cardiac physiology. Furthermore, it is difficult to uncouple the various interacting pathways in vivo. In contrast, in vitro models using isolated cardiomyocytes allow studies of the direct effect of therapeutics on cardiomyocytes. External factors can be controlled in simulated ischemia-reperfusion to allow for better understanding of the mechanisms that drive IRI. In addition, the availability of cardiomyocytes derived from human induced pluripotent stem cells (hIPS-CMs) offers the opportunity to recapitulate human physiology in vitro. Unfortunately, hIPS-CMs are relatively fetal in phenotype, and are more resistant to hypoxia than the mature cells. Tissue engineering platforms can promote cardiomyocyte maturation for a more predictive physiologic response. These platforms can further be improved upon to account for the heterogenous patient populations seen in the clinical settings and facilitate the translation of therapies. Thereby, the current preclinical studies can be further developed using currently available tools to achieve better predictive drug testing and understanding of IRI. In this article, we discuss the state of the art of in vitro modeling of IRI, propose the roles for tissue engineering in studying IRI and testing the new therapeutic modalities, and how the human tissue models can facilitate translation into the clinic.
Collapse
Affiliation(s)
- Timothy Chen
- Department of Biomedical Engineering, University in the City of New York
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, University in the City of New York
- Department of Medicine Columbia University in the City of New York
| |
Collapse
|
37
|
FPR1 gene silencing suppresses cardiomyocyte apoptosis and ventricular remodeling in rats with ischemia/reperfusion injury through the inhibition of MAPK signaling pathway. Exp Cell Res 2018; 370:506-518. [DOI: 10.1016/j.yexcr.2018.07.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
|
38
|
Huang W, Gao F, Hu F, Huang J, Wang M, Xu P, Zhang R, Chen J, Sun X, Zhang S, Wu J. Asiatic Acid Prevents Retinal Ganglion Cell Apoptosis in a Rat Model of Glaucoma. Front Neurosci 2018; 12:489. [PMID: 30079010 PMCID: PMC6062646 DOI: 10.3389/fnins.2018.00489] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/29/2018] [Indexed: 01/20/2023] Open
Abstract
Asiatic acid (AA), a pentacyclic triterpene derived from the tropical medicinal plant Centella asiatica, has been widely used as an antioxidant and anti-inflammatory agent. Evidence regarding the neuroprotective properties of AA is emerging. However, the protective effects of AA and its mechanism in glaucoma are poorly understood. In the current study, we investigate the neuroprotective effect and mechanism of AA on retinal ganglion cells (RGCs) in a rat model of glaucoma. Elevated intraocular pressure (IOP) was induced in adult rats by injecting microspheres into the anterior chamber. AA was intravitreally injected into glaucomatous rats. RGC densities were analyzed by evaluating surviving RGC number of the retinal flatmounts and retinal sections, and the apoptotic cell number were evaluated by analyzing retinal sections. RGC function was assessed by measuring the photopic negative response (PhNR). Retinal Bcl-2, Bax, and cleaved caspase-3 expression were determined using a Simple Western System, real-time PCR and immunofluorescence staining. AA reduced the loss of RGCs and decreased the apoptotic RGC number. AA exerted neuroprotective effects and ameliorated retinal dysfunction in impaired RGCs in a rat model of glaucoma. AA protected RGCs by upregulating the expression of the antiapoptotic protein Bcl-2 and downregulating the expression of the pro-apoptotic proteins Bax and caspase-3. This study has provided important evidence indicating that AA may be a potential therapeutic agent for glaucoma.
Collapse
Affiliation(s)
- Wanjing Huang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Fengjuan Gao
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Fangyuan Hu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Jiancheng Huang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China
| | - Min Wang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Ping Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Rong Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Junyi Chen
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Xinghuai Sun
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Shenghai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| |
Collapse
|
39
|
Martewicz S, Gabrel G, Campesan M, Canton M, Di Lisa F, Elvassore N. Live Cell Imaging in Microfluidic Device Proves Resistance to Oxygen/Glucose Deprivation in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Anal Chem 2018; 90:5687-5695. [PMID: 29595056 DOI: 10.1021/acs.analchem.7b05347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Analyses of cellular responses to fast oxygen dynamics are challenging and require ad hoc technological solutions, especially when decoupling from liquid media composition is required. In this work, we present a microfluidic device specifically designed for culture analyses with high resolution and magnification objectives, providing full optical access to the cell culture chamber. This feature allows fluorescence-based assays, photoactivated surface chemistry, and live cell imaging under tightly controlled pO2 environments. The device has a simple design, accommodates three independent cell cultures, and can be employed by users with basic cell culture training in studies requiring fast oxygen dynamics, defined media composition, and in-line data acquisition with optical molecular probes. We apply this technology to produce an oxygen/glucose deprived (OGD) environment and analyze cell mortality in murine and human cardiac cultures. Neonatal rat ventricular cardiomyocytes show an OGD time-dependent sensitivity, resulting in a robust and reproducible 66 ± 5% death rate after 3 h of stress. Applying an equivalent stress to human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) provides direct experimental evidence for fetal-like OGD-resistant phenotype. Investigation on the nature of such phenotype exposed large glycogen deposits. We propose a culture strategy aimed at depleting these intracellular energy stores and concurrently activate positive regulation of aerobic metabolic molecular markers. The observed process, however, is not sufficient to induce an OGD-sensitive phenotype in hiPS-CMs, highlighting defective development of mature aerobic metabolism in vitro.
Collapse
Affiliation(s)
- Sebastian Martewicz
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS) , Shanghai Tech University , Shanghai , China.,Department of Industrial Engineering , University of Padova , via Marzolo 9 , 35131 Padova , Italy.,Venetian Institute of Molecular Medicine , via Orus 2 , 35129 Padova , Italy
| | - Giulia Gabrel
- Department of Industrial Engineering , University of Padova , via Marzolo 9 , 35131 Padova , Italy
| | - Marika Campesan
- Department of Biomedical Sciences , University of Padova , via Bassi 58/B , 35121 Padova , Italy
| | - Marcella Canton
- Department of Biomedical Sciences , University of Padova , via Bassi 58/B , 35121 Padova , Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences , University of Padova , via Bassi 58/B , 35121 Padova , Italy
| | - Nicola Elvassore
- Stem Cells & Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , 30 Guilford Street , London WC1N 1EH , U.K.,Shanghai Institute for Advanced Immunochemical Studies (SIAIS) , Shanghai Tech University , Shanghai , China.,Department of Industrial Engineering , University of Padova , via Marzolo 9 , 35131 Padova , Italy.,Venetian Institute of Molecular Medicine , via Orus 2 , 35129 Padova , Italy
| |
Collapse
|
40
|
Wang Y, Han X, Fu M, Wang J, Song Y, Liu Y, Zhang J, Zhou J, Ge J. Qiliqiangxin attenuates hypoxia-induced injury in primary rat cardiac microvascular endothelial cells via promoting HIF-1α-dependent glycolysis. J Cell Mol Med 2018; 22:2791-2803. [PMID: 29502357 PMCID: PMC5908112 DOI: 10.1111/jcmm.13572] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Protection of cardiac microvascular endothelial cells (CMECs) against hypoxia injury is an important therapeutic strategy for treating ischaemic cardiovascular disease. In this study, we investigated the effects of qiliqiangxin (QL) on primary rat CMECs exposed to hypoxia and the underlying mechanisms. Rat CMECs were successfully isolated and passaged to the second generation. CMECs that were pre-treated with QL (0.5 mg/mL) and/or HIF-1α siRNA were cultured in a three-gas hypoxic incubator chamber (5% CO2 , 1% O2 , 94% N2 ) for 12 hours. Firstly, we demonstrated that compared with hypoxia group, QL effectively promoted the proliferation while attenuated the apoptosis, improved mitochondrial function and reduced ROS generation in hypoxic CMECs in a HIF-1α-dependent manner. Meanwhile, QL also promoted angiogenesis of CMECs via HIF-1α/VEGF signalling pathway. Moreover, QL improved glucose utilization and metabolism and increased ATP production by up-regulating HIF-1α and a series of glycolysis-relevant enzymes, including glucose transport 1 (GLUT1), hexokinase 2 (HK2), 6-phosphofructokinase 1 (PFK1), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). Our findings indicate that QL can protect CMECs against hypoxia injury via promoting glycolysis in a HIF-1α-dependent manner. Lastly, the results suggested that QL-dependent enhancement of HIF-1α protein expression in hypoxic CMECs was associated with the regulation of AMPK/mTOR/HIF-1α pathway, and we speculated that QL also improved HIF-1α stabilization through down-regulating prolyl hydroxylases 3 (PHD3) expression.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xueting Han
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingqiang Fu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingfeng Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Song
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingjing Zhang
- Department of Cardiology, Zoucheng Hospital, Affiliated Hospital of Jining medical university, Jinan, Shandong, China
| | - Jingmin Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Pi Z, Lin H, Yang J. Isoflurane reduces pain and inhibits apoptosis of myocardial cells through the phosphoinositide 3-kinase/protein kinase B signaling pathway in mice during cardiac surgery. Mol Med Rep 2018; 17:6497-6505. [PMID: 29488606 PMCID: PMC5928630 DOI: 10.3892/mmr.2018.8642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/28/2017] [Indexed: 01/27/2023] Open
Abstract
Heart bypass surgery is the most common treatment for myocardial ischemia. Clinical investigations have revealed that isoflurane anesthesia is efficient to alleviate pain during cardiac surgery, including heart bypass surgery. Previous studies have revealed the protective effects of isoflurane on myocardial cells of patients with myocardial ischemia during the perioperative period. The present study aimed to investigate the mechanism underlying the protective effects of isoflurane on myocardial cells in mice with myocardial ischemia. ELISA, flow cytometry, immunofluorescence and western blotting were used to analyze the effects of isoflurane anesthesia on myocardial cells. Briefly, myocardial cell apoptosis and viability, pain, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway expression and the pharmacodynamics of isoflurane were studied in mice treated with isoflurane for heart bypass surgery. The results demonstrated that isoflurane anesthesia efficiently attenuated pain in mice during surgery. Viability and apoptosis of myocardial cells was also improved by isoflurane in vitro and in vivo. The PI3K/AKT pathway was upregulated in myocardial cells on day 3 post-operation. Mechanistically, isoflurane promoted PI3K/AKT activation, upregulated B-cell lymphoma 2 (Bcl-2)-associated X protein and Bcl-2 expression levels, and reduced the expression levels of caspase-3 and caspase-8 in myocardial cells. In conclusion, the findings indicated that isoflurane is beneficial for pain attenuation and inhibits apoptosis of myocardial cells via the PI3K/AKT signaling pathway in mice during cardiac surgery.
Collapse
Affiliation(s)
- Zhibing Pi
- Department of Anesthesiology of The First Affiliated Hospital of Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hai Lin
- Department of Anesthesiology of The First Affiliated Hospital of Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianping Yang
- Department of Anesthesiology of The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
42
|
Lv J, Sharma A, Zhang T, Wu Y, Ding X. Pharmacological Review on Asiatic Acid and Its Derivatives: A Potential Compound. SLAS Technol 2018; 23:111-127. [PMID: 29361877 DOI: 10.1177/2472630317751840] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural triterpenes represent a group of pharmacologically active and structurally diverse organic compounds. The focus on these phytochemicals has been enormous in the past few years, worldwide. Asiatic acid (AA), a naturally occurring pentacyclic triterpenoid, is found mainly in the traditional medicinal herb Centella asiatica. Triterpenoid saponins, which are the primary constituents of C. asiatica, are commonly believed to be responsible for their extensive therapeutic actions. Published research work has described the molecular mechanisms underlying the various biological activities of AA and its derivatives, which vary for each chronic disease. However, a compilation of the various pharmacological properties of AA has not yet been done. Herein, we describe in detail the pharmacological properties of AA and its derivatives that inhibit multiple pathways of intracellular signaling molecules and transcription factors that are involved in the various stages of chronic diseases. Furthermore, the pharmacological activities of AA were compared with two natural compounds: curcumin and resveratrol. This review summarizes the research on AA and its derivatives and helps to provide future directions in the area of drug development.
Collapse
Affiliation(s)
- Junwei Lv
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Alok Sharma
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhang
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Wu
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Qian Y, Xin Z, Lv Y, Wang Z, Zuo L, Huang X, Li Y, Xin HB. Asiatic acid suppresses neuroinflammation in BV2 microgliaviamodulation of the Sirt1/NF-κB signaling pathway. Food Funct 2018; 9:1048-1057. [DOI: 10.1039/c7fo01442b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asiatic acid promotes Sirt1 expression and inhibits NF-κB-induced microglia activation.
Collapse
Affiliation(s)
- Yisong Qian
- Institute of Translational Medicine
- Nanchang University
- Nanchang 330031
- PR China
| | - Zhaochen Xin
- Institute of Translational Medicine
- Nanchang University
- Nanchang 330031
- PR China
| | - Yanni Lv
- Department of Pharmacy
- The First Affiliated Hospital of Nanchang University
- Nanchang 330006
- China
| | - Ziwei Wang
- Institute of Translational Medicine
- Nanchang University
- Nanchang 330031
- PR China
| | - Li Zuo
- Institute of Translational Medicine
- Nanchang University
- Nanchang 330031
- PR China
| | - Xiang Huang
- Institute of Translational Medicine
- Nanchang University
- Nanchang 330031
- PR China
| | - Yunman Li
- Department of Physiology
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Hong-Bo Xin
- Institute of Translational Medicine
- Nanchang University
- Nanchang 330031
- PR China
| |
Collapse
|
44
|
Xu Y, Yao J, Zou C, Zhang H, Zhang S, Liu J, Ma G, Jiang P, Zhang W. Asiatic acid protects against hepatic ischemia/reperfusion injury by inactivation of Kupffer cells via PPARγ/NLRP3 inflammasome signaling pathway. Oncotarget 2017; 8:86339-86355. [PMID: 29156799 PMCID: PMC5689689 DOI: 10.18632/oncotarget.21151] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/21/2017] [Indexed: 01/17/2023] Open
Abstract
Hepatic ischemia/reperfusion (I/R) contributes to major complications in clinical practice affecting perioperative morbidity and mortality. Recent evidence suggests the key role of nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammaosme activation on the pathogenesis of I/R injury. Asiatic acid (AA) is a pentacyclic triterpene derivative presented with versatile activities, including antioxidant, anti-inflammation and hepatoprotective effects. This study was designed to determine whether AA had potential hepatoprotective benefits against hepatic I/R injury, as well as to unveil the underlying mechanisms involved in the putative effects. Mice subjected to warm hepatic I/R, and Kupffer cells (KCs) or RAW264.7 cells challenged with lipopolysaccharide (LPS)/H2O2, were pretreated with AA. Administration of AA significantly attenuated hepatic histopathological damage, global inflammatory level, apoptotic signaling level, as well as NLRP3 inflammasome activation. These effects were correlated with increased expression of peroxisome proliferator-activated receptor gamma (PPARγ). Conversely, pharmacological inhibition of PPARγ by GW9662 abolished the protective effects of AA on hepatic I/R injury and in turn aggravated NLRP3 inflammasome activation. Activation of NLRP3 inflammasome was most significant in nonparenchymal cells (NPCs). Depletion of KCs by gadolinium chloride (GdCl3) further attenuated the detrimental effects of GW9662 on hepatic I/R as well as NLRP3 activation. In vitro, AA concentration-dependently inhibited LPS/H2O2-induced NLRP3 inflammaosome activation in KCs and RAW264.7 cells. Either GW9662 or genetic knockdown of PPARγ abolished the AA-mediated inactivation of NLRP3 inflammasome. Mechanistically, AA attenuated I/R or LPS/H2O2-induced ROS production and phosphorylation level of JNK, p38 MAPK and IκBα but not ERK, a mechanism dependent on PPARγ. Finally, AA blocked the deleterious effects of LPS/H2O2-induced macrophage activation on hepatocyte viability in vitro, and improved survival in a lethal hepatic I/R injury model in vivo. Collectively, these data suggest that AA is effective in mitigating hepatic I/R injury through attenuation of KCs activation via PPARγ/NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Ying Xu
- Department of Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Yao
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Zou
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Heng Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Shouliang Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Liu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Gui Ma
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Pengcheng Jiang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Wenbo Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
45
|
Diallyl trisulfide exerts cardioprotection against myocardial ischemia-reperfusion injury in diabetic state, role of AMPK-mediated AKT/GSK-3β/HIF-1α activation. Oncotarget 2017; 8:74791-74805. [PMID: 29088824 PMCID: PMC5650379 DOI: 10.18632/oncotarget.20422] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/28/2017] [Indexed: 01/01/2023] Open
Abstract
Diallyl trisulfide (DATS), the major active ingredient in garlic, has been reported to confer cardioprotective effects. However, its effect on myocardial ischemia-reperfusion (MI/R) injury in diabetic state and the underlying mechanism are still unknown. We hypothesize that DATS reduces MI/R injury in diabetic state via AMPK-mediated AKT/GSK-3β/HIF-1α activation. Streptozotocin-induced diabetic rats received MI/R surgery with or without DATS (20mg/kg) treatment in the presence or absence of Compound C (Com.C, an AMPK inhibitor, 0.25mg/kg) or LY294002 (a PI3K inhibitor, 5mg/kg). We found that DATS significantly improved heart function and reduced myocardial apoptosis. Additionally, in cultured H9c2 cells, DATS (10μM) also attenuated simulated ischemia-reperfusion injury. We found that AMPK and AKT/GSK-3β/HIF-1α signaling were down-regulated under diabetic condition, while DATS markedly increased the phosphorylation of AMPK, ACC, AKT and GSK-3β as well as HIF-1α expression in MI/R-injured myocardium. However, these protective actions were all blunted by Com.C administration. Additionally, LY294002 abolished the stimulatory effect of DATS on AKT/GSK-3β/HIF-1α signaling without affecting AMPK signaling. While 2-methoxyestradiol (a HIF-1α inhibitor) reduced HIF-1α expression without affecting AKT/GSK-3β signaling. Taken together, these data showed that DATS protected against MI/R injury in diabetic state by attenuating cellular apoptosis via AMPK-mediated AKT/GSK-3β/HIF-1α signaling. Its cardioprotective effect deserves further study.
Collapse
|
46
|
Dong SH, Liu YW, Wei F, Tan HZ, Han ZD. Asiatic acid ameliorates pulmonary fibrosis induced by bleomycin (BLM) via suppressing pro-fibrotic and inflammatory signaling pathways. Biomed Pharmacother 2017; 89:1297-1309. [PMID: 28320097 DOI: 10.1016/j.biopha.2017.03.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/26/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis is known as a life-threatening disease with high mortality and limited therapeutic strategies. In addition, the molecular mechanism by which pulmonary fibrosis developed is not fully understood. Asiatic acid (AA) is a triterpenoid, isolated from Centella asiatica, exhibiting efficient anti-inflammatory and anti-oxidative activities. In our study, we attempted to explore the effect of Asiatic acid on bleomycin (BLM)-induced pulmonary fibrosis in mice. The findings indicated that pre-treatment with Asiatic acid inhibited BLM-induced lung injury and fibrosis progression in mice. Further, Asiatic acid down-regulates inflammatory cells infiltration in bronchoalveolar lavage fluid (BALF) and pro-inflammatory cytokines expression in lung tissue specimens induced by BLM. Also, Asiatic acid apparently suppressed transforming growth factor-beta 1 (TGF-β1) expression in tissues of lung, accompanied with Collagen I, Collagen III, α-SMA and matrix metalloproteinase (TIMP)-1 decreasing, as well as Smads and ERK1/2 inactivation. Of note, Asiatic acid reduces NOD-like receptor, pyrin domain containing-3 (NLRP3) inflammasome. The findings indicated that Asiatic acid might be an effective candidate for pulmonary fibrosis and inflammation treatment.
Collapse
Affiliation(s)
- Shu-Hong Dong
- The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, China.
| | - Yan-Wei Liu
- The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, China
| | - Feng Wei
- The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, China
| | - Hui-Zhen Tan
- The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, China
| | - Zhi-Dong Han
- The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, China
| |
Collapse
|
47
|
Nataraj J, Manivasagam T, Justin Thenmozhi A, Essa MM. Neurotrophic Effect of Asiatic acid, a Triterpene of Centella asiatica Against Chronic 1-Methyl 4-Phenyl 1, 2, 3, 6-Tetrahydropyridine Hydrochloride/Probenecid Mouse Model of Parkinson's disease: The Role of MAPK, PI3K-Akt-GSK3β and mTOR Signalling Pathways. Neurochem Res 2017; 42:1354-1365. [PMID: 28181071 DOI: 10.1007/s11064-017-2183-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/09/2016] [Accepted: 01/17/2017] [Indexed: 12/25/2022]
Abstract
Regulation of various signalling (Ras-MAPK, PI3K and AKT) pathways by augmented activity of neurotrophic factors (NTFs) could prevent or halt the progress of dopaminergic loss in Parkinson's disease (PD). Various in vitro and in vivo experimental studies indicated anti-parkinsonic potential of asiatic acid (AA), a pentacyclic triterpene obtained from Centella asiatica. So the present study is designed to determine the neurotrophic effect of AA against 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride/probenecid (MPTP/p) neurotoxicity in mice model of PD. AA treatment for 5 weeks significantly attenuated MPTP/p induced motor abnormalities, dopamine depletion and diminished expressions NTFs and tyrosine kinase receptors (TrKB). We further, revealed that AA treatment significantly inhibited the MPTP/p-induced phosphorylation of MAPK/P38 related proteins such as JNK and ERK. Moreover, AA treatment increased the phosphorylation of PI3K, Akt, GSK-3β and mTOR, suggesting that AA activated PI3K/Akt/mTOR signalling pathway, which might be the cause of neuroprotection offered by AA. The present findings provided more elaborate in vivo evidences to support the neuroprotective effect of AA on dopaminergic neurons of chronic Parkinson's disease mouse model and the potential of AA to be developed as a possible new therapeutic target to treat PD.
Collapse
Affiliation(s)
- Jagatheesan Nataraj
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, 608002, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, 608002, India.
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, 608002, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
- Food and Brain Research Foundation, Chennai, Tamil Nadu, 600094, India
| |
Collapse
|
48
|
Combination of Morroniside and Diosgenin Prevents High Glucose-Induced Cardiomyocytes Apoptosis. Molecules 2017; 22:molecules22010163. [PMID: 28106847 PMCID: PMC6155861 DOI: 10.3390/molecules22010163] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Cornus officinalis and Dioscorea opposita are two traditional Chinese medicines widely used in China for treating diabetes mellitus and its complications, such as diabetic cardiomyopathy. Morroniside (Mor) of Cornus officinalis and diosgenin (Dio) of Dioscorea opposita formed an innovative formula named M + D. The aims of the present study were to investigate myocardial protective effect of M + D on diabetic cardiomyopathy (DCM) through the inhibition of expression levels of caspase-3 protein, and identify the advantage of M + D compared with Mor, Dio, and the positive drug metformin (Met). We detected cell viability, cell apoptosis, intracellular reactive oxygen species (ROS) levels, and the expression levels of Bcl-2, Bax, and caspase-3 protein in rat cardiomyocytes. In result, Mor, Dio, and M + D increased cell viability, inhibited cell apoptosis and decreased ROS levels. Additionally, the expression of Bax and Bcl-2 protein was modulated and the expression levels of caspase-3 protein were markedly decreased. Among the treatment groups, M + D produced the most prominent effects. In conclusion, our data showed for the first time that Mor, Dio, and M + D prevented high glucose (HG)-induced myocardial injury by reducing oxidative stress and apoptosis in rat cardiomyocytes. Among all the groups, M + D produced the strongest effect, while Mor and Dio produced weaker effects.
Collapse
|
49
|
MiR-222 in Cardiovascular Diseases: Physiology and Pathology. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4962426. [PMID: 28127557 PMCID: PMC5239839 DOI: 10.1155/2017/4962426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs and miRs) are endogenous 19–22 nucleotide, small noncoding RNAs with highly conservative and tissue specific expression. They can negatively modulate target gene expressions through decreasing transcription or posttranscriptional inducing mRNA decay. Increasing evidence suggests that deregulated miRNAs play an important role in the genesis of cardiovascular diseases. Additionally, circulating miRNAs can be biomarkers for cardiovascular diseases. MiR-222 has been reported to play important roles in a variety of physiological and pathological processes in the heart. Here we reviewed the recent studies about the roles of miR-222 in cardiovascular diseases. MiR-222 may be a potential cardiovascular biomarker and a new therapeutic target in cardiovascular diseases.
Collapse
|