1
|
Yan Y, Li Z, Zhang S, Bai F, Jing Y, Huang F, Yu Y. Remote limb ischemic preconditioning alleviated spinal cord injury through inhibiting proinflammatory immune response and promoting the survival of spinal neurons. Spinal Cord 2024; 62:562-573. [PMID: 39154149 DOI: 10.1038/s41393-024-01015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 08/19/2024]
Abstract
STUDY DESIGN Experimental animal study. OBJECTIVES To investigate the protective effect of remote limb ischemia preconditioning (RLPreC) on traumatic spinal cord injury (SCI) and explore the underlying biological mechanisms using RNA sequencing. SETTING China Rehabilitation Science Institute; Beijing; China. METHODS spinal cord injury was induced in mice using a force of 0.7 N. RLPreC treatment was administered. Motor function, pain behavior, and gene expression were assessed. RESULTS RLPreC treatment significantly improved motor function and reduced pain-like behavior in SCI mice. RNA-Seq analysis identified 5247 differentially expressed genes (DEGs). GO analysis revealed enrichment of immune response, inflammatory signaling, and synaptic transmission pathways among these DEGs. KEGG analysis indicated suppression of inflammation and promotion of synapse-related pathways. CONCLUSIONS RLPreC is a promising therapeutic strategy for improving motor function and alleviating pain after traumatic SCI. RNA-Seq analysis provides insights into potential therapeutic targets and warrants further investigation.
Collapse
Affiliation(s)
- Yitong Yan
- China Rehabilitation Science Institute, Beijing, People's Republic of China
- China Rehabilitation Research Center, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Zihan Li
- China Rehabilitation Science Institute, Beijing, People's Republic of China
- China Rehabilitation Research Center, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Shuangyue Zhang
- China Rehabilitation Science Institute, Beijing, People's Republic of China
- China Rehabilitation Research Center, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Fan Bai
- China Rehabilitation Science Institute, Beijing, People's Republic of China
- China Rehabilitation Research Center, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Yingli Jing
- China Rehabilitation Science Institute, Beijing, People's Republic of China
- China Rehabilitation Research Center, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Fubiao Huang
- China Rehabilitation Research Center, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Yan Yu
- China Rehabilitation Science Institute, Beijing, People's Republic of China.
- China Rehabilitation Research Center, Beijing, People's Republic of China.
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, People's Republic of China.
- School of Rehabilitation Medicine, Capital Medical University, Beijing, People's Republic of China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Yu M, Ou Y, Wang H, Gu W. PU.1 interaction with p50 promotes microglial-mediated inflammation in secondary spinal cord injury in SCI rats. Int J Neurosci 2023; 133:389-402. [PMID: 33970748 DOI: 10.1080/00207454.2021.1923017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose/aim of the study Secondary spinal cord injury is the inflammatory damage to surrounding tissues caused by activated microglial-mediated neuroinflammatory responses. The nuclear factor-κB (p65/p50) pathway and PU.1 are closely correlated with inflammatory responses; thus, we examined the relationship and function between PU.1 and p50 in secondary spinal cord injury.Materials and methods In this study, we established an adult rat acute spinal cord injury model to simulate the pathological process of spinal cord injury.Results: We found that the expression of PU.1 was significantly increased at three days after spinal cord injury and mainly expressed in activated microglia. Moreover, p-p50 expression was increased in SCI rats and the protein interacted with PU.1. Lipopolysaccharide was used to induce microglia activation in vitro.Conclusions: The results showed that PU.1 and p-p50 expression was significantly increased and PU.1 interacted with p50 in the nucleus. The levels of tumor necrosis factor-α and interleukin-1β secreted by microglia were detected by enzyme-linked immunosorbent assay. The results showed that when both PU.1 and p50 were overexpressed, tumor necrosis factor-α and interleukin-1β secretion was significantly increased to levels higher than in cells overexpressing PU.1 or p50 alone. These results suggest that PU.1 and p50 interact to promote p65 transcription and the expression of inflammatory factors, which is an important mechanism of the microglial-mediated inflammatory response to secondary injury after spinal cord injury.
Collapse
Affiliation(s)
- Mingchen Yu
- Department of Orthopedics, Changzhou Seventh People's Hospital, Changzhou, Jiangsu Province, China.,Nantong University, Nantong, Jiangsu Province, China
| | - Yiqing Ou
- Nantong University, Nantong, Jiangsu Province, China.,The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Hongmei Wang
- Nantong University, Nantong, Jiangsu Province, China
| | - Weidong Gu
- Department of Orthopedics, Changzhou Seventh People's Hospital, Changzhou, Jiangsu Province, China
| |
Collapse
|
3
|
The role of PI3K/Akt signalling pathway in spinal cord injury. Biomed Pharmacother 2022; 156:113881. [DOI: 10.1016/j.biopha.2022.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
|
4
|
Wang J, Zeng L, Zhang Y, Qi W, Wang Z, Tian L, Zhao D, Wu Q, Li X, Wang T. Pharmacological properties, molecular mechanisms and therapeutic potential of ginsenoside Rg3 as an antioxidant and anti-inflammatory agent. Front Pharmacol 2022; 13:975784. [PMID: 36133804 PMCID: PMC9483152 DOI: 10.3389/fphar.2022.975784] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 12/06/2022] Open
Abstract
Inflammation and oxidative stress lead to various acute or chronic diseases, including pneumonia, liver and kidney injury, cardiovascular and cerebrovascular diseases, metabolic diseases, and cancer. Ginseng is a well-known and widely used ethnic medicine in Asian countries, and ginsenoside Rg3 is a saponin isolated from Panax ginseng C. A. Meyer, Panax notoginseng, or Panax quinquefolius L. This compound has a wide range of pharmacological properties, including antioxidant and anti-inflammatory activities, which have been evaluated in disease models of inflammation and oxidative stress. Rg3 can attenuate lung inflammation, prevent liver and kidney function damage, mitigate neuroinflammation, prevent cerebral and myocardial ischemia–reperfusion injury, and improve hypertension and diabetes symptoms. The multitarget, multipathway mechanisms of action of Rg3 have been gradually deciphered. This review summarizes the existing knowledge on the anti-inflammatory and antioxidant effects and underlying molecular mechanisms of ginsenoside Rg3, suggesting that ginsenoside Rg3 may be a promising candidate drug for the treatment of diseases with inflammatory and oxidative stress conditions.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li Zeng
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ying Zhang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Wenxiu Qi
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Ziyuan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lin Tian
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| | - Xiangyan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| | - Tan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| |
Collapse
|
5
|
Qi L, Zhang J, Wang J, An J, Xue W, Liu Q, Zhang Y. Mechanisms of ginsenosides exert neuroprotective effects on spinal cord injury: A promising traditional Chinese medicine. Front Neurosci 2022; 16:969056. [PMID: 36081662 PMCID: PMC9445311 DOI: 10.3389/fnins.2022.969056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disorder of the central nervous system (CNS). It is mainly caused by trauma and reduces the quality of life of the affected individual. Ginsenosides are safe and effective traditional Chinese medicines (TCMs), and their efficacy against SCI is being increasingly researched in many countries, especially in China and Korea. This systematic review evaluated the neuroprotective effects of ginsenosides in SCI and elucidated their properties.
Collapse
|
6
|
Mandour DA, Shalaby SM, Bendary MA. Spinal cord-wide structural disruption in type 2 diabetes rescued by exenatide "a glucagon-like peptide-1 analogue" via down-regulating inflammatory, oxidative stress and apoptotic signaling pathways. J Chem Neuroanat 2022; 121:102079. [PMID: 35143896 DOI: 10.1016/j.jchemneu.2022.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
The mechanisms of spinal cord-wide structural and functional disruption in diabetic patients remain elusive. This study evaluated histopathological alterations of the spinal cord cytoarchitecture in T2DM model of rats and assessed the potential ameliorating effect of exenatide "a potent GLP-1 analogue". Thirty male rats were allocated into three groups; I (control), II (Diabetic): T2DM was induced by high fat diet for 8 weeks followed by a single I.P injection of STZ (25 mg/kg BW) and III (Diabetic/Exenatide): T2DM rats injected with exenatide (10 μg/Kg, S.C. twice daily for 2 weeks). Neurobehavioral sensory and motor tests were carried out and glycemic control biomarkers and indices of insulin resistance and sensitivity were measured. In addition, the spinal cord was processed for histological and immunohistochemical studies besides assessing its tissue homogenate levels of pro-inflammatory/anti-inflamatory cytokines and oxidant/antioxidant biomarkers. Moreover, RT-qPCR was performed to measure the expression of proapoptotic/antiapoptotic and neurotrophic genes. The diabetic rats exhibited thermal hyperalgesia, mechanical allodynia and decreased locomotor activity along with increased serum glucose, insulin, HbA1c, HOMA-IR while, quantitative insulin sensitivity check index (QUICKI) was decreased. Also, IL-1β NF-kB, MDA increased while IL-10, SOD activity and β-endorphin decreased in the spinal tissue. Up regulation of caspase-3 and down regulation of Bcl-2, nerve growth factor (NGF) and glial cell-derived neurotrophic (GDNF) in diabetic rats. Also, they exhibited histopathological changes and increased CD68 positive microglia and Bax immunoreactivity in the spinal cord. Subsequent to exenatide treatment, most biomolecular, structural and functional impairments of the spinal cord were restored in the diabetic rats. In conclusion, the neuro-modulating effect of exenatide against diabetic-induced spinal cord affection warrants the concern about its therapeutic relevance in confronting the devastating diabetic neuropathic complications.
Collapse
Affiliation(s)
- Dalia A Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt.
| | - Sally M Shalaby
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Egypt
| | - M A Bendary
- Department of Physiology, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
7
|
Cao L, Wang S, Zhang L, Li J. RETRACTED: mPEG-b-P(Glu-co-Phe) nanoparticles increase gastric retention time and gastric ulcer treatment efficacy of 20(S)-ginsenoside Rg3. Biomed Pharmacother 2022; 146:112608. [PMID: 35062071 DOI: 10.1016/j.biopha.2021.112608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 02/03/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). On behalf of all authors, the corresponding author, Jiannan Li, is retracting the above article. The authors informed the journal that they mistakenly provided inappropriate H&E and EGFR immunohistochemical images for the Rg3-NPs group in Fig. 9 of the published article. The results in Fig. 9D cannot be reproduced as originally published. Importantly, in the present version, Rg3-NPs groups do not show an EGFR promotion effect compared to Rg3 and Cimetidine groups. Therefore, their final results and conclusions are not supported. The authors sincerely apologise to the editors and journal readership for these oversights and inconvenience that this may have caused.
Collapse
Affiliation(s)
- Lanqing Cao
- Department of Pathology, The Second Hospital of Jilin University, Changchun No.218 Ziqiang Street, Jilin, China
| | - Shu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun No.218 Ziqiang Street, Jilin, China
| | - Limei Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun No.218 Ziqiang Street, Jilin, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun No.218 Ziqiang Street, Jilin, China.
| |
Collapse
|
8
|
Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov 2021; 7:212. [PMID: 34381025 PMCID: PMC8357833 DOI: 10.1038/s41420-021-00572-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) is a salient traumatic disease that often leads to permanent disability, and motor and sensory impairments. Human umbilical cord mesenchymal stem cells (HucMSCs) have a wide application prospect in the treatment of SCI. This study explored the repair effect of HucMSCs-derived extracellular vesicles (HucMSCs-EVs) on SCI. HucMSCs and HucMSCs-EVs were cultured and identified. The rat model of SCI was established, and SCI rats were treated with HucMSCs-EVs. The motor function of SCI rats and morphology of spinal cord tissues were evaluated. Levels of NeuN, GFAP, and NF200 in spinal cord tissues were detected and cell apoptosis was measured. SCI rats were treated with EVs extracted from miR-29b-3p inhibitor-transfected HucMSCs. The downstream gene and pathway of miR-29b-3p were examined. HucMSCs-EVs-treated rats showed obvious motor function recovery and reduced necrosis, nuclear pyknosis, and cavity. HucMSCs-EVs alleviated spinal cord neuronal injury. miR-29b-3p was poorly expressed in SCI tissues, but highly expressed in EVs and SCI rats treated with EVs. miR-29b-3p targeted PTEN. Inhibition of miR-29b-3p or overexpression of PTEN reversed the repair effect of EVs on SCI. EVs activated the AKT/mTOR pathway via the miR-29b-3p/PTEN. In conclusion, HucMSCs-EVs reduced pathological changes, improved motor function, and promoted nerve function repair in SCI rats via the miR-29b-3p/PTEN/Akt/mTOR axis.
Collapse
|
9
|
Nango H, Kosuge Y. Present State and Future Perspectives of Prostaglandins as a Differentiation Factor in Motor Neurons. Cell Mol Neurobiol 2021; 42:2097-2108. [PMID: 34032949 DOI: 10.1007/s10571-021-01104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
Spinal motor neurons have the longest axons that innervate the skeletal muscles of the central nervous system. Motor neuron diseases caused by spinal motor neuron cell death are incurable due to the unique and irreplaceable nature of their neural circuits. Understanding the mechanisms of neurogenesis, neuritogenesis, and synaptogenesis in motor neurons will allow investigators to develop new in vitro models and regenerative therapies for motor neuron diseases. In particular, small molecules can directly reprogram and convert into neural stem cells and neurons, and promote neuron-like cell differentiation. Prostaglandins are known to have a role in the differentiation and tissue regeneration of several cell types and organs. However, the involvement of prostaglandins in the differentiation of motor neurons from neural stem cells is poorly understood. The general cell line used in research on motor neuron diseases is the mouse neuroblastoma and spinal motor neuron fusion cell line NSC-34. Recently, our laboratory reported that prostaglandin E2 and prostaglandin D2 enhanced the conversion of NSC-34 cells into motor neuron-like cells with neurite outgrowth. Moreover, we found that prostaglandin E2-differentiated NSC-34 cells had physiological and electrophysiological properties of mature motor neurons. In this review article, we provide contemporary evidence on the effects of prostaglandins, particularly prostaglandin E2 and prostaglandin D2, on differentiation and neural conversion. We also discuss the potential of prostaglandins as candidates for the development of new therapeutic drugs for motor neuron diseases.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba, 274-8555, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba, 274-8555, Japan.
| |
Collapse
|
10
|
Fedullo AL, Ciccotti M, Giannotta P, Alviti F, Bernardi M, Raguzzini A, Toti E, Sciarra T, Peluso I. Hormetic Effects of Bioactive Compounds from Foods, Beverages, and Food Dressing: The Potential Role in Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6615752. [PMID: 33747346 PMCID: PMC7943269 DOI: 10.1155/2021/6615752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 01/18/2023]
Abstract
Spinal cord injury (SCI) is a damage or trauma to the spinal cord resulting in a total or partial loss of motor and sensory function. SCI is characterized by a disequilibrium between the production of reactive oxygen species and the levels of antioxidant defences, causing oxidative stress and neuroinflammation. This review is aimed at highlighting the hormetic effects of some compounds from foods, beverages, and food dressing that are able to reduce oxidative stress in patients with SCI. Although curcumin, ginseng, and green tea have been proposed for SCI management, low levels of antioxidant vitamins have been reported in individuals with SCI. Mediterranean diet includes food rich in vitamins and antioxidants. Moreover, food dressing, including spices, herbs, and extra virgin olive oil (EVOO), contains multiple components with hormetic effects. The latter involves the activation of the nuclear factor erythroid-derived 2, consequently increasing the antioxidant enzymes and decreasing inflammation. Furthermore, EVOO improves the bioavailability of carotenoids and could be a delivery system for bioactive compounds. In conclusion, Mediterranean dressing in addition to plant foods can have an important effect on redox balance in individuals with SCI.
Collapse
Affiliation(s)
- Anna Lucia Fedullo
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | | | | | - Federica Alviti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Board of Physical Medicine and Rehabilitation, Sapienza University of Rome, Rome, Italy
| | - Marco Bernardi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome 00185, Italy
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, Rome, Italy
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| |
Collapse
|
11
|
Yang CC, Chang KC, Wang MH, Tseng HC, Soung HS, Fang CH, Lin YW, Li KY, Tsai CC. l-Theanine improves functional recovery after traumatic spinal cord injury in rats. J Formos Med Assoc 2020; 119:1405-1414. [DOI: 10.1016/j.jfma.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/21/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
|
12
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
13
|
Yu Z, Sun X, Xia R, Chen Q, Wu Q, Zheng W. Modulation of inflammatory factors predicts the outcome following spinal cord injury. J Orthop Surg Res 2020; 15:199. [PMID: 32487194 PMCID: PMC7268366 DOI: 10.1186/s13018-020-01727-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The correlation between inflammatory responses caused by spinal cord injury (SCI) and the prognosis of patients with SCI still remains controversial. METHODS In the present study, we preliminary investigated the serum levels of interleukin (IL)-4, IL-10, major histocompatibility complex (MHC)-I, and inducible nitric oxide synthase (iNOS) and compared the serum IL-4 and IL-10 expression in rats of high Basso-Beattie-Bresnahan (BBB) scores with these of low BBB scores. Besides, the infiltration of macrophage and the axonal regeneration of the injured spinal cord were observed from day 10 to day 30. RESULTS We found that higher serum levels of IL-4 and IL-10 can reflect the restorability degree of SCI and could be potential biomarkers for the prognosis of SCI. The infiltration of the M2 subtype of macrophage and the axons regrowth might contribute to a better prognosis. CONCLUSIONS The current study demonstrates that the serum levels of IL-4 and IL-10 are preliminarily adopted as serologic markers to forecast SCI, and high serum levels of IL-4 and IL-10 may indicate a better prognosis. Moreover, the way to promote macrophage polarization from M1 to M2 may contribute to better axonal regeneration.
Collapse
Affiliation(s)
- Zepeng Yu
- Department of Intervention, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Xingwei Sun
- Department of Intervention, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Rui Xia
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Qian Chen
- Department of Oncology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, People's Republic of China
| | - Qin Wu
- Department of Ultrasonography, Suzhou Science and Technology Town Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, People's Republic of China.
| | - Weiwei Zheng
- Department of Orthopaedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, People's Republic of China.
| |
Collapse
|
14
|
Lu Y, Yang J, Wang X, Ma Z, Li S, Liu Z, Fan X. Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed Pharmacother 2020; 127:110136. [PMID: 32335299 DOI: 10.1016/j.biopha.2020.110136] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious central nervous system disorder caused by trauma that has gradually become a major challenge in clinical medical research. As an important branch of worldwide medical research, traditional Chinese medicine (TCM) is rapidly moving towards a path of reform and innovation. Therefore, this paper systematically reviews research related to existing TCM treatments for SCI, with the aims of identifying deficits and shortcomings within the field, and proposing feasible alternative prospects. METHODS All data and conclusions in this paper were obtained from articles published by peers in relevant fields. PubMed, SciFinder, Google Scholar, Web of Science, and CNKI databases were searched for relevant articles. Results regarding TCM for SCI were identified and retrieved, then manually classified and selected for inclusion in this review. RESULTS The literature search identified a total of 652 articles regarding TCM for SCI. Twenty-eight treatments (16 active ingredients, nine herbs, and three compound prescriptions) were selected from these articles; the treatments have been used for the prevention and treatment of SCI. In general, these treatments involved antioxidative, anti-inflammatory, neuroprotective, and/or antiapoptotic effects of TCM compounds. CONCLUSIONS This paper showed that TCM treatments can serve as promising auxiliary therapies for functional recovery of patients with SCI. These findings will contribute to the development of diversified treatments for SCI.
Collapse
Affiliation(s)
- Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuexi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Sheng Li
- Lanzhou First People's Hospital, Lanzhou, Gansu 730000, China
| | - Zhaoyang Liu
- Department of Medical Imaging, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Xuegong Fan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
15
|
Qiu R, Li J, Sun D, Li H, Qian F, Wang L. 20(S)-Ginsenoside Rg3-loaded electrospun membranes to prevent postoperative peritoneal adhesion. Biomed Microdevices 2019; 21:78. [DOI: 10.1007/s10544-019-0425-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
miR-221 alleviates the inflammatory response and cell apoptosis of neuronal cell through targeting TNFAIP2 in spinal cord ischemia-reperfusion. Neuroreport 2019; 29:655-660. [PMID: 29596155 DOI: 10.1097/wnr.0000000000001013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study aimed to examine the role of miR-221 in inflammatory response and apoptosis of neuronal cells after spinal cord ischemia/reperfusion (I/R) injury. Blood samples were obtained from 20 I/R patients and that of 20 healthy individuals were used as a control. AGE1.HN and SY-SH-5Y neuronal cell lines subjected to oxygen-glucose deprivation (OGD) stress were used in cell experiments. Real-time PCR and western blot were used to evaluate the expression of miR-221, tumor necrosis factor-α, and TNFAIP2. TUNEL assay analyzed cell apoptosis. I/R patients had lower serum levels of miR-221 than healthy controls. In OGD-AGE1.HN and SY-SH-5Y cells, miR-221 was significantly downregulated and TNFAIP2 mRNA and protein were upregulated; meanwhile, both proinflammatory cytokine tumor necrosis factor-α and anti-inflammation cytokine interleukin-6 were elevated and the percentage of apoptotic cells was increased. This inflammatory response and cell apoptosis induced by OGD stress were attenuated by miR-221 overexpression and enhanced by miR-221 knockdown. TNFAIP2 is a target gene for miR-221 and could be regulated negatively by the miR-221 mimic or the miR-221 inhibitor with or without OGD stress. Accordingly, TNFAIP2 overexpression reversed the inflammatory response and cell apoptosis induced by miR-221 under OGD stress. Downregulation of miR-221 occurs in spinal cord I/R injury and in cell lines subjected to oxygen-glucose deprivation. miR-221 regulates the inflammatory response and apoptosis of neuronal cells through its impact on TNFAIP2.
Collapse
|
17
|
Zhang K, Liu Y, Wang C, Li J, Xiong L, Wang Z, Liu J, Li P. Evaluation of the gastroprotective effects of 20 (S)-ginsenoside Rg3 on gastric ulcer models in mice. J Ginseng Res 2018; 43:550-561. [PMID: 31695563 PMCID: PMC6823781 DOI: 10.1016/j.jgr.2018.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/15/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Background Gastric ulcer (GU) is a common gastrointestinal disease that can be induced by many factors. Finding an effective treatment method that contains fewer side effects is important. 20 (S)-ginsenoside Rg3 is a kind of protopanaxadiol and has shown superior antiinflammatory and antioxidant effects in many studies, especially cancer studies. In this study, we examined the treatment efficacy of 20 (S)-ginsenoside Rg3 on GU. Methods Three kinds of GU models, including an alcohol GU model, a pylorus-ligated GU model, and an acetic acid GU model, were used. Mouse endothelin-1 (ET-1) and nitric oxide (NO) levels in blood and epidermal growth factor (EGF), superoxide dismutase, and NO levels in gastric mucosa were evaluated. Hematoxylin and eosin staining of gastric mucosa and immunohistochemical staining of ET-1, inducible nitric oxide synthase (NOS2), and epidermal growth factor receptors were studied. Ulcer index (UI) scores and UI ratios were also analyzed to demonstrate the GU conditions in different groups. Furthermore, Glide XP from Schrödinger was used for molecular docking to clarify the interactions between 20 (S)-ginsenoside Rg3 and EGF and NOS2. Results 20 (S)-ginsenoside Rg3 significantly decreased the UI scores and UI ratios in all the three GU models, and it demonstrated antiulcer effects by decreasing the ET-1 and NOS2 levels and increasing the NO, superoxide dismutase, EGF, and epidermal growth factor receptor levels. In addition, high-dose 20 (S)-ginsenoside Rg3 showed satisfactory gastric mucosa protection effects. Conclusion 20 (S)-ginsenoside Rg3 can inhibit the formation of GU and may be a potential therapeutic agent for GU.
Collapse
Affiliation(s)
- Kai Zhang
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Cuizhu Wang
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lingxin Xiong
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhenzhou Wang
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Corresponding author. School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Pingya Li
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Corresponding author. School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| |
Collapse
|
18
|
Wang Y, Kong QJ, Sun JC, Xu XM, Yang Y, Liu N, Shi JG. Protective effect of epigenetic silencing of CyclinD1 against spinal cord injury using bone marrow-derived mesenchymal stem cells in rats. J Cell Physiol 2017; 233:5361-5369. [PMID: 29215736 DOI: 10.1002/jcp.26354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
This study focuses on the protective effect of epigenetic silencing of CyclinD1 against spinal cord injury (SCI) using bone marrow-derived mesenchymal stem cells (BMSCs) in rats. Eighty-eight adult female Wistar rats were randomly assigned into the sham group, the control group, the si-CyclinD1 + BMSCs group and the BMSCs group. CyclinD1 protein and mRNA expressions after siRNA transfection were detected by Western blotting and qRT-PCR. The siRNA-CyclinD1 BMSCs were transplanted into rats in the si-CyclinD1 + BMSCs group using stereotaxic method 6 hr after SCI. Hindlimb locomotor performance was determined using inclined plane test and Basso-Beattie-Bresnahan (BBB) locomotor rating scale. Expressions of glial fibrillary acidic protein (GFAP) and nerve growth factor (NGF) were detected by immunohistochemistry. Inclined plane and BBB scores in the control, si-CyclinD1 + BMSCs, and BMSCs groups were significantly lower than the sham group, but these scores were evidently decreased in the control group and increased in the si-CyclinD1 + BMSCs group compared with the BMSCs group. The repair degree of spinal cord tissues of rats in the si-CyclinD1 + BMSCs group was obvious than the BMSCs group. GFAP and NGF protein expressions were markedly decreased in the control, si-CyclinD1 + BMSCs and BMSCs groups when compared with the sham group. GFAP- and NGF-positive cells were significantly increased in the si-CyclinD1 + BMSCs group while decreased in the control group. Our study provides evidence that epigenetic silencing of CyclinD1 using BMSCs might accelerate the repair of SCI in rats.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Qing-Jie Kong
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Jin-Chuan Sun
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Xi-Ming Xu
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Yong Yang
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Ning Liu
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Jian-Gang Shi
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| |
Collapse
|
19
|
Jia D, Niu Y, Li D, Zhang Q. MicroRNA-223 alleviates lipopolysaccharide-induced PC-12 cells apoptosis and autophagy by targeting RPH1 in spinal cord injury. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9223-9232. [PMID: 31966794 PMCID: PMC6965896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/20/2017] [Indexed: 06/10/2023]
Abstract
Spinal cord injury (SCI) is one of the most devastating diseases. MicroRNAs (miRNAs) are recognized as key regulators in SCI; however, the role of miR-223 in SCI remains unclear. Herein, our study aimed to explore the effect of miR-223 on lipopolysaccharide (LPS)-induced injury to PC-12 cells. PC-12 cells were treated with different concentrations of LPS, and then cell viability, apoptosis, apoptosis-related factors and autophagy-related factors were analyzed by CCK-8, flow cytometry and western blot. Subsequently, miR-223 mimic, miR-223 inhibitor, pEX-RPH1, sh-RPH1 and corresponding controls were transfected into PC-12 cells followed by 5 μg/ml of LPS treatment. Cell viability, apoptosis, apoptosis-related and autophagy-related factors were analyzed again. A target gene of miR-223 was validated by dual-luciferase assay. Besides, the main factors expressions of mTOR and NF-κB signal pathways were measured by western blot. LPS reduced cell viability but increased apoptotic cells rate, up-regulated Bax, cleaved-caspase-3, cleaved-caspase-9, LC-II and Beclin-1, and down-regulated Bcl-2 and p62 expressions in a dose-dependent way. Additionally, miR-223 overexpression promoted cell viability but inhibited apoptosis, and autophagy in LPS-stimulated PC-12 cells. RPH1 was a direct target of miR-223, and RPH1 exhibited contrary impacts to miR-223 on LPS-induced cell apoptosis and autophagy. Besides, the promoting effects of miR-223 suppression on cell apoptosis and autophagy were relieved by RPH1 silence. Furthermore, miR-223 blocked LPS-induced mTOR and NF-κB pathways by down-regulation of RPH1. MiR-223 improved cell viability but declined apoptosis and autophagy by targeting RPH1 and blocked mTOR and NF-κB pathways in LPS challenged PC-12 cells.
Collapse
Affiliation(s)
- Daofu Jia
- Department of Emergency Medicine, Jinan Central Hospital Jinan 250013, China
| | - Yanping Niu
- Clinic Service Centre, Shandong Provincial Qianfoshan Hospital Jinan 250014, China
| | - Dongling Li
- Department of Operation Room, Children Hospital of Jinan Jinan 250022, China
| | - Qingguo Zhang
- Department of Orthopedic Surgery, Jinan Central Hospital Jinan 250013, China
| |
Collapse
|