1
|
Agarwal U, Verma S, Tonk RK. Chromenone: An emerging scaffold in anti-Alzheimer drug discovery. Bioorg Med Chem Lett 2024; 111:129912. [PMID: 39089526 DOI: 10.1016/j.bmcl.2024.129912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Alzheimer's disease (AD) presents a growing global health concern. In recent decades, natural and synthetic chromenone have emerged as promising drug candidates due to their multi-target potential. Natural chromenone, quercetin, scopoletin, esculetin, coumestrol, umbelliferone, bergapten, and methoxsalen (xanthotoxin), and synthetic chromenone hybrids comprising structures like acridine, 4-aminophenyl, 3-arylcoumarins, quinoline, 1,3,4-oxadiazole, 1,2,3-triazole, and tacrine, have been explored for their potential to combat AD. Key reactions used for synthesis of chromenone hybrids include Perkin and Pechmann condensation. The activity of chromenone hybrids has been reported against several drug targets, including AChE, BuChE, BACE-1, and MAO-A/B. This review comprehensively explores natural, semisynthetic, and synthetic chromenone, elucidating their synthetic routes, possible mode of action/drug targets and structure-activity relationships (SAR). The acquired knowledge provides valuable insights for the development of new chromenone hybrids against AD.
Collapse
Affiliation(s)
- Uma Agarwal
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India
| | - Saroj Verma
- Pharmaceutical Chemistry Division, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India.
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India.
| |
Collapse
|
2
|
Demeter F, Peleskei Z, Kútvölgyi K, Rusznyák Á, Fenyvesi F, Kajtár R, Sipos É, Lekli I, Molnár P, Szöllősi AG, Lisztes E, Tóth BI, Borbás A, Herczeg M. Synthesis and Biological Profiling of Seven Heparin and Heparan Sulphate Analogue Trisaccharides. Biomolecules 2024; 14:1052. [PMID: 39334821 PMCID: PMC11429564 DOI: 10.3390/biom14091052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Researchers are paying increasing attention to the strongly negatively charged heteropolysaccharides in cells, in the extracellular matrix or in the cell wall. Examples of such molecules are glycosaminoglycans (e.g., heparin, heparan sulphate). It is well known from the literature that heparin and its derivatives have anti-inflammatory, angiogenic, metastatic and growth factor inhibitory activity. Herein, we present the efficient synthesis of six non-glycosaminoglycan (Glc-GlcA-Glc-sequenced) and one heparin-related (GlcN-GlcA-Glc-sequenced) trisaccharides with various functional group patterns. The anti-inflammatory, antioxidant and cell growth-inhibitory/cytotoxic effects of the synthesized compounds were tested. Among the investigated molecules, we have found some derivatives with a promising anti-inflammatory and antioxidant effect.
Collapse
Affiliation(s)
- Fruzsina Demeter
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Zsófia Peleskei
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Katalin Kútvölgyi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Ágnes Rusznyák
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Richárd Kajtár
- Department of Pharmacodynamics, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Éva Sipos
- Department of Pharmacodynamics, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - István Lekli
- Department of Pharmacodynamics, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Petra Molnár
- Department of Immunology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Erika Lisztes
- Department of Physiology, University of Debrecen, P.O. Box 22, H-4012 Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, University of Debrecen, P.O. Box 22, H-4012 Debrecen, Hungary
- Department of Physiology, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
3
|
Chen Y, Xiao T, Liu F, Yan X. Synthesis and crystal structure of 2-(2-oxo-2-(thiophen-2-yl)ethyl)-4 H-chromen-4-one, C 15H 10O 3S. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C15H10O3S, monoclinic, P21/c (no. 14), a = 12.391(5) Å, b = 21.034(8) Å, c = 10.777(4) Å, β = 113.589(7)°, V = 2574.1(16) Å3, Z = 8, R
gt
(F) = 0.0704, wR
ref
(F
2) = 0.1988, T = 296(2) K.
Collapse
Affiliation(s)
- Yang Chen
- Department of Chemistry and Molecular Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing , 211816 , China
| | - Tao Xiao
- Department of Chemistry and Molecular Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing , 211816 , China
| | - Feng Liu
- Department of Chemistry and Molecular Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing , 211816 , China
| | - Xiaolong Yan
- Department of Chemistry and Molecular Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing , 211816 , China
| |
Collapse
|
4
|
Yerrabelly JR, Porala S, Kasireddy VR, Sony EJ, Sagurthi SR. Design, synthesis, and activity of 2-aminochromone core N,N-bis-1,2,3-triazole derivatives using click chemistry. CHEMICAL PAPERS 2022; 76:7833-7846. [PMID: 36093309 PMCID: PMC9441325 DOI: 10.1007/s11696-022-02449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/22/2022] [Indexed: 11/03/2022]
|
5
|
Shivanand P, Arbie NF, Krishnamoorthy S, Ahmad N. Agarwood-The Fragrant Molecules of a Wounded Tree. Molecules 2022; 27:3386. [PMID: 35684324 PMCID: PMC9181942 DOI: 10.3390/molecules27113386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
Agarwood, popularly known as oudh or gaharu, is a fragrant resinous wood of high commercial value, traded worldwide and primarily used for its distinctive fragrance in incense, perfumes, and medicine. This fragrant wood is created when Aquilaria trees are wounded and infected by fungi, producing resin as a defense mechanism. The depletion of natural agarwood caused by overharvesting amidst increasing demand has caused this fragrant defensive resin of endangered Aquilaria to become a rare and valuable commodity. Given that instances of natural infection are quite low, artificial induction, including biological inoculation, is being conducted to induce agarwood formation. A long-term investigation could unravel insights contributing toward Aquilaria being sustainably cultivated. This review will look at the different methods of induction, including physical, chemical, and biological, and compare the production, yield, and quality of such treatments with naturally formed agarwood. Pharmaceutical properties and medicinal benefits of fragrance-associated compounds such as chromones and terpenoids are also discussed.
Collapse
Affiliation(s)
- Pooja Shivanand
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei; (N.F.A.); (N.A.)
| | - Nurul Fadhila Arbie
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei; (N.F.A.); (N.A.)
| | - Sarayu Krishnamoorthy
- Department of Civil Engineering, Environmental Water Resources Engineering Division, Indian Institute of Technology Madras, Chennai 600 036, India;
| | - Norhayati Ahmad
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei; (N.F.A.); (N.A.)
- Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Jalan Tunku Link, Bandar Seri Begawan BE1410, Brunei
| |
Collapse
|
6
|
Zhang Y, Li X, Zhu W, Liu P, Ren J, Chen S, Hu Y, Zhou G. A Multi-functional Chromone-modified Polyethylene via Metal-free C−H Activation. Polym Chem 2022. [DOI: 10.1039/d1py01604k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Post-modification of polyolefins via cutting-edge C−H activation has recently emerged as an attractive methodology for the incorporation of precise functionalities, thus expanding their applicability and creating value-added materials. In this...
Collapse
|
7
|
Nicotinic Amidoxime Derivate BGP-15, Topical Dosage Formulation and Anti-Inflammatory Effect. Pharmaceutics 2021; 13:pharmaceutics13122037. [PMID: 34959318 PMCID: PMC8707203 DOI: 10.3390/pharmaceutics13122037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
BGP-15 is a Hungarian-developed drug candidate with numerous beneficial effects. Its potential anti-inflammatory effect is a common assumption, but it has not been investigated in topical formulations yet. The aim of our study was to formulate 10% BGP-15 creams with different penetration enhancers to ensure good drug delivery, improve bioavailability of the drug and investigate the potential anti-inflammatory effect of BGP-15 creams in vivo. Since the exact mechanism of the effect is still unknown, the antioxidant effect (tested with UVB radiation) and the ability of BGP-15 to decrease macrophage activation were evaluated. Biocompatibility investigations were carried out on HaCaT cells to make sure that the formulations and the selected excipients can be safely used. Dosage form studies were also completed with texture analysis and in vitro release with Franz diffusion chamber apparatus. Our results show that the ointments were able to reduce the extent of local inflammation in mice, but the exact mechanism of the effect remains unknown since BGP-15 did not show any antioxidant effect, nor was it able to decrease LPS-induced macrophage activation. Our results support the hypothesis that BGP-15 has a potential anti-inflammatory effect, even if it is topically applied, but the mechanism of the effect remains unclear and requires further pharmacological studies.
Collapse
|
8
|
Benny AT, Arikkatt SD, Vazhappilly CG, Kannadasan S, Thomas R, Leelabaiamma MSN, Radhakrishnan EK, Shanmugam P. Chromone a Privileged Scaffold in Drug Discovery: Developments on the Synthesis and Bioactivity. Mini Rev Med Chem 2021; 22:1030-1063. [PMID: 34819000 DOI: 10.2174/1389557521666211124141859] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
Chromones are the class of secondary metabolites broadly occurred in the plant kingdom in a noticeable quantity. This rigid bicyclic system has been categorized "as privileged scaffolds in compounds" in medicinal chemistry. The wide biological responses made them an important moiety in a drug discovery program. This review provides updates on the various methods of synthesis of chromones and biological applications in medicinal chemistry. Various synthetic strategies for the construction of chromones include readily available phenols, salicylic acid and its derivatives, ynones, chalcones, enaminones, chalcones and 2-hydroxyarylalkylketones as starting materials. Synthesis of chromones by using metal, metal free, nanomaterials and different catalysts are included. Details of diverse biological activities such as anti-cancer agents, antimicrobial agents, anti-viral property, anti-inflammatory agents, antioxidants, Monoamine Oxidase-B (MAO-B) Inhibitors, anti-Alzheimer's agents, anti-diabetic agent, antihistaminic potential, antiplatelet agents of chromone derivatives are diecussed.
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014. India
| | - Sonia D Arikkatt
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014. India
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah. United Arab Emirates
| | | | - Renjan Thomas
- Division of Molecular Pathology, Strand Lifesciences, HCG Hospital, Bangalore - 560 0270. India
| | | | | | - Ponnusamy Shanmugam
- Organic and Bioorganic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai-600020. India
| |
Collapse
|
9
|
Maikoo S, Booysen IN, Xulu B, Rhyman L, Ramasami P. Stabilization of the ruthenium (II) and -(III) centres by chelating N-donor ligands: Synthesis, characterization, biomolecular affinities and computational studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Constituents of Chamaecrista diphylla (L.) Greene Leaves with Potent Antioxidant Capacity: A Feature-Based Molecular Network Dereplication Approach. Pharmaceutics 2021; 13:pharmaceutics13050681. [PMID: 34068527 PMCID: PMC8150882 DOI: 10.3390/pharmaceutics13050681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
Chamaecrista diphylla (L.) Greene (Fabaceae/Caesalpiniaceae) is a herbaceous plant that is widely distributed throughout the Americas. Plants from this genus have been used in traditional medicine as a laxative, to heal wounds, and to treat ulcers, snake and scorpion bites. In the present study, we investigated the chemical composition of Chamaecrista diphylla leaves through a mass spectrometry molecular network approach. The oxygen radical absorbance capacity (ORAC) for the ethanolic extract, enriched fractions and isolated compounds was assessed. Overall, thirty-five compounds were annotated for the first time in C. diphylla. Thirty-two of them were reported for the first time in the genus. The isolated compounds 9, 12, 24 and 33 showed an excellent antioxidant capacity, superior to the extract and enriched fractions. Bond dissociation energy calculations were performed to explain and sustain the antioxidant capacity found. According to our results, the leaves of C. diphylla represent a promising source of potent antioxidant compounds.
Collapse
|
11
|
Gyöngyösi A, Verner V, Bereczki I, Kiss-Szikszai A, Zilinyi R, Tósaki Á, Bak I, Borbás A, Herczegh P, Lekli I. Basic Pharmacological Characterization of EV-34, a New H 2S-Releasing Ibuprofen Derivative. Molecules 2021; 26:599. [PMID: 33498831 PMCID: PMC7865354 DOI: 10.3390/molecules26030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cardioprotective effects of H2S are being suggested by numerous studies. Furthermore, H2S plays a role in relaxation of vascular smooth muscle, protects against oxidative stress, and modulates inflammation. Long-term high-dose use of NSAIDs, such as ibuprofen, have been associated with enhanced cardiovascular risk. The goal of the present work is the synthesis and basic pharmacological characterization of a newly designed H2S-releasing ibuprofen derivative. METHODS Following the synthesis of EV-34, a new H2S-releasing derivative of ibuprofen, oxidative stability assays were performed (Fenton and porphyrin assays). Furthermore, stability of the molecule was studied in rat serum and liver lysates. H2S-releasing ability of the EC-34 was studied with a hydrogen sulfide sensor. MTT (3-(4,5-dimethylthiazol 2-yl)-2,5-(diphenyltetrazolium bromide)) assay was carried out to monitor the possible cytotoxic effect of the compound. Cyclooxygenase (COX) inhibitory property of EV-34 was also evaluated. Carrageenan assay was carried out to compare the anti-inflammatory effect of EV-34 to ibuprofen in rat paws. RESULTS The results revealed that the molecule is stable under oxidative condition of Fenton reaction. However, EV-34 undergoes biodegradation in rat serum and liver lysates. In cell culture medium H2S is being released from EV-34. No cytotoxic effect was observed at concentrations of 10, 100, 500 µM. The COX-1 and COX-2 inhibitory effects of the molecule are comparable to those of ibuprofen. Furthermore, based on the carrageenan assay, EV-34 exhibits the same anti-inflammatory effect to that of equimolar amount of ibuprofen (100 mg/bwkg). CONCLUSION The results indicate that EV-34 is a safe H2S releasing ibuprofen derivative bearing anti-inflammatory properties.
Collapse
Affiliation(s)
- Alexandra Gyöngyösi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (V.V.); (R.Z.); (Á.T.)
| | - Vivien Verner
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (V.V.); (R.Z.); (Á.T.)
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (I.B.); (A.B.); (P.H.)
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Rita Zilinyi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (V.V.); (R.Z.); (Á.T.)
| | - Árpád Tósaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (V.V.); (R.Z.); (Á.T.)
| | - István Bak
- Department of Bioanalytical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (I.B.); (A.B.); (P.H.)
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (I.B.); (A.B.); (P.H.)
| | - István Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (V.V.); (R.Z.); (Á.T.)
| |
Collapse
|
12
|
Badran AS, H. Hashiem S, A. Ibrahim M, M. El-Gohary N, A. Allimony H. Synthetic Approaches for Heteroannulated Chromones Fused Various Heterocyclic Systems. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Abu El-Azm FSM, El-Shahawi MM, Elgubbi AS, Madkour HMF. Synthesis of new benzo[f]chromene-based heterocycles targeting anti-proliferative activity. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02092-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Gaber M, El‐Baradie K, El‐Wakiel N, Hafez S. Synthesis and characterization studies of 3‐formyl chromone Schiff base complexes and their application as antitumor, antioxidant and antimicrobial. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mohamed Gaber
- Chemistry Department, Faculty of ScienceTanta University Tanta Egypt
| | - Kamal El‐Baradie
- Chemistry Department, Faculty of ScienceTanta University Tanta Egypt
| | - Nadia El‐Wakiel
- Chemistry Department, Faculty of ScienceTanta University Tanta Egypt
| | - Sara Hafez
- Chemistry Department, Faculty of ScienceTanta University Tanta Egypt
| |
Collapse
|
15
|
Stana A, Vodnar DC, Marc G, Benedec D, Tiperciuc B, Tamaian R, Oniga O. Antioxidant activity and antibacterial evaluation of new thiazolin-4-one derivatives as potential tryptophanyl-tRNA synthetase inhibitors. J Enzyme Inhib Med Chem 2019; 34:898-908. [PMID: 30938216 PMCID: PMC6450493 DOI: 10.1080/14756366.2019.1596086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
The rapid emergence of bacterial resistance to antibiotics currently available for treating infectious diseases requires effective antimicrobial agents with new structural profiles and mechanisms of action. Twenty-three thiazolin-4-one derivatives were evaluated for their antibacterial activity by determining the growth inhibition zone diameter, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC), against gram-positive and gram-negative bacteria. Compounds 3a-c, 3e-h, 6b-c and 9a-c expressed better MIC values than moxifloxacin, against Staphylococcus aureus. Compounds 3h and 9b displayed similar effect to indolmycin, a tryptophanyl-tRNA ligase inhibitor. Due to their structural analogy to indolmycin, all compounds were subjected to molecular docking on tryptophanyl-tRNA synthetase. Compounds 3a-e, 6a-e, 8 and 9a-e exhibited better binding affinities towards the target enzymes than indolmycin. The antioxidant potential of the compounds was evaluated by four spectrophotometric methods. Thiazolin-4-ones 3e, 6e and 9e presented better antiradical activity than ascorbic acid, trolox and BHT, used as references.
Collapse
Affiliation(s)
- Anca Stana
- Department of Pharmaceutical Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan C. Vodnar
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniela Benedec
- Department of Pharmacognosy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Brînduşa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Tamaian
- ICSI Analytics Department, National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm. Vâlcea, Râmnicu Vâlcea, Romania
- SC Biotech Corp SRL, Râmnicu Vâlcea, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Nazhand A, Durazzo A, Lucarini M, Romano R, Mobilia MA, Izzo AA, Santini A. Human health-related properties of chromones: an overview. Nat Prod Res 2019; 34:137-152. [PMID: 31631696 DOI: 10.1080/14786419.2019.1678618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural compounds occurring throughout the world are scientifically and practically valuable because of their unique and beneficial properties to control a wide range of disorders in the human body. Chromones are attracting increasing attention as novel therapeutic agents due to their effective bioactivities for human health. Accordingly, the present overview article was designed to scan the biological and pharmacological performance of chromones, including their anti-inflammatory, anticancer, anti-oxidant, and anti-microbial activities.
Collapse
Affiliation(s)
- Amirhossein Nazhand
- Biotechnology Department, Sari University of Agricultural Sciences and Natural Resources, Moji, Iran
| | | | | | - Raffaele Romano
- Department of Agriculture, University of Napoli Federico II, Napoli, Italy
| | | | - Angelo A Izzo
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| |
Collapse
|
17
|
Szőke K, Czompa A, Lekli I, Szabados-Fürjesi P, Herczeg M, Csávás M, Borbás A, Herczegh P, Tósaki Á. Dataset on structure, stability and myocardial effects of a new hybrid aspirin containing nitrogen monoxide-releasing molsidomine moiety. Data Brief 2019; 25:104146. [PMID: 31297426 PMCID: PMC6598840 DOI: 10.1016/j.dib.2019.104146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 11/26/2022] Open
Abstract
Herein 1H and 13C NMR spectra of ERJ-500, a new hybrid aspirin derivative, covalently conjugated to nitrogen monoxide donor linsidomine are presented as well as NMR spectra of its synthetic intermediate compounds. HPLC-MS measurements data are also included, demonstrating the stability of the linsidomine-aspirin hybrid in oxidation reactions. This data article also concerns miscellaneous myocardial parameters of isolated rat hearts as a complementation of the tables shown in the paper entitled “A new, vasoactive hybrid aspirin containing nitrogen monoxide-releasing molsidomine moiety” Szoke et al., 2019. Column tables represent data of aorta flow, aortic pressure, derivated aortic pressure and cardiac output.
Collapse
Affiliation(s)
- Kitti Szőke
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Attila Czompa
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - István Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Péter Szabados-Fürjesi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary.,Department of Bioanalytical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Magdolna Csávás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Árpád Tósaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Kandhasamy S, Arthi N, Arun RP, Verma RS. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:773-787. [PMID: 31147050 DOI: 10.1016/j.msec.2019.04.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/16/2023]
Abstract
Oxidative stress is critically attributed for impeding tissue repair and regeneration process. Elimination of over-accumulated, deleterious reactive oxygen species (ROS) could be elicited to accelerate healing in tissue engineering applications. Antioxidant biomolecules play a pivotal role in attenuating oxidative stress by neutralizing the free radical effects. Herein, we describe the synthesis and fabrication of novel quinone-based chromenopyrazole (QCP) antioxidant-laden silk fibroin (SF) electrospun nanofiber scaffold (QCP-SF) for tissue engineering applications. The spectral characterization of the synthesized compounds (6a-6h) were analysed by using NMR, FTIR and mass spectra and cell viability study of all the synthesized compounds were evaluated by MTT assay in primary rat bone marrow stem cells (rBMSCs). Among the prepared molecules, compound 6h showed an excellent cell viability, and antioxidant efficacy of compound 6h (QCP) was investigated through 1,1‑diphenyl‑2‑picrylhydiazyl (DPPH) scavenging assay. QCP expressed high antioxidant activity with IC50% of DPPH scavenging was observed about 5.506 ± 0.2786 μg. Novel QCP laden SF fiber scaffolds (QCP-SF) were characterized and incorporation of QCP did not affect the nanofiber architecture of QCP-SF scaffold. QCP-SF scaffold exhibited an enhanced thermal and mechanical stability when compared to native SF fiber mat. In vitro biocompatibility studies were evaluated using NIH 3T3 fibroblasts and rBMSCs. The QCP-SF scaffold displayed an increased cell attachment and proliferation in both cell types. In vitro wound healing study (scratch assay) of QCP-SF scaffold showed an excellent cell migration with NIH 3T3 cells into scratch area and complete cell migration occurred within 24 h. Based on results, we propose that QCP-loaded SF (QCP-SF) nanofibrous scaffolds can serve as a promising potential antioxidant fibrous scaffold for skin tissue engineering applications.
Collapse
Affiliation(s)
- Subramani Kandhasamy
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India
| | - N Arthi
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India
| | - Raj Pranap Arun
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India.
| |
Collapse
|
19
|
Mendieta-Moctezuma A, Rugerio-Escalona C, Villa-Ruano N, Gutierrez RU, Jiménez-Montejo FE, Fragoso-Vázquez MJ, Correa-Basurto J, Cruz-López MC, Delgado F, Tamariz J. Synthesis and biological evaluation of novel chromonyl enaminones as α-glucosidase inhibitors. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02320-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
A new, vasoactive hybrid aspirin containing nitrogen monoxide-releasing molsidomine moiety. Eur J Pharm Sci 2019; 131:159-166. [DOI: 10.1016/j.ejps.2019.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/28/2023]
|
21
|
Alblewi FF, Okasha RM, Eskandrani AA, Afifi TH, Mohamed HM, Halawa AH, Fouda AM, Al-Dies AAM, Mora A, El-Agrody AM. Design and Synthesis of Novel Heterocyclic-Based 4 H-benzo[ h]chromene Moieties: Targeting Antitumor Caspase 3/7 Activities and Cell Cycle Analysis. Molecules 2019; 24:molecules24061060. [PMID: 30889862 PMCID: PMC6471608 DOI: 10.3390/molecules24061060] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
Novel fused chromenes (4,7–11) and pyrimidines (12–16) were designed, synthesized, and evaluated for their mammary gland breast cancer (MCF-7), human colon cancer (HCT-116), and liver cancer (HepG-2) activities. The structural identity of the synthesized compounds was established according to their spectroscopic analysis, such as FT-IR, NMR, and mass spectroscopy. The preliminary results of the bioassay disclosed that some of the target compounds were proven to have a significant antiproliferative effect against the three cell lines, as compared to Doxorubicin, Vinblastine, and Colchicine, used as reference drugs. Particularly, compounds 7 and 14 exerted promising anticancer activity towards all cell lines and were chosen for further studies, such as cell cycle analysis, cell apoptosis, caspase 3/7 activity, DNA fragmentation, cell invasion, and migration. We found that these potent cytotoxic compounds induced cell cycle arrest at the S and G2/M phases, prompting apoptosis. Furthermore, these compounds significantly inhibit the invasion and migration of the different tested cancer cells. The structure-activity relationship (SAR) survey highlights that the antitumor activity of the desired compounds was affected by the hydrophobic or hydrophilic nature of the substituent at different positions.
Collapse
Affiliation(s)
- Fawzia F Alblewi
- Chemistry department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia.
| | - Rawda M Okasha
- Chemistry department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia.
| | - Areej A Eskandrani
- Chemistry department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia.
| | - Tarek H Afifi
- Chemistry department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia.
| | - Hany M Mohamed
- Chemistry Department, Faculty of Science, Jazan University, Jazan 2097, Saudi Arabia.
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Ahmed H Halawa
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Ahmed M Fouda
- Chemistry Department, Faculty of Scinece, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Al-Anood M Al-Dies
- Chemistry Department, Faculty of Scinece, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
- Biology and Chemistry Department, Al-Qunfudah University College, Umm Al-Qura University, Al-Qunfudah 1109, Saudi Arabia.
| | - Ahmed Mora
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| |
Collapse
|
22
|
Synthesis, in Vitro Biological Evaluation, and Oxidative Transformation of New Flavonol Derivatives: The Possible Role of the Phenyl-N,N-Dimethylamino Group. Molecules 2018; 23:molecules23123161. [PMID: 30513682 PMCID: PMC6320925 DOI: 10.3390/molecules23123161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
Six new flavonols (6a–f) were synthesized with Claisen–Schmidt and Suzuki reactions and they were fully characterized by spectroscopic methods. In order to evaluate their antioxidant activities, their oxygen radical absorption capacity and ferric reducing antioxidant power were measured, along with their free radical scavenging activity against 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and 2,2-diphenyl-1-picrylhydrazylradicals. In addition, their cytotoxicity on H9c2 cardiomyoblast cells was also assessed by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Compounds bearing the phenyl-N,N-dimethylamino group (6a, 6c, and 6e) exhibited promising antioxidant potency and did not have any cytotoxic effect. After a consideration of these data, the oxidative transformation of the 6c compound was investigated in vitro with a chemical Fenton reaction and the identification of the formed oxidation products was performed by mass spectrometry. Two potential metabolites were detected. Based on these results, compound 6c can be a model compound for future developments. Overall, this work has proved the involvement of the phenyl-N,N-dimethylamino group in the antioxidant activity of flavonols.
Collapse
|
23
|
The Inhibitory Effect of Flavonoid Aglycones on the Metabolic Activity of CYP3A4 Enzyme. Molecules 2018; 23:molecules23102553. [PMID: 30301254 PMCID: PMC6222669 DOI: 10.3390/molecules23102553] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023] Open
Abstract
Flavonoids are natural compounds that have been extensively studied due to their positive effects on human health. There are over 4000 flavonoids found in higher plants and their beneficial effects have been shown in vitro as well as in vivo. However, data on their pharmacokinetics and influence on metabolic enzymes is scarce. The aim of this study was to focus on possible interactions between the 30 most commonly encountered flavonoid aglycones on the metabolic activity of CYP3A4 enzyme. 6β-hydroxylation of testosterone was used as marker reaction of CYP3A4 activity. Generated product was determined by HPLC coupled with diode array detector. Metabolism and time dependence, as well as direct inhibition, were tested to determine if inhibition was reversible and/or irreversible. Out of the 30 flavonoids tested, 7 significantly inhibited CYP3A4, most prominent being acacetin that inhibited 95% of enzyme activity at 1 µM concentration. Apigenin showed reversible inhibition, acacetin, and chrysin showed combined irreversible and reversible inhibition while chrysin dimethylether, isorhamnetin, pinocembrin, and tangeretin showed pure irreversible inhibition. These results alert on possible flavonoid–drug interactions on the level of CYP3A4.
Collapse
|
24
|
Le Phuong Nguyen T, Fenyvesi F, Remenyik J, Homoki JR, Gogolák P, Bácskay I, Fehér P, Ujhelyi Z, Vasvári G, Vecsernyés M, Váradi J. Protective Effect of Pure Sour Cherry Anthocyanin Extract on Cytokine-Induced Inflammatory Caco-2 Monolayers. Nutrients 2018; 10:nu10070861. [PMID: 29970869 PMCID: PMC6073755 DOI: 10.3390/nu10070861] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 11/25/2022] Open
Abstract
Anthocyanins have several beneficial effects, especially on inflammatory and oxidative conditions. The pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), induce damage in the intestinal barrier and participate in the pathogenesis of chronic bowel diseases. A number of fruits have high anthocyanin contents with strong biological activity which can support protective actions. Sour cherry (Prunus cerassus) is one of the richest fruits in anthocyanins; especially it has high content of cyanidins. The aim of this study was to test the biological effects of a pure sour cherry anthocyanin extract under inflammatory conditions on the intestinal barrier. Caco-2 monolayers were stimulated with 50 ng/mL TNF-α and 25 ng/mL IL-1β, and the protective effects of the anthocyanin extract were examined. We demonstrated the safety of 500, 50, 5 and 0.5 µM anthocyanin extracts through cell impedance measurements. The 50 µM anthocyanin extract inhibited the cytokine-induced Caco-2 permeability and the nuclear translocation of NF-κB p65 subunits. The extract significantly reduced the release of IL-6 and IL-8 production in intestinal cells and glutathione peroxidase activity stimulated by cytokines. We demonstrated, for the first time, the beneficial effects of pure sour cherry anthocyanin extract on inflammatory Caco-2 monolayers, indicating that this substance could be protective in inflammatory bowel diseases and is an excellent raw material for further applications and formulations.
Collapse
Affiliation(s)
- Thi Le Phuong Nguyen
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4030 Debrecen, Hungary.
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4030 Debrecen, Hungary.
| | - Judit Remenyik
- Department of Feed- and Food Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4030 Debrecen, Hungary.
| | - Judit Rita Homoki
- Department of Feed- and Food Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4030 Debrecen, Hungary.
| | - Péter Gogolák
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4030 Debrecen, Hungary.
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4030 Debrecen, Hungary.
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4030 Debrecen, Hungary.
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4030 Debrecen, Hungary.
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4030 Debrecen, Hungary.
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4030 Debrecen, Hungary.
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4030 Debrecen, Hungary.
| |
Collapse
|
25
|
Synthesis and Evaluation of Thiochroman-4-One Derivatives as Potential Leishmanicidal Agents. Molecules 2017; 22:molecules22122041. [PMID: 29186046 PMCID: PMC6149949 DOI: 10.3390/molecules22122041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/11/2023] Open
Abstract
The S-containing heterocyclic compounds benzothiopyrans or thiochromones stand out as having promising biological activities due to their structural relationship with chromones (benzopyrans), which are widely known as privileged scaffolds in medicinal chemistry. In this work, we report the synthesis of 35 thiochromone derivatives and the in vitro antileishmanial and cytotoxic activities. Compounds were tested against intracellular amastigotes of Leishmania panamensis and cytotoxic activity against human monocytes (U-937 ATCC CRL-1593.2). Compounds bearing a vinyl sulfone moiety, 4h, 4i, 4j, 4k, 4l and 4m, displayed the highest antileishmanial activity, with EC50 values lower than 10 μM and an index of selectivity over 100 for compounds 4j and 4l. When the double bond or the sulfone moiety was removed, the activity decreased. Our results show that thiochromones bearing a vinyl sulfone moiety are endowed with high antileishmanial activity and low cytotoxicity.
Collapse
|