1
|
Asmare MM, Yun SI. E-pharmacophore and deep learning based high throughput virtual screening for identification of CDPK1 inhibitors of Cryptosporidium parvum. Comput Biol Chem 2024; 112:108172. [PMID: 39191165 DOI: 10.1016/j.compbiolchem.2024.108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Cryptosporidiosis, a prevalent gastrointestinal illness worldwide, is caused by the protozoan parasite Cryptosporidium parvum. Calcium-dependent protein kinase 1 (CpCDPK1), crucial for the parasite's life cycle, serves as a promising drug target due to its role in regulating invasion and egress from host cells. While potent Pyrazolopyrimidine analogs have been identified as candidate hit molecules, they exhibit limitations in inhibiting Cryptosporidium growth in cell culture, prompting exploration of alternative scaffolds. Leveraging the most potent compound, RM-1-95, co-crystallized with CpCDPK1, an E-pharmacophore model was generated and validated alongside a deep learning model trained on known CpCDPK1 compounds. These models facilitated screening Enamine's 2 million HTS compound library for novel CpCDPK1 inhibitors. Subsequent hierarchical docking prioritized hits, with final selections subjected to Quantum polarized docking for accurate ranking. Results from docking studies and MD simulations highlighted similarities in interactions between the cocrystallized ligand RM-1-95 and identified hit molecules, indicating comparable inhibitory potential against CpCDPK1. Furthermore, assessing metabolic stability through Cytochrome 450 site of metabolism prediction offered crucial insights for drug design, optimization, and regulatory approval processes.
Collapse
Affiliation(s)
- Misgana Mengistu Asmare
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Soon-Il Yun
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
2
|
Oaikhena EE, Yahaya UA, Abdulsalami SM, Egbe NL, Adeyemi MM, Ungogo MA, Ebiloma GU, Zoiku FK, Fordjour PA, Elati HAA, Quashie NB, Igoli JO, Gray AI, Lawson C, Ferro VA, de Koning HP. The activities of suaveolol and other compounds from Hyptis suaveolens and Momordica charantia against the aetiological agents of African trypanosomiasis, leishmaniasis and malaria. Exp Parasitol 2024; 263-264:108807. [PMID: 39043327 DOI: 10.1016/j.exppara.2024.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/24/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
African trypanosomiasis and malaria are among the most severe health challenges to humans and livestock in Africa and new drugs are needed. Leaves of Hyptis suaveolens Kuntze (Lamiaceae) and Momordica charantia L. (Cucurbitaceae) were extracted with hexane, ethyl acetate, and then methanol, and subjected to silica gel column chromatography. Structures of six isolated compounds were elucidated through NMR and HR-EIMS spectrometry. Callistrisic acid, dehydroabietinol, suaveolic acid, suaveolol, and a mixture of suaveolol and suaveolic acid (SSA) were obtained from H. suaveolens, while karavilagenin D and momordicin I acetate were obtained from M. charantia. The isolated biomolecules were tested against trypomastigotes of Trypanosoma brucei brucei and T. congolense, and against Plasmodium falciparum. The most promising EC50 values were obtained for the purified suaveolol fraction, at 2.71 ± 0.36 μg/mL, and SSA, exhibiting an EC50 of 1.56 ± 0.17 μg/mL against T. b. brucei trypomastigotes. Suaveolic acid had low activity against T. b. brucei but displayed moderate activity against T. congolense trypomastigotes at 11.1 ± 0.5 μg/mL. Suaveolol and SSA were also tested against T. evansi, T. equiperdum, Leishmania major and L. mexicana but the antileishmanial activity was low. Neither of the active compounds, nor the mixture of the two, displayed any cytotoxic effect on human foreskin fibroblast (HFF) cells at even the highest concentration tested, being 200 μg/mL. We conclude that suaveolol and its mixture possessed significant and selective trypanocidal activity.
Collapse
Affiliation(s)
- Enimie E Oaikhena
- Department of Biotechnology, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Umar A Yahaya
- Department of Biological Sciences, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Sani M Abdulsalami
- Department of Biotechnology, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Nkechi L Egbe
- Department of Biotechnology, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Modupe M Adeyemi
- Department of Chemistry, Nigerian Defence Academy, Kaduna, Kaduna State, Nigeria
| | - Marzuq A Ungogo
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH8 PYL, UK
| | - Godwin U Ebiloma
- School of Science, Engineering & Environment, University of Salford, M5 4NT, Manchester, UK
| | - Felix K Zoiku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Prince A Fordjour
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Hamza A A Elati
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Pharmacology and Toxicology, Pharmacy College, University of Elmergib, Al Khums, Libya
| | - Neils B Quashie
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Ghana; Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Ghana
| | - John O Igoli
- Department of Chemistry, Joseph Sarwuan Tarka University, PMB 2373, Makurdi, Benue State, Nigeria; Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Alexander I Gray
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Christopher Lawson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Volkova Y, Scherbakov A, Dzichenka Y, Komkov A, Bogdanov F, Salnikova D, Dmitrenok A, Sachanka A, Sorokin D, Zavarzin I. Design and synthesis of phosphoryl-substituted steroidal pyridazines (Pho-STPYRs) as potent estrogen receptor alpha inhibitors: targeted treatment of hormone-dependent breast cancer cells. RSC Med Chem 2024; 15:2380-2399. [PMID: 39026643 PMCID: PMC11253874 DOI: 10.1039/d4md00153b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
Estrogen receptor alpha (ERα) is an important target for the discovery of new therapeutic drugs against hormone-dependent breast cancer. A series of phosphoryl-substituted steroidal pyridazines (Pho-STPYRs) were synthesized and biologically evaluated as potent ERα inhibitors. Pho-STPYRs showed cytotoxicity against breast cancer cells with IC50 values of 5.9 μM and higher. Pho-STPYRs 33 and 34 [IC50 (MCF7) = 6.5 and 5.9 μM, respectively] were found to block the expression of ERα, the main driver of breast cancer growth, and modulate the ERK, cyclin D1, and CDK4 pathways. Compound 34 showed selectivity, anti-estrogenic potency and high antiproliferative efficacy in combination with the AKT inhibitor. Molecular docking was used to more accurately define the binding mode of lead compounds 33 and 34 to ERα. The selectivity analysis showed that lead compounds 33 and 34 produce no effects on cytochromes P450, including CYP7A1, CYP7B1, CYP17A1, CYP19A1, and CYP21A2. In a word, Pho-STPYRs 33 and 34 are promising ERα inhibitors for the treatment of hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Yulia Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Alexander Scherbakov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
- Gause Institute of New Antibiotics 11 Bol'shaya Pirogovskaya ulitsa 119021 Moscow Russia
| | - Yaraslau Dzichenka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus 5/2 Kuprevich Str 220141 Minsk Belarus
| | - Alexander Komkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Fedor Bogdanov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
- Faculty of Medicine, Moscow State University 27-1 Lomonosovsky prosp 119192 Moscow Russia
| | - Diana Salnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
| | - Andrey Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Antos Sachanka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus 5/2 Kuprevich Str 220141 Minsk Belarus
| | - Danila Sorokin
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
| | - Igor Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| |
Collapse
|
4
|
Vatankhah M, Panahizadeh R, Safari A, Ziyabakhsh A, Mohammadi-Ghalehbin B, Soozangar N, Jeddi F. The role of Nrf2 signaling in parasitic diseases and its therapeutic potential. Heliyon 2024; 10:e32459. [PMID: 38988513 PMCID: PMC11233909 DOI: 10.1016/j.heliyon.2024.e32459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
In response to invading parasites, one of the principal arms of innate immunity is oxidative stress, caused by reactive oxygen species (ROS). However, oxidative stresses play dual functions in the disease, whereby free radicals promote pathogen removal, but they can also trigger inflammation, resulting in tissue injuries. A growing body of evidence has strongly supported the notion that nuclear factor erythroid 2-related factor 2 (NRF) signaling is one of the main antioxidant pathways to combat this oxidative burst against parasites. Given the important role of NRF2 in oxidative stress, in this review, we investigate the activation mechanism of the NRF2 antioxidant pathway in different parasitic diseases, such as malaria, leishmaniasis, trypanosomiasis, toxoplasmosis, schistosomiasis, entamoebiasis, and trichinosis.
Collapse
Affiliation(s)
- Mohammadamin Vatankhah
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Panahizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Safari
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Ziyabakhsh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
5
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
6
|
Lafi O, Essid R, Lachaud L, Jimenez C, Rodríguez J, Ageitos L, Mhamdi R, Abaza L. Synergistic antileishmanial activity of erythrodiol, uvaol, and oleanolic acid isolated from olive leaves of cv. Chemlali. 3 Biotech 2023; 13:395. [PMID: 37970450 PMCID: PMC10643720 DOI: 10.1007/s13205-023-03825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to assess the antileishmanial activity of biomolecules obtained from Olea europaea L. leaves and twigs recovered from eight Tunisian cultivars. The extraction was first carried out with 80% methanol, and then the obtained extract was fractionated using three solvents of increasing polarity: cyclohexane (CHX), dichloromethane (DCM) and ethyl acetate (EtOAc). The antileishmanial activity was determined against leishmanial strains responsible for cutaneous, visceral, and mucocutaneous leishmaniasis. The cyclohexane fraction of the leaves of cv. Chemlali from the region of Sidi-Bouzid exhibited the strongest leishmanicidal activity against all the tested leishmanial strains. The inhibition concentrations (IC50) were 16.5, 14.5, and 7.4 μg mL-1 for Leishmania mexicana (cutaneous), Leishmania braziliensis (mucocutaneous), and Leishmania donovani (visceral), respectively. Interestingly, low cytotoxicity was observed on THP-1 cells with selective indexes (SI) ranging from 22.8 to 50.5. HPLC-HRMS and full-house NMR analysis allowed the identification of three triterpenic compounds, oleanolic acid (IC50 = 64.1 μg mL-1), erythrodiol (IC50 = 52.0 µg mL-1), and uvaol (IC50 = 53.8 μg mL-1). Antileishmanial activity of uvaol and oleanolic acid has been previously reported. However, this work constitutes the first report of the antileishmanial activity of erythrodiol which showed combinatorial interaction with uvaol (IC50 = 26.1 μg mL-1) against Leishmania tropica. The mixture of the three compounds, as major ones, exhibited an enhanced activity against Leishmania tropica (IC50 = 16.3 µg mL-1) compared to erythrodiol alone or the combination of uvaol and erythrodiol. This finding is of great importance and needs further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03825-3.
Collapse
Affiliation(s)
- Oumayma Lafi
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, The University of Tunis El Manar, 20 Street of Tolede, 2092 Tunis, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Laurence Lachaud
- UMR, Univ Montpellier (IRD-CNRS), MIVEGEC, Montpellier, France
- Department of Parasitology-Mycology, CHU Montpellier, 39 Av. Charles Flahault, 34295 Montpellier cedex 5, France
| | - Carlos Jimenez
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Lucía Ageitos
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ridha Mhamdi
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Leila Abaza
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
7
|
Sun L, Wang Z, Chen L, Sun X, Yang Z, Gu W. A novel dehydroabietic acid-based multifunctional fluorescent probe for the detection and bioimaging of Cu 2+/Zn 2+/ClO . Analyst 2023; 148:1867-1876. [PMID: 36942689 DOI: 10.1039/d3an00001j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
A multifunctional dehydroabietic acid-based fluorescent probe (CPS) was designed and synthesized by introducing the 2,6-bis(1H-benzo[d]imidazol-2-yl)phenol fluorophore. The probe CPS could selectively recognize Cu2+, Zn2+ and ClO- ions from other analytes, and it showed fluorescence quenching behavior toward Cu2+ and a ratiometric response to Zn2+ and ClO- by changing from green fluorescence to blue and cyan, respectively. The detection limits toward Cu2+, Zn2+ and ClO- ions were 3.8 nM, 0.253 μM and 0.452 μM, respectively. In addition, CPS presented many fascinating merits, such as high selectivity, a short response time (15-20 s), a wide pH range (3-10) and high photostability. The sensing mechanisms of CPS were verified by 1H-NMR, ESI-MS, FT-IR and Job's plot methods. Meanwhile, CPS exhibited satisfactory detection performance in water samples. More importantly, the probe could be applied as a promising tool for visual bioimaging of three ions in living cells and zebrafishes.
Collapse
Affiliation(s)
- Lu Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Zhonglong Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Linlin Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Xuebao Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Zihui Yang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| |
Collapse
|
8
|
Madku SR, Sahoo BK, Lavanya K, Reddy RS, Bodapati ATS. DNA binding studies of antifungal drug posaconazole using spectroscopic and molecular docking methods. Int J Biol Macromol 2023; 225:745-756. [PMID: 36414083 DOI: 10.1016/j.ijbiomac.2022.11.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/15/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
The binding studies of DNA with small molecules have been an emerging field of research all the time since DNA as the genetic material is a major biological target for various drugs. Interpretation of small molecule-DNA binding helps in understanding their interactions with designing new drugs of greater medicinal activity. Posaconazole is an antifungal drug in the class of triazoles which are known to possess numerous pharmacological properties. In this work, the nature of the binding of posaconazole with calf-thymus DNA has been studied using spectroscopic techniques and molecular docking studies. A binding constant of the order of 103 M-1 was observed from UV-visible and fluorescence studies for the interaction between posaconazole and calf-thymus DNA. The fluorescence property of posaconazole was found to be quenched by calf-thymus DNA with a quenching constant of the order of 103 M-1. Competitive displacement of ethidium bromide and Hoechst 33258 by posaconazole using fluorescence technique suggested minor groove binding of posaconazole in calf-thymus DNA. Confirmation of the binding mode was further complemented by the viscosity measurement and DNA melting studies followed by KI quenching experiments. The studies on the effect of ionic strength on the binding suggested a possible role of electrostatic force in the interaction. Molecular docking studies reflected a crescent shape of the posaconazole within the minor groove of calf-thymus DNA validating the experimental findings showing the residues involved in the interaction.
Collapse
Affiliation(s)
- Shravya Rao Madku
- Department of Chemistry, St. Francis College for Women, Hyderabad 500016, India; Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, 502329, India
| | - Bijaya Ketan Sahoo
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, 502329, India.
| | - K Lavanya
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, 502329, India; Department of H&S (Chemistry), Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad 500090, India
| | - Ragaiahgari Srinivas Reddy
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, 502329, India; Department of Chemistry, B V Raju Institute of Technology (BVRIT), Narsapur 502313, India
| | - Anna Tanuja Safala Bodapati
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, 502329, India; Chemistry Division, BS&H Department, BVRIT College of Engineering for Women, Hyderabad 500090, India
| |
Collapse
|
9
|
Wu D, Li X, Shen QK, Zhang RH, Xu Q, Sang XT, Huang X, Zhang CH, Quan ZS, Cao LH. Design, synthesis and biological evaluation of dehydroabietic acid derivative as potent vasodilatory agents. Bioorg Chem 2022; 129:106110. [PMID: 36087551 DOI: 10.1016/j.bioorg.2022.106110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/15/2022]
Abstract
Using dehydroabietic acid as the lead compound for structural modification, 25 dehydroabietic acid derivatives were synthesized. Among them, compound D1 not only showed the strongest relaxation effect on the aortic vascular ring in vitro (Emax = 99.5 ± 2.1%, EC50 = 3.03 ± 0.96 µM), but also significantly reduced systolic and diastolic blood pressure in rats at a dose of 2.0 mg/kg in vivo. Next, the vascular protective effect of the best active D1 and its molecular mechanism were further investigated by HUVECs. The results showed that D1 induced endothelium-dependent diastole in the rat thoracic aorta in a concentration-dependent manner. Endothelium removal or aortic ring pretreatment with NG-nitro-l-arginine methylester (l-NAME), 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ), and tetraethylammonium (TEA) significantly inhibited D1-induced relaxation. In addition, wortmannin, KT5823, triciribine, diltiazem, BaCl2, 4-aminopyridine, indomethacin, propranolol, and atropine attenuated D1-induced vasorelaxation. D1 increased the phosphorylation of eNOS in HUVECs Furthermore, D1 attenuated the expression of TNF-α-induced cell adhesion molecules such as ICAM-1 and VCAM-1. However, this effect was attenuated by the eNOS inhibitors l-NAME and asymmetric dimethylarginine (ADMA). The findings suggest that D1-induced vasorelaxation through the PI3K/Akt/eNOS/NO/cGMP/PKG pathway by activating the KCa, Kir and KV channels or muscarinic and β-adrenergic receptors, and inhibiting the l-type Ca2+ channels, which is closely related to the hypotensive action of the agent. Furthermore, D1 exhibits an inhibitory effect on vascular inflammation, which is associated with the observed vascular protective effects.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, College of Medical, Yanbian University, Yanji, Jilin, 133002, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, College of Medical, Yanbian University, Yanji, Jilin, 133002, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, College of Medical, Yanbian University, Yanji, Jilin, 133002, China
| | - Run-Hui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, College of Medical, Yanbian University, Yanji, Jilin, 133002, China
| | - Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, College of Medical, Yanbian University, Yanji, Jilin, 133002, China
| | - Xiao-Tong Sang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, College of Medical, Yanbian University, Yanji, Jilin, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, College of Medical, Yanbian University, Yanji, Jilin, 133002, China
| | - Chang-Hao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, College of Medical, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, College of Medical, Yanbian University, Yanji, Jilin, 133002, China.
| | - Li-Hua Cao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, College of Medical, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
10
|
Recent Advances on Biological Activities and Structural Modifications of Dehydroabietic Acid. Toxins (Basel) 2022; 14:toxins14090632. [PMID: 36136570 PMCID: PMC9501862 DOI: 10.3390/toxins14090632] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Dehydroabietic acid is a tricyclic diterpenoid resin acid isolated from rosin. Dehydroabietic acid and its derivatives showed lots of medical and agricultural bioactivities, such as anticancer, antibacterial, antiviral, antiulcer, insecticidal, and herbicidal activities. This review summarized the research advances on the structural modification and total synthesis of dehydroabietic acid and its derivatives from 2015 to 2021, and analyzed the biotransformation and structure-activity relationships in order to provide a reference for the development and utilization of dehydroabietic acid and its derivatives as drugs and pesticides.
Collapse
|
11
|
Design, synthesis and evaluation of novel phenanthridine triazole analogs as potential antileishmanial agents. Future Med Chem 2022; 14:867-880. [PMID: 35642458 DOI: 10.4155/fmc-2021-0354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: To synthesize and screen phenanthridine and 1,2,3-triazole derivatives for antileishmanial activity. Methodology: Synthesized analogs were tested for antileishmanial activity against transgenic strain of Leishmania infantum promastigotes and ex vivo infections. Results: Compounds T01, T08 and T11 revealed significant activity with EC50 <30 μm and lacked toxicity in mouse spleen and HepG2 cells. T01 with EC50 3.07 μm is four-fold more potent than the drug miltefosine (EC50 12.6 μM) against L. infantum promastigotes. In silico studies indicate that the analogs are nontoxic. A molecular docking analysis was also carried out on the T01 and T08 to investigate the binding pattern at the active site of the chosen target trypanothione reductase. Conclusion: The results of this study reveal that phenanthridine triazoles exhibit antileishmanial activity.
Collapse
|
12
|
The Synthesis of Triazolium Salts as Antifungal Agents: A Biological and In Silico Evaluation. Antibiotics (Basel) 2022; 11:antibiotics11050588. [PMID: 35625232 PMCID: PMC9137982 DOI: 10.3390/antibiotics11050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
The control of fungal pathogens is increasingly difficult due to the limited number of effective drugs available for antifungal therapy. In addition, both humans and fungi are eukaryotic organisms; antifungal drugs may have significant toxicity due to the inhibition of related human targets. Furthermore, another problem is increased incidents of fungal resistance to azoles, such as fluconazole, ketoconazole, voriconazole, etc. Thus, the interest in developing new azoles with an extended spectrum of activity still attracts the interest of the scientific community. Herein, we report the synthesis of a series of triazolium salts, an evaluation of their antifungal activity, and docking studies. Ketoconazole and bifonazole were used as reference drugs. All compounds showed good antifungal activity with MIC/MFC in the range of 0.0003 to 0.2/0.0006–0.4 mg/mL. Compound 19 exhibited the best activity among all tested with MIC/MFC in the range of 0.009 to 0.037 mg/mL and 0.0125–0.05 mg/mL, respectively. All compounds appeared to be more potent than both reference drugs. The docking studies are in accordance with experimental results.
Collapse
|
13
|
Effects of terpenes in the treatment of visceral leishmaniasis: a systematic review of preclinical evidence. Pharmacol Res 2022; 177:106117. [DOI: 10.1016/j.phrs.2022.106117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/15/2022]
|
14
|
Development and Evaluation of Oleanolic Acid Dosage Forms and Its Derivatives. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1308749. [PMID: 33299854 PMCID: PMC7710427 DOI: 10.1155/2020/1308749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
Oleanolic acid is a pentacyclic triterpenoid compound that exists widely in medicinal herbs and other plants. Because of the extensive pharmacological activity, oleanolic acid has attracted more and more attention. However, the structural characteristics of oleanolic acid prevent it from being directly made into new drugs, which limits the application of oleanolic acid. Through the application of modern preparation techniques and methods, different oleanolic acid dosage forms and derivatives have been designed and synthesized. These techniques can improve the water solubility and bioavailability of oleanolic acid and lay a foundation for the new drug development. In this review, the recent progress in understanding the oleanolic acid dosage forms and its derivatives are discussed. Furthermore, these products were evaluated comprehensively from the perspective of characterization and pharmacokinetics, and this work may provide ideas and references for the development of oleanolic acid preparations.
Collapse
|
15
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
16
|
Malik MS, Ahmed SA, Althagafi II, Ansari MA, Kamal A. Application of triazoles as bioisosteres and linkers in the development of microtubule targeting agents. RSC Med Chem 2020; 11:327-348. [PMID: 33479639 PMCID: PMC7580775 DOI: 10.1039/c9md00458k] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
The triazole ring system has emerged as an exciting prospect in the optimization studies of promising lead molecules in the quest for new drugs for clinical usage. Several marketed drugs possess these versatile moieties that are used in a wide range of medical indications. This stems from the unique intrinsic properties of triazoles, which impart stability to the basic pharmacophoric unit with an added advantage of being a bioisostere of different chemical functionalities. In the last decade, the use of triazoles as bioisosteres and linkers in the development of microtubule targeting agents has been extensively investigated. The present review highlights the advances in this promising area of drug discovery and development.
Collapse
Affiliation(s)
- M Shaheer Malik
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
- Chemistry Department , Faculty of Science , Assiut University , 71516 Assiut , Egypt
| | - Ismail I Althagafi
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Mohammed Azam Ansari
- Department of Epidemic Disease Research , Institute of Research and Medical Consultation , Imam AbdurRahman Bin Faisal University , 34212 Dammam , Saudi Arabia
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER) , Jamia Hamdard , New Delhi-110062 , India . ; ; Tel: +91 11 26059665
| |
Collapse
|
17
|
Tretyakova EV, Salimova EV, Parfenova LV. Synthesis and Antimicrobial and Antifungal Activity of Resin Acid Acetylene Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019050121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Li FY, Huang L, Li Q, Wang X, Ma XL, Jiang CN, Zhou XQ, Duan WG, Lei FH. Synthesis and Antiproliferative Evaluation of Novel Hybrids of Dehydroabietic Acid Bearing 1,2,3-Triazole Moiety. Molecules 2019; 24:molecules24224191. [PMID: 31752282 PMCID: PMC6891475 DOI: 10.3390/molecules24224191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/09/2019] [Accepted: 11/16/2019] [Indexed: 01/19/2023] Open
Abstract
To discover novel potent cytotoxic diterpenoids, a series of hybrids of dehydroabietic acid containing 1,2,3-triazole moiety were designed and synthesized. The target compounds were characterized by means of FT-IR, 1H NMR, 13C NMR, ESI-MS and elemental analysis techniques. The in vitro cytotoxicity of these compounds was evaluated by standard MTT (methyl thiazolytetrazolium) assay against CNE-2 (nasopharynx), HepG2 (liver), HeLa (epithelial cervical), BEL-7402 (liver) human carcinoma cell lines and human normal liver cell (HL-7702). The screening results revealed that most of the hybrids showed significantly improved cytotoxicity over parent compound DHAA. Among them, [1-(3-fluorobenzyl)-1H-1,2,3-triazole-4-yl]dehydroabietic acid methyl ester (3c), and [1-(2-nitrobenzyl)-1H-1,2,3-triazole-4-yl]dehydroabietic acid methyl ester (3k) displayed better antiproliferative activity with IC50 (50% inhibitory concentration) values of 5.90 ± 0.41 and 6.25 ± 0.37 µM toward HepG2 cells compared to cisplatin, while they exhibited lower cytotoxicity against HL-7702. Therefore, the 1,2,3-triazole-hybrids could be a promising strategy for the synthesis of antitumor diterpenoids and it also proved the essential role of 1,2,3-triazole moiety of DHAA in the biological activity.
Collapse
Affiliation(s)
- Fang-Yao Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (F.-Y.L.); (X.W.)
- College of Pharmacy, Guilin Medical University, Guilin 541100, Guangxi, China; (L.H.); (Q.L.); (X.-L.M.); (C.-N.J.)
| | - Lin Huang
- College of Pharmacy, Guilin Medical University, Guilin 541100, Guangxi, China; (L.H.); (Q.L.); (X.-L.M.); (C.-N.J.)
| | - Qian Li
- College of Pharmacy, Guilin Medical University, Guilin 541100, Guangxi, China; (L.H.); (Q.L.); (X.-L.M.); (C.-N.J.)
| | - Xiu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (F.-Y.L.); (X.W.)
| | - Xian-Li Ma
- College of Pharmacy, Guilin Medical University, Guilin 541100, Guangxi, China; (L.H.); (Q.L.); (X.-L.M.); (C.-N.J.)
| | - Cai-Na Jiang
- College of Pharmacy, Guilin Medical University, Guilin 541100, Guangxi, China; (L.H.); (Q.L.); (X.-L.M.); (C.-N.J.)
| | - Xiao-Qun Zhou
- College of Humanities and Management, Guilin Medical University, Guilin 541100, Guangxi, China;
| | - Wen-Gui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (F.-Y.L.); (X.W.)
- Correspondence: ; Tel.: +86-771-323-9910; Fax: +86-771-323-3718
| | - Fu-Hou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nangning, Guangxi 530006, China;
| |
Collapse
|
19
|
Moraes Neto RN, Setúbal RFB, Higino TMM, Brelaz-de-Castro MCA, da Silva LCN, Aliança ASDS. Asteraceae Plants as Sources of Compounds Against Leishmaniasis and Chagas Disease. Front Pharmacol 2019; 10:477. [PMID: 31156427 PMCID: PMC6530400 DOI: 10.3389/fphar.2019.00477] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmaniasis and Chagas disease cause great impact on social and economic aspects of people living in developing countries. The treatments for these diseases are based on the same regimen for over 40 years, thus, there is an urgent need for the development of new drugs. In this scenario, Asteraceae plants (a family widely used in folk medicine worldwide) are emerging as an interesting source for new trypanocidal and leishmanicidal compounds. Herein, we provide a non-exhaustive review about the activity of plant-derived products from Asteraceae with inhibitory action toward Leishmania spp. and T. cruzi. Special attention was given to those studies aiming the isolation (or identification) of the bioactive compounds. Ferulic acid, rosmarinic acid, and ursolic acid (Baccharis uncinella DC.) were efficient to treat experimental leishmaniasis; while deoxymikanolide (Mikania micrantha) and (+)-15-hydroxy-labd-7-en-17-al (Aristeguietia glutinosa Lam.) showed in vivo anti-T. cruzi action. It is also important to highlight that several plant-derived products (compounds, essential oils) from Artemisia plants have shown high inhibitory potential against Leishmania spp., such as artemisinin and its derivatives. In summary, these compounds may help the development of new effective agents against these neglected diseases.
Collapse
|
20
|
Wang X, Pang FH, Huang L, Yang XP, Ma XL, Jiang CN, Li FY, Lei FH. Synthesis and Biological Evaluation of Novel Dehydroabietic Acid-Oxazolidinone Hybrids for Antitumor Properties. Int J Mol Sci 2018; 19:ijms19103116. [PMID: 30314336 PMCID: PMC6213879 DOI: 10.3390/ijms19103116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Novel representatives of the important group of biologically-active, dehydroabietic acid-bearing oxazolidinone moiety were synthesized to explore more efficacious and less toxic antitumor agents. Structures of all the newly target molecules were confirmed by IR, 1H-NMR, 13C-NMR, and HR-MS. The inhibitory activities of these compounds against different human cancer cell lines (MGC-803, CNE-2, SK-OV-3, NCI-H460) and human normal liver cell line LO2 were evaluated and compared with the commercial anticancer drug cisplatin, using standard MTT (methyl thiazolytetrazolium) assay in vitro. The pharmacological screening results revealed that most of the hybrids showed significantly improved antiproliferative activities over dehydroabietic acid and that some displayed better inhibitory activities compared to cisplatin. In particular, compound 4j exhibited promising cytotoxicity with IC50 values ranging from 3.82 to 17.76 µM against all the test cell lines and displayed very weak cytotoxicity (IC50 > 100 µM) on normal cells, showing good selectivity between normal and malignant cells. Furthermore, the action mechanism of the representative compound 4j was preliminarily investigated by Annexin-V/PI dual staining, Hoechst 33258 staining, which indicated that the compound can induce cell apoptosis in MGC-803 cells in a dose-dependent manner and arrest the cell cycle in G1 phase. Therefore, 4j may be further exploited as a novel pharmacophore model for the development of anticancer agents.
Collapse
Affiliation(s)
- Xiu Wang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Fu-Hua Pang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Lin Huang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Xin-Ping Yang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Xian-Li Ma
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Cai-Na Jiang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Fang-Yao Li
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Fu-Hou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, China.
| |
Collapse
|
21
|
Dehydroabietic acid isolated from Pinus elliottii exerts in vitro antileishmanial action by pro-oxidant effect, inducing ROS production in promastigote and downregulating Nrf2/ferritin expression in amastigote forms of Leishmania amazonensis. Fitoterapia 2018; 128:224-232. [DOI: 10.1016/j.fitote.2018.05.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 02/03/2023]
|
22
|
Miao TT, Tao XB, Li DD, Chen H, Jin XY, Geng Y, Wang SF, Gu W. Synthesis and biological evaluation of 2-aryl-benzimidazole derivatives of dehydroabietic acid as novel tubulin polymerization inhibitors. RSC Adv 2018; 8:17511-17526. [PMID: 35539265 PMCID: PMC9080489 DOI: 10.1039/c8ra02078g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
A series of novel 2-aryl-benzimidazole derivatives of dehydroabietic acid were synthesized and characterized by IR, 1H NMR, 13C NMR, MS and elemental analyses. All the target compounds were evaluated for their in vitro cytotoxic activity against SMMC-7721, MDA-MB-231, HeLa and CT-26 cancer cell lines and the normal hepatocyte cell line QSG-7701 through MTT assays. Among them, compound 6j displayed the most potent cytotoxic activity with IC50 values of 0.08 ± 0.01, 0.19 ± 0.04, 0.23 ± 0.05 and 0.42 ± 0.07 μM, respectively, and substantially reduced cytotoxicity against QSG-7701 cells (5.82 ± 0.38 μM). The treatment of SMMC-7721 cells with compound 6j led to considerable inhibition of cell migration ability. The influence of compound 6j on cell cycle distribution was assessed on SMMC-7721 cells, exhibiting a cell cycle arrest at the G2/M phase. Moreover, tubulin polymerization assays and immunofluorescence assays elucidated that compound 6j could significantly inhibit tubulin polymerization and disrupt the intracellular microtubule network. A molecular docking study provided insight into the binding mode of compound 6j in the colchicine site of tubulin. In addition, compound 6j was found to induce apoptosis of SMMC-7721 cells, an increase of intracellular ROS level and a loss of mitochondrial membrane potential in a dose-dependent manner. These findings provided new molecular scaffolds for the further development of novel antitumor agents targeting tubulin polymerization.
Collapse
Affiliation(s)
- Ting-Ting Miao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Xu-Bing Tao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Dong-Dong Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Hao Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Xiao-Yan Jin
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Yi Geng
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Shi-Fa Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| |
Collapse
|
23
|
Searching for new drugs for Chagas diseases: triazole analogs display high in vitro activity against Trypanosoma cruzi and low toxicity toward mammalian cells. J Bioenerg Biomembr 2018; 50:81-91. [PMID: 29473131 DOI: 10.1007/s10863-018-9746-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/07/2018] [Indexed: 12/25/2022]
Abstract
Chagas disease is one of the most relevant endemic diseases in Latin America caused by the flagellate protozoan Trypanosoma cruzi. Nifurtimox and benzonidazole are the drugs used in the treatment of this disease, but they commonly are toxic and present severe side effects. New effective molecules, without collateral effects, has promoted the investigation to develop new lead compounds with to advance for clinical trials. Previously, 3-nitro-1H-1,2,4-triazole-based amines and 1,2,3-triazoles demonstrated significant trypanocidal activity against T. cruzi. In this paper, we synthesized a new series of 92 examples of 1,2,3-triazoles. Six compounds exhibited antiparasitic activity, 14, 25, 27, 31 and 40, 43 and were effective against epimastigotes of two strains of T. cruzi (Y and Dm28-C) and 25, 27 and 31 exhibited trypanocidal activity similar to benzonidazole. Notably, the compound 25 compared to benzonidazole increase the toxicity against T. cruzi, with no apparent toxicity to the cell line of mice macrophages or primary mice peritoneal macrophages. As results, we calculated selectivity indexes up to 2000 to 25 and 31 in both T. cruzi strains. Derivative 14 caused a trypanostatic effect because it did not damage external epimastigote membrane. Triazoles 40 and 43 impaired parasites viability using a pathway not dependent on ROS production.
Collapse
|
24
|
Jin XY, Zhang KP, Chen H, Miao TT, Wang SF, Gu W. Synthesis, in vitro Antimicrobial, and Cytotoxic Activities of New 1,3,4-Oxadiazin-5(6H
)-one Derivatives from Dehydroabietic Acid. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiao-Yan Jin
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P. R. China
| | - Kang-Ping Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P. R. China
| | - Hao Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P. R. China
| | - Ting-Ting Miao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P. R. China
| | - Shi-Fa Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P. R. China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P. R. China
| |
Collapse
|
25
|
F. de la Torre A, Ali A, Westermann B, Schmeda-Hirschmann G, Walter Pertino M. An efficient cyclization of lapachol to new benzo[h]chromene hybrid compounds: a stepwisevs.one-pot esterification-click (CuAAC) study. NEW J CHEM 2018. [DOI: 10.1039/c8nj03699c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparison of one-potvs.stepwise esterification of lapachol to obtain highly diversified heterocycles. Whereas the one-pot esterification leads to mono esterified lapachol, the tandem approach generated benzo[h]chromene.
Collapse
Affiliation(s)
- Alexander F. de la Torre
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Concepción
- Concepción
- Chile
| | - Akbar Ali
- Department of Chemistry
- University of Sargodha
- Pakistan
| | - Bernhard Westermann
- Department of Bioorganic Chemistry
- Leibniz-Institute of Plant Biochemistry
- Halle
- Germany
| | | | | |
Collapse
|
26
|
Hou W, Zhang G, Luo Z, Li D, Ruan H, Ruan BH, Su L, Xu H. Identification of a diverse synthetic abietane diterpenoid library and insight into the structure-activity relationships for antibacterial activity. Bioorg Med Chem Lett 2017; 27:5382-5386. [PMID: 29153424 DOI: 10.1016/j.bmcl.2017.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 01/12/2023]
Abstract
A diverse natural product-like (NPL) synthetic abietane diterpenoid library containing 86 compounds were obtained and the SARs were studied based on their antibacterial potential. Further in vitro cytotoxic and in silico drug-like properties evaluation showed that the potent antibacterial compound 84 had good drug-like properties and displayed low cytotoxicity toward noncancerous mammalian cells, indicating the study of AA and DHAA might be a good starting point for the search of novel antimicrobial molecules. Future work should be focused on the optimization of their potency and selectivity.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guanjun Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zhi Luo
- Shanghai Evergene Biotech Co., Ltd., Shanghai 201499, PR China
| | - Di Li
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Haoqiang Ruan
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Benfang Helen Ruan
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lin Su
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, PR China.
| |
Collapse
|
27
|
Synthesis and In Vitro Anticancer Activity of Novel Dehydroabietic Acid-Based Acylhydrazones. Molecules 2017; 22:molecules22071087. [PMID: 28661452 PMCID: PMC6152134 DOI: 10.3390/molecules22071087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 12/18/2022] Open
Abstract
In order to develop novel chemotherapeutic agents with potent anticancer activities, a series of dehydroabietic acid (DHA) derivatives bearing an acylhydrazone moiety were designed and synthesized by the condensation between dehydroabietic acylhydrazide (3) and a variety of substituted arylaldehydes. The inhibitory activities of these compounds against CNE-2 (nasopharynx), HepG2 (liver), HeLa (epithelial cervical), and BEL-7402 (liver) human carcinoma cell lines were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay in vitro. The screening results revealed that many of the compounds showed moderate to high levels of anticancer activities against the tested cancer cell lines and some displayed similar potent inhibitory activities to the commercial anticancer drug cisplatin, while they exhibited lower cytotoxicity against normal human liver cell (HL-7702). Particularly, compound 4w, N'-(3,5-difluorobenzylidene)-2-(dehydroabietyloxy)acetohydrazide, with an IC50 (50% inhibitory concentration) value of 2.21 μM against HeLa cell, was about 17-fold more active than that of the parent compound, and showed remarkable cytotoxicity with an IC50 value of 14.46 μM against BEL-7402 cell. These results provide an encouraging framework that could lead to the development of potent novel anticancer agents.
Collapse
|
28
|
Sabatier JM. Special Issue "Structure-Activity Relationship of Natural Products". Molecules 2017; 22:molecules22050697. [PMID: 28448476 PMCID: PMC6154006 DOI: 10.3390/molecules22050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/17/2022] Open
Affiliation(s)
- Jean-Marc Sabatier
- Laboratory INSERM UMR 1097, Aix-Marseille University, 163, Parc Scientifique et Technologique de Luminy, Avenue de Luminy, Bâtiment TPR2, Case 939, 13288 Marseille, France.
| |
Collapse
|