1
|
Imtiaz F, Rashid J, Kumar R, Eniola JO, Barakat MAEF, Xu M. Recent advances in visible light driven inactivation of bloom forming blue-green algae using novel nano-composites: Mechanism, efficiency and fabrication approaches. ENVIRONMENTAL RESEARCH 2024; 248:118251. [PMID: 38278506 DOI: 10.1016/j.envres.2024.118251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Over the years, algae have proved to be a water pollutant due to global warming, climate change, and the unregulated addition of organic compounds in water bodies from diffused resources. Harmful algal blooms (HABs) are severely affecting the health of humans and aquatic ecosystems. Among available anti-blooming technologies, semiconductor photocatalysis has come forth as an effective alternative. In the recent past, literature has been modified extensively with a decisive knowledge regarding algal invasion, desired preparation of nanomaterials with enhanced visible light absorption capacity and mechanisms for algal cell denaturation. The motivation behind this review article was to gather algal inactivation data in a systematic way based on various research studies, including the construction of nanoparticles and purposely to test their anti-algal activities under visible irradiation. Additionally, this article mentions variety of starting materials employed for preparation of various nano-powders with focus on their synthesis routes, analytical techniques as well as proposed mechanisms for lost cellular integrity in context of reduced chlorophyll' a' level, cell rapture, cell leakage and damages to other physiological constituents; credited to oxidative damage initiated by reactive oxidation species (ROS). Various floating and recyclable composited catalysts Ag2CO3-N: GO, Ag/AgCl@ZIF-8, Ag2CrO4-g-C3N4-TiO2/mEP proved to be game-changers owing to their enhanced VL absorption, adsorption, stability, separation and reusability. An outlook for the generalized limitations of published reports, cost estimations for practical implementation, issues and challenges faced by nano-photocatalysts and possible opportunities for future studies are also proposed. This review will be able to provide vast insights for coherent fabrication of catalysts, breakthroughs in experimental methodologies and help in elaboration of damage mechanisms.
Collapse
Affiliation(s)
- Fatima Imtiaz
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Jamshaid Rashid
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
| | - Rajeev Kumar
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamiu O Eniola
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Abou El-Fetouh Barakat
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Central Metallurgical R & D Institute, Helwan, 11421, Cairo, Egypt
| | - Ming Xu
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
| |
Collapse
|
2
|
Lu S, Li X, Liao Y, Zhang G. Optimized titania nanotubes photoanode mediated photoelectrochemical oxidation of ammonia in highly chlorinated wastewater via Cl-based radicals. ENVIRONMENTAL RESEARCH 2022; 214:113972. [PMID: 35952744 DOI: 10.1016/j.envres.2022.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Efficient removal of low-concentration ammonia from chlorinated wastewater is a challenge for decentralized wastewater treatment due to its notorious environmental effect and lethal influence on aquaculture. Photoelectrocatalytic (PEC) oxidation process is considered as an efficient and environment-friendly approach, whereas a low-cost and stable photoanode is crucial. In this study, TiO2 nanotubes (TNTs) photoanode (Ar-TNT-500 °C) with excellent physicochemical and photoelectrochemical properties was prepared by optimizing the parameters of anodization, including the voltage/times of anodization and the atmosphere/temperature of heat treatment. During the synthesis, the electrochemical and heat treatment processes promoted the formation of oxygen vacancies (OV) on the TNTs surface and enhanced its electrocatalytic activity. The optimized Ar-TNT-500 °C photoanode could selectively convert ammonia to N2 (86%) and a small amount of nitrate (14%). Radical quenching and probe experiments confirmed that the ClO produced by rapid quenching of OH and Cl by free chlorine dominated the selective degradation of ammonia in the synergistic process of photocatalysis and electrocatalysis. The cycle of chlorine-based radicals (ClO and Cl) and Cl- provided a continuous and efficient ammonia oxidation system, because chlorine-based radicals could efficiently and selectively oxidize ammonia and reduce the production of toxic (per) chlorate.
Collapse
Affiliation(s)
- Sen Lu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Xuechuan Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Yunkai Liao
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China.
| |
Collapse
|
3
|
Lu S, Zhang G. Recent advances on inactivation of waterborne pathogenic microorganisms by (photo) electrochemical oxidation processes: Design and application strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128619. [PMID: 35359104 DOI: 10.1016/j.jhazmat.2022.128619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Compared with other conventional water disinfection processes, (photo) electrochemical oxidation (P/ECO) processes have the characteristics of environmental friendliness, convenient installation and operation, easy control and high efficiency of inactivating waterborne pathogenic microorganisms (PMs), so that more and more research work has been focused on this topic, but there is still a huge gap between the research and practical application. Here, the research network of inactivating PMs by P/ECO processes has been comprehensively summarized, and the electrode/reactor/process design strategies based on strengthening direct and indirect oxidation, enhancing mass transfer efficiency and electron transfer efficiency, and improving the effective dose of electrogenerated oxidants are discussed. Furthermore, the factors affecting the inactivation of PMs and the issues regarding to stability and lifetime of the electrode are discussed respectively. Finally, the important research priorities and possible research challenges of P/ECO processes are put forward to make significant progress of this technology.
Collapse
Affiliation(s)
- Sen Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China.
| |
Collapse
|
4
|
Long-Lasting Photocatalytic and Antimicrobial Activity of Cotton Towels Modified with TiO2 and ZnO Nanoparticles. Catalysts 2021. [DOI: 10.3390/catal11080952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This study aimed to evaluate the durability of the photocatalytic and antimicrobial activities of ZnO and TiO2 nanoparticles (NPs)-modified 100% cotton terry textiles. SEM-EDX confirmed the long-lasting durability of the washing materials, and TGA analysis revealed that ZnO and TiO2 NPs can be found on the terry fabric surface; however, the amount of NPs decreased 10 times after 15 washes and 1.6 times after the subsequent 15 washes. The efficiency of self-cleaning properties and antimicrobial activity against five microorganisms (Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 10536, Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, and Bacillus subtilis NCAIM 01644) depended on UVA/B radiation intensity. The increase in UVA/B radiation intensity from 400 to 1400 µW/cm2 significantly increases the effectiveness of photocatalysis. Long-lasting self-cleaning properties characterised the tested fabric; however, stronger photocatalytic efficiency was observed in light with a greater intensity of UVA/B radiation. At the UVA/B radiation intensity of 1400 µW/cm2, a biocidal effect (R = 100%) against all tested microorganisms (E. coli, S. aureus. B. subtilis, C. albicans, and A. niger) was observed on the surface of materials. The lower UVA/B radiation intensity (400 µW/cm2) and 30 wash cycles reduce the antimicrobial activity of the material (R = 65.4–99.4%) for B. subtilis, C. albicans, and A. niger. The antimicrobial activity of washed materials modified with TiO2/ZnO nanoparticles can be increased by irradiation with a light bulb (1400 µW/cm2).
Collapse
|
5
|
The Pathway towards Photoelectrocatalytic Water Disinfection: Review and Prospects of a Powerful Sustainable Tool. Catalysts 2021. [DOI: 10.3390/catal11080921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Photoelectrocatalysis is a hybrid photon/electron-driven process that benefits from the synergistic effects of both processes to enhance and stabilize the generation of disinfecting oxidants. Photoelectrocatalysis is an easy to operate technology that can be scaled-up or scaled-down for various water treatment applications as low-cost decentralized systems. This review article describes the fundamentals of photoelectrocatalysis, applied to water disinfection to ensure access to clean water for all as a sustainable development goal. Advances in reactor engineering design that integrate light-delivery and electrochemical system requirements are presented, with a description of photo-electrode material advances, including doping, nano-decoration, and nanostructure control. Disinfection and cell inactivation are described using different model microorganisms such as E. coli, Mycobacteria, Legionella, etc., as well the fungus Candida parapsilosis, with relevant figures of merit. The key advances in the elucidation of bacterial inactivation mechanisms by photoelectrocatalytic treatments are presented and knowledge gaps identified. Finally, prospects and further research needs are outlined, to define the pathway towards the future of photoelectrocatalytic disinfection technologies.
Collapse
|
6
|
García-Espinoza JD, Robles I, Durán-Moreno A, Godínez LA. Photo-assisted electrochemical advanced oxidation processes for the disinfection of aqueous solutions: A review. CHEMOSPHERE 2021; 274:129957. [PMID: 33979920 PMCID: PMC8121763 DOI: 10.1016/j.chemosphere.2021.129957] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 05/04/2023]
Abstract
Disinfection is usually the final step in water treatment and its effectiveness is of paramount importance in ensuring public health. Chlorination, ultraviolet (UV) irradiation and ozone (O3) are currently the most common methods for water disinfection; however, the generation of toxic by-products and the non-remnant effect of UV and O3 still constitute major drawbacks. Photo-assisted electrochemical advanced oxidation processes (EAOPs) on the other hand, appear as a potentially effective option for water disinfection. In these processes, the synergism between electrochemically produced active species and photo-generated radicals, improve their performance when compared with the corresponding separate processes and with other physical or chemical approaches. In photo-assisted EAOPs the inactivation of pathogens takes place by means of mechanisms that occur at different distances from the anode, that is: (i) directly at the electrode's surface (direct oxidation), (ii) at the anode's vicinity by means of electrochemically generated hydroxyl radical species (quasi-direct), (iii) or at the bulk solution (away from the electrode surface) by photo-electrogenerated active species (indirect oxidation). This review addresses state of the art reports concerning the inactivation of pathogens in water by means of photo-assisted EAOPs such as photo-electrocatalytic process, photo-assisted electrochemical oxidation, photo-electrocoagulation and cathodic processes. By focusing on the oxidation mechanism, it was found that while quasi-direct oxidation is the preponderant inactivation mechanism, the photo-electrocatalytic process using semiconductor materials is the most studied method as revealed by numerous reports in the literature. Advantages, disadvantages, trends and perspectives for water disinfection in photo-assisted EAOPs are also analyzed in this work.
Collapse
Affiliation(s)
- Josué Daniel García-Espinoza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | | | - Luis A Godínez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico.
| |
Collapse
|
7
|
Abstract
The photoexcitation of suitable semiconducting materials in aqueous environments can lead to the production of reactive oxygen species (ROS). ROS can inactivate microorganisms and degrade a range of chemical compounds. In the case of heterogeneous photocatalysis, semiconducting materials may suffer from fast recombination of electron–hole pairs and require post-treatment to separate the photocatalyst when a suspension system is used. To reduce recombination and improve the rate of degradation, an externally applied electrical bias can be used where the semiconducting material is immobilised onto an electrically conducive support and connected to a counter electrode. These electrochemically assisted photocatalytic systems have been termed “photoelectrocatalytic” (PEC). This review will explain the fundamental mechanism of PECs, photoelectrodes, the different types of PEC reactors reported in the literature, the (photo)electrodes used, the contaminants degraded, the key findings and prospects in the research area.
Collapse
|
8
|
Abstract
This article presents an overview of the reports on the doping of TiO2 with carbon, nitrogen, and sulfur, including single, co-, and tri-doping. A comparison of the properties of the photocatalysts synthesized from various precursors of TiO2 and C, N, or S dopants is summarized. Selected methods of synthesis of the non-metal doped TiO2 are also described. Furthermore, the influence of the preparation conditions on the doping mode (interstitial or substitutional) with reference to various types of the modified TiO2 is summarized. The mechanisms of photocatalysis for the different modes of the non-metal doping are also discussed. Moreover, selected applications of the non-metal doped TiO2 photocatalysts are shown, including the removal of organic compounds from water/wastewater, air purification, production of hydrogen, lithium storage, inactivation of bacteria, or carbon dioxide reduction.
Collapse
|
9
|
Highlights on Recent Developments of Heterogeneous and Homogeneous Photocatalysis. Molecules 2020; 26:molecules26010023. [PMID: 33374553 PMCID: PMC7793108 DOI: 10.3390/molecules26010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022] Open
|
10
|
Liu Y, Huang J, Feng X, Li H. Thermal-Sprayed Photocatalytic Coatings for Biocidal Applications: A Review. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2020; 30:1-24. [PMID: 38624582 PMCID: PMC7640575 DOI: 10.1007/s11666-020-01118-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/05/2020] [Indexed: 05/03/2023]
Abstract
There have been ever-growing demands for disinfection of water and air in recent years. Efficient, eco-friendly, and cost-effective methods of disinfection for pathogens are vital to the health of human beings. The photocatalysis route has attracted worldwide attention due to its highly efficient oxidative capabilities and sustainable recycling, which can be used to realize the disinfection purposes without secondary pollution. Though many studies have comprehensively reviewed the work about photocatalytic disinfection, including design and fabrication of photocatalytic coatings, inactivation mechanisms, or practical applications, systematic reviews about the disinfection photocatalysis coatings from fabrication to effort for practical use are still rare. Among different ways of fabricating photocatalytic materials, thermal spray is a versatile surface coating technique and competitive in constructing large-scale functional coatings, which is a most promising way for the future environmental purification, biomedical and life health applications. In this review, we briefly introduced various photocatalytic materials and corresponding inactivation mechanisms for virus, bacteria and fungus. We summarized the thermal-sprayed photocatalysts and their antimicrobial performances. Finally, we discussed the future perspectives of the photocatalytic disinfection coatings for potential applications. This review would shed light on the development and implementation of sustainable disinfection strategies that is applicable for extensive use for controlling pathogens in the near future.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Jing Huang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Xiaohua Feng
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Hua Li
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| |
Collapse
|
11
|
Cotton Terry Textiles with Photo- and Bio-Activity in a Model Study and Real Conditions. MATERIALS 2020; 13:ma13153334. [PMID: 32726989 PMCID: PMC7435768 DOI: 10.3390/ma13153334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022]
Abstract
The aim of the study was to assess the photocatalytic (decompose staining particles, K/S values, the color differences, CIE L*a*b* color) and antimicrobial properties of textiles modified with TiO2 and ZnO nanoparticles (NPs) confirmed by X-ray diffraction, dynamic light scattering, SEM-EDX) in visible light conditions. The antimicrobial effectiveness of modified textiles under model conditions has been reported against 5 microorganisms: Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Candida albicans, Aspergillus niger (AATCC Test Method 100-2004). In real conditions in bathrooms, significant biostatic activity was shown on the surface of the modified towels. The number of microorganisms decreased by 1-5 log to the level of 0-5 CFU/cm2 in the case of bacteria: Enterobacteriaceae, Enterococcus, the coli group and E. coli, Pseudomonas. Statistically significant reduction of the total number of bacteria and fungi (by 1 log), and the concentration of gases (NO2, CO2, CO) in the air of bathrooms was determined. The removal or reduction of volatile organic compounds (VOCs) concentration (SPME-GC-MS analysis) in the air above the modified towels has also been determined. It was found that the lighting type (natural, artificial), time (1.5 and 7 h/day), air humidity (RH = 36-67%) and light intensity (81-167 lux) are important for the efficiency of photocatalysis. Textile materials modified with TiO2 and ZnO NPs can be used as self-cleaning towels. They can also help purify air from microorganisms, VOCs and undesirable gases.
Collapse
|
12
|
Burns EW, Pergolesi D, Schmidt TJ, Lippert T, Daramalla V. Systematic Material Study Reveals TiNb 2 O 7 as a Model Wide-Bandgap Photoanode Material for Solar Water Splitting. Chemistry 2020; 26:7065-7073. [PMID: 32073693 DOI: 10.1002/chem.201905444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Indexed: 11/12/2022]
Abstract
This work reveals that photoanodes based on TiNb2 O7 (TNO) powder show remarkable water-oxidation properties including nearly ideal charge-transfer and charge-injection efficiencies. Furthermore, using a simplified photoanode construction and carefully surveying the structural and morphological characteristics of oriented and polycrystalline thin films and powder-based samples revealed that the water-splitting kinetics of TNO is negligibly effected by surface morphology; instead, internal grain boundaries likely play a driving role. The current powder-based TNO photoanodes exhibit ideal water-oxidation kinetics and oxidize water at minimal applied biases under illumination; consequently, TNO exhibits an early onset photocurrent voltage (0.4 V vs. RHE) that rivals that of other state-of-the-art photoanode materials.
Collapse
Affiliation(s)
- Eric W Burns
- Laboratory of Multiscale Materials Experiments, Paul Scherrer Institut, 5232, Villigen, Switzerland.,Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, 8092, Zürich, Switzerland
| | - Daniele Pergolesi
- Laboratory of Multiscale Materials Experiments, Paul Scherrer Institut, 5232, Villigen, Switzerland.,Electrochemistry Laboratory, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Thomas J Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232, Villigen, Switzerland.,Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zürich, 8092, Zürich, Switzerland
| | - Thomas Lippert
- Laboratory of Multiscale Materials Experiments, Paul Scherrer Institut, 5232, Villigen, Switzerland.,Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, 8092, Zürich, Switzerland.,Molecular Photoconversion Devices Division, International Institute for Carbon-Neutral Energy Research, Kyushu University, 819-0395, Fukuoka, Japan
| | - Venkateswarlu Daramalla
- Laboratory of Multiscale Materials Experiments, Paul Scherrer Institut, 5232, Villigen, Switzerland
| |
Collapse
|
13
|
Gyulavári T, Veréb G, Pap Z, Réti B, Baan K, Todea M, Magyari K, Szilágyi IM, Hernadi K. Utilization of Carbon Nanospheres in Photocatalyst Production: From Composites to Highly Active Hollow Structures. MATERIALS 2019; 12:ma12162537. [PMID: 31395835 PMCID: PMC6720943 DOI: 10.3390/ma12162537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 01/17/2023]
Abstract
Titanium dioxide–carbon sphere (TiO2–CS) composites were constructed via using prefabricated carbon spheres as templates. By the removal of template from the TiO2–CS, TiO2 hollow structures (HS) were synthesized. The CS templates were prepared by the hydrothermal treatment of ordinary table sugar (sucrose). TiO2–HSs were obtained by removing CSs with calcination. Our own sensitized TiO2 was used for coating the CSs. The structure of the CSs, TiO2–CS composites, and TiO2–HSs were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and diffuse reflectance spectroscopy (DRS). The effect of various synthesis parameters (purification method of CSs, precursor quantity, and applied furnace) on the morphology was investigated. The photocatalytic activity was investigated by phenol model pollutant degradation under visible light irradiation (λ > 400 nm). It was established that the composite samples possess lower crystallinity and photocatalytic activity compared to TiO2 hollow structures. Based on XPS measurements, the carbon content on the surface of the TiO2–HS exerts an adverse effect on the photocatalytic performance. The synthesis parameters were optimized and the TiO2–HS specimen having the best absolute and surface normalized photocatalytic efficiency was identified. The superior properties were explained in terms of its unique morphology and surface properties. The stability of this TiO2–HS was investigated via XRD and SEM measurements after three consecutive phenol degradation tests, and it was found to be highly stable as it entirely retained its crystal phase composition, morphology and photocatalytic activity.
Collapse
Affiliation(s)
- Tamás Gyulavári
- Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Tisza Lajos krt. 103, Hungary
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich tér 1, Hungary
| | - Gábor Veréb
- Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Tisza Lajos krt. 103, Hungary.
- Institute of Process Engineering, Faculty of Engineering, University of Szeged, H-6725 Szeged, Moszkvai krt. 9, Hungary.
| | - Zsolt Pap
- Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Tisza Lajos krt. 103, Hungary.
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, RO-400271 Cluj-Napoca, Treboniu Laurian 42, Romania.
- Institute of Environmental Science and Technology, University of Szeged, H-6720, Szeged, Tisza Lajos krt. 103, Hungary.
| | - Balázs Réti
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich tér 1, Hungary
| | - Kornelia Baan
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich tér 1, Hungary
| | - Milica Todea
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, RO-400271 Cluj-Napoca, Treboniu Laurian 42, Romania
- Department of Molecular Sciences, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, RO-400012 Cluj-Napoca, Romania
| | - Klára Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, RO-400271 Cluj-Napoca, Treboniu Laurian 42, Romania
| | - Imre Miklós Szilágyi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Klara Hernadi
- Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Tisza Lajos krt. 103, Hungary
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich tér 1, Hungary
| |
Collapse
|
14
|
Mo C, Wei H, Wang T. Fabrication of a self‐doped TiO
2
nanotube array electrode for electrochemical degradation of methyl orange. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chenghao Mo
- School of Chemical and Material Engineering, The Key Laboratory of Synthetic and Biotechnological Colloids, Ministry of EducationJiangnan University Wuxi Jiangsu People's Republic of China
| | - Huixian Wei
- School of Chemical and Material Engineering, The Key Laboratory of Synthetic and Biotechnological Colloids, Ministry of EducationJiangnan University Wuxi Jiangsu People's Republic of China
| | - Tongjun Wang
- School of Chemical and Material Engineering, The Key Laboratory of Synthetic and Biotechnological Colloids, Ministry of EducationJiangnan University Wuxi Jiangsu People's Republic of China
| |
Collapse
|
15
|
Koltsakidou A, Terzopoulou Z, Kyzas GZ, Bikiaris DN, Lambropoulou DA. Biobased Poly(ethylene furanoate) Polyester/TiO₂ Supported Nanocomposites as Effective Photocatalysts for Anti-inflammatory/Analgesic Drugs. Molecules 2019; 24:E564. [PMID: 30720725 PMCID: PMC6384769 DOI: 10.3390/molecules24030564] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/03/2022] Open
Abstract
In the present study, polymer supported nanocomposites, consisting of bio-based poly(ethylene furanoate) polyester and TiO₂ nanoparticles, were prepared and evaluated as effective photocatalysts for anti-inflammatory/analgesic drug removal. Nanocomposites were prepared by the solvent evaporation method containing 5, 10, 15, and 20 wt% TiO₂ and characterized using Fourier Transform Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Thin films of them have been prepared by the melt press and optimization of the photocatalytic procedure was conducted for the most efficient synthesized photocatalyst. Finally, mineralization was evaluated by means of Total organic carbon (TOC) reduction and ion release, while the transformation products (TPs) generated during the photocatalytic procedure were identified by high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Anastasia Koltsakidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR⁻541 24 Thessaloniki, Greece.
| | - Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - George Z Kyzas
- Hephaestus Advanced Laboratory, Eastern Macedonia and Thrace Institute of Technology, GR-654 04 Kavala, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR⁻541 24 Thessaloniki, Greece.
| |
Collapse
|
16
|
Uyguner Demirel CS, Birben NC, Bekbolet M. A comprehensive review on the use of second generation TiO 2 photocatalysts: Microorganism inactivation. CHEMOSPHERE 2018; 211:420-448. [PMID: 30077938 DOI: 10.1016/j.chemosphere.2018.07.121] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/04/2018] [Accepted: 07/21/2018] [Indexed: 05/12/2023]
Abstract
Photocatalytic disinfection practices have been applied for decades and attract current interest along with the developments in synthesis of novel photocatalysts. A survey based investigation was performed for elucidation of photocatalytic treatment details as well as disinfection mechanism of microorganisms. The present work brings significant information on the utilization of second generation TiO2 photocatalysts for inactivation of microorganisms typically using E. coli as the model microorganism. Special interest was devoted to the role of organic matrix either generated during treatment or as a natural component. Studies on photocatalytic disinfection were extensively reviewed and evaluated with respect to basic operational parameters related to photocatalysis, and types and properties of microorganisms investigated. Degradation mechanism and behavior of microorganisms towards reactive oxygen species during disinfection and organic matrix effects were also addressed. For successful utilization and effective assessment of visible light active photocatalysts, standard protocols for disinfection activity testing have to be set. Further improvement of the efficiency of these materials would be promising for future applications in water treatment processes.
Collapse
Affiliation(s)
| | - Nazmiye Cemre Birben
- Bogazici University, Institute of Environmental Sciences, 34342, Bebek, Istanbul, Turkey.
| | - Miray Bekbolet
- Bogazici University, Institute of Environmental Sciences, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
17
|
Ranasinghe CSK, Vequizo JJM, Yamakata A. Fabrication of robust TiO2 thin films by atomized spray pyrolysis deposition for photoelectrochemical water oxidation. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Pablos C, Marugán J, Adán C, Osuna M, van Grieken R. Performance of TiO2 photoanodes toward oxidation of methanol and E. coli inactivation in water in a scaled-up photoelectrocatalytic reactor. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|