1
|
Almeida OGG, Pereira MG, Bighetti-Trevisan RL, Santos ES, De Campos EG, Felis GE, Guimarães LHS, Polizeli MLTM, De Martinis BS, De Martinis ECP. Investigating luxS gene expression in lactobacilli along lab-scale cocoa fermentations. Food Microbiol 2024; 119:104429. [PMID: 38225038 DOI: 10.1016/j.fm.2023.104429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Previous metagenomic analyses have suggested that lactobacilli present potential for Quorum Sensing (QS) in cocoa fermentation, and in the present research, laboratory scale fermentations were carried out to monitor the expression of luxS, a universal marker of QS. For that, 96 h-fermentations were studied, as follows: F0 (non inoculated control), F1 (inoculated with yeasts, lactic acid bacteria, and acetic acid bacteria), F2 (inoculated with yeasts and acetic acid bacteria), F3 (inoculated with yeasts only). The parameters evaluated were: plate counting, quantification of key enzymes and analysis of volatile organic compounds associated with key sensory descriptors, using headspace gas chromatography-mass spectrometry (GC-MS). Furthermore, QS was estimated by the quantification of the expression of luxS genes by Reverse Transcriptase Real-Time PCR. The results demonstrated that microbial succession occurred in pilot scale fermentations, but no statistical differences for microbial enumeration and α-diversity index were observed among experiments and control. Moreover, it was not possible to make conclusive correlations of enzymatic profile and fermenting microbiota, likely due to the intrinsic activity of plant hydrolases. Regarding to the expression of luxS genes, in Lactiplantibacillus plantarum they were active along the fermentation, but for Limosilactobacillus fermentum, luxS was expressed only at early and middle phases. Correlation analysis of luxS expression and production of volatile metabolites evidenced a possible negative association of Lp. Plantarum with fermentation quality. In conclusion, these data corroborate former shotgun metagenomic analysis by demonstrating the expression of luxS by lactobacilli in pilot scale cocoa fermentation and evidence Lp. Plantarum is the main lactic acid bacteria related to its expression.
Collapse
Affiliation(s)
- O G G Almeida
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Brazil
| | - M G Pereira
- Universidade Do Estado de Minas Gerais, Unidade Passos, Brazil
| | - R L Bighetti-Trevisan
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Biologia Básica e Oral, Brazil
| | - E S Santos
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Brazil
| | - E G De Campos
- Appalachian State University, Department of Chemistry and Fermentation Sciences, Boone, NC, United States; Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Química, Brazil
| | - G E Felis
- University of Verona, Department of Biotechnology, Verona, Italy
| | - L H S Guimarães
- Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Brazil
| | - M L T M Polizeli
- Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Brazil
| | - B S De Martinis
- Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Química, Brazil
| | - E C P De Martinis
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Brazil.
| |
Collapse
|
2
|
Singh S, Kumar Sharma P, Chaturvedi S, Kumar P, Deepak Nannaware A, Kalra A, Kumar Rout P. Biocatalyst for the synthesis of natural flavouring compounds as food additives: Bridging the gap for a more sustainable industrial future. Food Chem 2024; 435:137217. [PMID: 37832337 DOI: 10.1016/j.foodchem.2023.137217] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 10/15/2023]
Abstract
Biocatalysis entails the use of purified enzymes in the manufacturing of flavouring chemicals food industry as well as at the laboratory level. These biocatalysts can significantly accelerate organic chemical processes and improve product stereospecificity. The unique characteristics of biocatalyst helpful in synthesizing the environmentally friendly flavour and aroma compounds used as a food additive in foodstuffs. With methods like enzyme engineering on biotechnological interventions the efficient tuning of produce will fulfil the needs of food industry. This review summarizes the biosynthesis of different flavour and aroma component through microbial catalysts and using advanced techniques which are available for enzyme improvement. Also pointing out their benefits and drawbacks for specific technological processes necessary for successful industrial application of biocatalysts. The article covers the market scenario, cost economics, environmental safety and regulatory framework for the production of food flavoured chemicals by the bioprocess engineering.
Collapse
Affiliation(s)
- Suman Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Praveen Kumar Sharma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Shivani Chaturvedi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Prashant Kumar
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashween Deepak Nannaware
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alok Kalra
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Prasant Kumar Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Wang K, Zhao Y, Song S, Lin Y, Luo Y, Zhang Y, Xue Y, Li W, Zhang Y, Lu Y, Quan H, Zhang H, Liu H, Gou Q, Luo Z, Guo H. Changes in properties of human milk under different conditions of frozen storage. Food Res Int 2024; 176:113768. [PMID: 38163699 DOI: 10.1016/j.foodres.2023.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Human milk is the best source of nutrition for infants. Lower freezing temperatures and faster freezing rates allow for better preservation of human milk. However, research on the freezing conditions of human milk is limited. This study investigated the effectiveness of quick freezing and suitable freezing conditions for home preservation. Human milk was stored under different freezing conditions (-18 °C, -18 °C quick freezing, -30 °C, -40 °C, -60 °C, and - 80 °C) for 30, 60, and 90 days and then evaluated for changes in the microbial counts, bioactive protein, and lipid. The results showed that the total aerobic bacterial and Bifidobacteria counts in human milk after storage at freezing temperatures of - 30 °C and lower were closer to those of fresh human milk compared to - 18 °C. Furthermore, the lysozyme loss, lipid hydrolysis degree, and volatile organic compound production were lower. However, -18 °C quick freezing storage was not markedly different from -18 °C in maintaining human milk quality. Based on the results, for household and environmental reasons, the recommended temperature for storing human milk is suggested as -30 °C.
Collapse
Affiliation(s)
- Kaibo Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanfeng Zhao
- Qingdao Haier Refrigerator Co., Ltd, Qingdao 266100, China
| | - Sijia Song
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yingying Lin
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100089, China
| | - Yujia Luo
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100089, China
| | - Yafei Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100089, China
| | - Yi Xue
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100089, China
| | - Wusun Li
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100089, China
| | - Yuning Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100089, China
| | - Yao Lu
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100089, China
| | - Heng Quan
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100089, China
| | - Hao Zhang
- Qingdao Haier Refrigerator Co., Ltd, Qingdao 266100, China
| | - Huihui Liu
- Haier Smart Home Co., Ltd, Qingdao 266001, China
| | - Qian Gou
- Qingdao Haier Refrigerator Co., Ltd, Qingdao 266100, China
| | - Zisheng Luo
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Huiyuan Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100089, China.
| |
Collapse
|
4
|
Visalli M, Galmarini MV. Multi-attribute temporal descriptive methods in sensory analysis applied in food science: A systematic scoping review. Compr Rev Food Sci Food Saf 2024; 23:e13294. [PMID: 38284596 DOI: 10.1111/1541-4337.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Among descriptive sensory evaluation methods, temporal methods have a wide audience in food science because they make it possible to follow perception as close as possible to the moment when sensations are perceived. The aim of this work was to describe 30 years of research involving temporal methods by mapping the scientific literature using a systematic scoping review. Thus, 363 research articles found from a search in Scopus and Web of Science from 1991 to 2022 were included. The extracted data included information on the implementation of studies referring to the use of temporal methods (details related to subjects, products, descriptors, research design, data analysis, etc.), reasons why they were used and the conclusions they allowed to be drawn. Metadata analysis and critical appraisal were also carried out. A quantitative and qualitative synthesis of the results allowed the identification of trends in the way in which the methods were developed, refined, and disseminated. Overall, a large heterogeneity was noted in the way in which the temporal measurements were carried out and the results presented. Some critical research gaps in establishing the validity and reliability of temporal methods have also been identified. They were mostly related to the details of implementation of the methods (e.g., almost no justification for the number of consumers included in the studies, absence of report on panel repeatability) and data analysis (e.g., prevalence of use of exploratory data analysis, only 20% of studies using confirmatory analyses considering the dynamic nature of the data). These results suggest the need for general guidelines on how to implement the method, analyze and interpret data, and report the results. Thus, a template and checklist for reporting data and results were proposed to help increase the quality of future research.
Collapse
Affiliation(s)
- Michel Visalli
- Centre des Sciences du Goût et de l'Alimentation, Institut Agro Dijon, CNRS, INRAE, Université Bourgogne, Dijon, France
- INRAE, PROBE Research Infrastructure, ChemoSens Facility, Dijon, France
| | - Mara Virginia Galmarini
- CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Santa Fe, Argentina
- Facultad de Ingeniería y Ciencias Agrarias, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| |
Collapse
|
5
|
Nandha MC, Shukla RM. Exploration of probiotic attributes in lactic acid bacteria isolated from fermented Theobroma cacao L. fruit using in vitro techniques. Front Microbiol 2023; 14:1274636. [PMID: 37808281 PMCID: PMC10552159 DOI: 10.3389/fmicb.2023.1274636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Probiotics are known for their health-promoting properties and are recognized as beneficial microorganisms. The current investigation delves into the isolation and comprehensive in vitro characterization of lactic acid bacteria (LAB) obtained from the Indian-origin Theobroma cacao L. Forastero variety to assess their potential as probiotic candidates. Eleven LAB isolates were obtained, and among them, five exhibited classical LAB traits. These five isolates underwent rigorous in vitro characterization to evaluate their suitability as probiotics. The assessments included resilience against acid and bile salts, which are crucial for probiotic viability. Additionally, the isolates were subjected to simulated gastric and pancreatic fluids and lysozyme exposure to assess their survival rates. Auto- aggregation, co-aggregation, hydrophobicity, and exopolysaccharide production were also examined. The inhibitory potential of α-glucosidase, an enzyme related to glucose metabolism, was measured, and antioxidant activity was evaluated using DPPH and ABTS assays. A safety assessment was conducted to confirm the non-pathogenic nature of the isolates. Among the five isolates, CR2 emerged as a standout candidate with maximal bile salt hydrolase activity, phenol resistance, and lysozyme resistance. CR2 and CYF3 exhibited notable survival rates under simulated conditions. The isolates displayed variable degrees of auto-aggregation, co-aggregation, and hydrophobicity. CR2 exhibited the highest exopolysaccharide production (0.66 mg/mL), suggesting diverse applications in the food industry. CR2 also demonstrated the highest inhibition rate against α-glucosidase (56.55%) and substantial antioxidant activity (79.62% DPPH, 83.45% ABTS). Safety assessment confirmed the non- pathogenic nature of the isolates. Molecular characterization identified CR2 as Lactococcus lactis subsp. lactis and CYF3 as Limnosilactobacillus fermentum. Both strains exhibited commendable probiotic and technological attributes, positioning them as promising candidates for functional foods and beyond. This study provides valuable insights into the in vitro characterization of LAB isolated from Indian Theobroma cacao L., highlighting their potential as probiotic candidates with advantageous traits, including survival in hostile conditions, beneficial enzymatic activities, bioactivity, and other essential attributes.
Collapse
Affiliation(s)
- Mausamy C. Nandha
- Department of Microbiology and Biotechnology, School of Science, Gujarat University, Ahmedabad, India
| | - Rachana M. Shukla
- Department of Microbiology, Gandhinagar Institute of Technology, Gandhinagar, India
| |
Collapse
|
6
|
Van de Voorde D, Díaz-Muñoz C, Hernandez CE, Weckx S, De Vuyst L. Yeast strains do have an impact on the production of cured cocoa beans, as assessed with Costa Rican Trinitario cocoa fermentation processes and chocolates thereof. Front Microbiol 2023; 14:1232323. [PMID: 37621398 PMCID: PMC10445768 DOI: 10.3389/fmicb.2023.1232323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The microbiological and metabolic outcomes of good cocoa fermentation practices can be standardized and influenced through the addition of starter culture mixtures composed of yeast and bacterial strains. The present study performed two spontaneous and 10 starter culture-initiated (SCI) cocoa fermentation processes (CFPs) in Costa Rica with local Trinitario cocoa. The yeast strains Saccharomyces cerevisiae IMDO 050523, Hanseniaspora opuntiae IMDO 020003, and Pichia kudriavzevii IMDO 060005 were used to compose starter culture mixtures in combination with the lactic acid bacterium strain Limosilactobacillus fermentum IMDO 0611222 and the acetic acid bacterium strain Acetobacter pasteurianus IMDO 0506386. The microbial community and metabolite dynamics of the cocoa pulp-bean mass fermentation, the metabolite dynamics of the drying cocoa beans, and the volatile organic compound (VOC) profiles of the chocolate production were assessed. An amplicon sequence variant approach based on full-length 16S rRNA gene sequencing instead of targeting the V4 region led to a highly accurate monitoring of the starter culture strains added, in particular the Liml. fermentum IMDO 0611222 strain. The latter strain always prevailed over the background lactic acid bacteria. A similar approach, based on the internal transcribed spacer (ITS1) region of the fungal rRNA transcribed unit, was used for yeast strain monitoring. The SCI CFPs evolved faster when compared to the spontaneous ones. Moreover, the yeast strains applied did have an impact. The presence of S. cerevisiae IMDO 050523 was necessary for successful fermentation of the cocoa pulp-bean mass, which was characterized by the production of higher alcohols and esters. In contrast, the inoculation of H. opuntiae IMDO 020003 as the sole yeast strain led to underfermentation and a poor VOC profile, mainly due to its low competitiveness. The P. kudriavzevii IMDO 060005 strain tested in the present study did not contribute to a richer VOC profile. Although differences in VOCs could be revealed in the cocoa liquors, no significant effect on the final chocolates could be obtained, mainly due to a great impact of cocoa liquor processing during chocolate-making. Hence, optimization of the starter culture mixture and cocoa liquor processing seem to be of pivotal importance.
Collapse
Affiliation(s)
- Dario Van de Voorde
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Eduardo Hernandez
- Laboratorio de Calidad e Innovación Agroalimentaria, Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Ghisolfi R, Bandini F, Vaccari F, Bellotti G, Bortolini C, Patrone V, Puglisi E, Morelli L. Bacterial and Fungal Communities Are Specifically Modulated by the Cocoa Bean Fermentation Method. Foods 2023; 12:foods12102024. [PMID: 37238842 DOI: 10.3390/foods12102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Cocoa bean fermentation is carried out in different production areas following various methods. This study aimed to assess how the bacterial and fungal communities were affected by box, ground or jute fermentation methods, using high-throughput sequencing (HTS) of phylogenetic amplicons. Moreover, an evaluation of the preferable fermentation method was carried out based on the microbial dynamics observed. Box fermentation resulted in higher bacterial species diversity, while beans processed on the ground had a wider fungal community. Lactobacillus fermentum and Pichia kudriavzevii were observed in all three fermentation methods studied. Moreover, Acetobacter tropicalis dominated box fermentation and Pseudomonas fluorescens abounded in ground-fermented samples. Hanseniaspora opuntiae was the most important yeast in jute and box, while Saccharomyces cerevisiae prevailed in the box and ground fermentation. PICRUST analysis was performed to identify potential interesting pathways. In conclusion, there were noticeable differences between the three different fermentation methods. Due to its limited microbial diversity and the presence of microorganisms that guarantee good fermentation, the box method was found to be preferable. Moreover, the present study allowed us to thoroughly explore the microbiota of differently treated cocoa beans and to better understand the technological processes useful to obtain a standardized end-product.
Collapse
Affiliation(s)
- Rebecca Ghisolfi
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Francesca Bandini
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Filippo Vaccari
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gabriele Bellotti
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Cristian Bortolini
- Soremartec srl (Ferrero Group), Piazzale P. Ferrero 1, 12051 Alba, Italy
| | - Vania Patrone
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Edoardo Puglisi
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
8
|
Criollo Nuñez J, Ramirez-Toro C, Bolivar G, Sandoval A AP, Lozano Tovar MD. Effect of microencapsulated inoculum of Pichia kudriavzevii on the fermentation and sensory quality of cacao CCN51 genotype. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2425-2435. [PMID: 36606570 DOI: 10.1002/jsfa.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Microencapsulated yeasts are a novel alternative as a delivery matrix for microbiological starters. This technology aims to protect the active compounds from adverse environmental conditions and prolong their useful life and could also improve the conditions of the starters for cocoa fermentation. The present study established the effective dose to apply the microencapsulated yeast Pichia kudriavzevii as a microbiological starter of fermentation and biotechnological strategy for promoting the biochemical dynamics and sensory expression of the cocoa variety CCN-51. For this, 0.5%, 1%, 2%, and 3% of microencapsulated P. kudriavzevii yeast insolated from the artisanal fermentation process of cocoa was added to the cocoa mass to be fermented and studied on a laboratory scale. RESULTS The partial least squares regression of fermentation was related in four quartiles, comprising the hedonic judgments of the sensory evaluation with the biochemical traits of the cocoa liquor, finding a high correlation between the physicochemical variables total phenols, percentage of insufficiently fermented grains, and percentage of total acidity, with a level of bitterness and defects found in liquors with the addition of 0.5% of microencapsulated starter. The treatments with the addition of 2% and 3% of the inoculum showed a high correlation between the variables pH, total anthocyanins, cocoa, fruity and floral aromas, sweet taste, and general aroma perception. CONCLUSION The higher presence of volatile compounds such as 2,3-butanediol associated with cocoa aroma and 1-phenyl-2-ethanol and acetophenone associated with aromatic descriptors of fruity and floral series allowed establishment in 2% of microencapsulated P. kudriavzevii yeast, comprising the effective dose for promoting the biochemical dynamics of laboratory-scale fermentation and the development of cocoa, as well as the fruity and floral aromas of cocoa CCN-51 liquor. The microencapsulation is suitable for cocoa starters. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jenifer Criollo Nuñez
- Centro de Investigación Nataima, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Tolima, Colombia
- Facultad de Ingeniería, Escuela de Ingeniería de Alimentos, Universidad del Valle, Cali, Colombia
| | - Cristina Ramirez-Toro
- Facultad de Ingeniería, Escuela de Ingeniería de Alimentos, Universidad del Valle, Cali, Colombia
| | - German Bolivar
- Facultad de Ciencias Naturales y Exactas, Biología Marina, Universidad del Valle, Cali, Colombia
| | | | - María D Lozano Tovar
- Centro de Investigación Nataima, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Tolima, Colombia
| |
Collapse
|
9
|
Darwesh OM, Eweys AS, Zhao YS, Matter IA. Application of environmental-safe fermentation with Saccharomyces cerevisiae for increasing the cinnamon biological activities. BIORESOUR BIOPROCESS 2023; 10:12. [PMID: 38647584 PMCID: PMC10992612 DOI: 10.1186/s40643-023-00632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
The effect of fermentation by Saccharomyces cerevisiae on biological properties of cinnamon (Cinnamomum cassia) was investigated. The study demonstrated that the extract of S. cerevisiae-fermented cinnamon (S.C.FC) has antioxidants higher than non-fermented one. The optimum results for antioxidant yield were noted with 107 CFU S. cerevisiae/10 g cinnamon and 70 mL of dH2O at pH 6 and incubated for 3 d at 35 °C. Under optimum conditions, ABTS, DPPH, and H2O2 radical-scavenging activity increased by 43.8, 61.5, and 71.9%, respectively. Additionally, the total phenols and flavonoids in S.C.FC were increased by 81.3 and 415% compared by non-fermented one. The fermented cinnamon had antimicrobial activity against L. monocytogenes, S. aureus, E. coli, S. typhi, and C. albicans. Also, the anti-inflammatory properties were increased from 89 to 92% after fermentation. The lyophilized extract of S.C.FC showed positive effect against Huh7 cancer cells which decreased by 31% at the concentration of 700 µg/mL. According to HPLC analysis, p-hydroxybenzoic acid, gentisic acid, catechin, chlorogenic acid, caffeic acid, and syringic acid were increased by 116, 33.2, 59.6, 50.6, 1.6, and 16.9%, respectively. Our findings suggest the applicability of cinnamon fermentation using S. cerevisiae as a useful tool for processing functional foods to increase their antioxidant and anti-inflammatory content.
Collapse
Affiliation(s)
- Osama M Darwesh
- Agricultural Microbiology Department, National Research Centre, Cairo, 12622, Egypt.
| | - Aya S Eweys
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yan-Sheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ibrahim A Matter
- Agricultural Microbiology Department, National Research Centre, Cairo, 12622, Egypt
| |
Collapse
|
10
|
Díaz-Muñoz C, Van de Voorde D, Tuenter E, Lemarcq V, Van de Walle D, Soares Maio JP, Mencía A, Hernandez CE, Comasio A, Sioriki E, Weckx S, Pieters L, Dewettinck K, De Vuyst L. An in-depth multiphasic analysis of the chocolate production chain, from bean to bar, demonstrates the superiority of Saccharomyces cerevisiae over Hanseniaspora opuntiae as functional starter culture during cocoa fermentation. Food Microbiol 2023; 109:104115. [DOI: 10.1016/j.fm.2022.104115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
|
11
|
Fine Cocoa Fermentation with Selected Lactic Acid Bacteria: Fermentation Performance and Impact on Chocolate Composition and Sensory Properties. Foods 2023; 12:foods12020340. [PMID: 36673432 PMCID: PMC9858393 DOI: 10.3390/foods12020340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Cocoa fermentation is a central step in chocolate manufacturing. In this research, we performed controlled fermentations of a fine cocoa variety to evaluate the impact of adjunct cultures of selected lactic acid bacteria (LAB) on fermentation parameters, chemical composition, and sensory profile of fine cocoa and chocolate. Improved fermentation processes were carried out at the Centre for the Integral Transformation of Cacao (CETICO) in Dominican Republic. Two strains of LAB, previously isolated from cocoa, and belonging to Lactiplantibacillus fabifermentans and Furfurilactibacillus rossiae species, were employed. Fermentation parameters, protein, peptide and free amino acid profiles of the fermented cocoa and volatile molecules were determined. Sensory analysis of the derived chocolate was also carried out. The obtained results indicated that the addition of the adjunct cultures influences the proteolytic processes and the free amino acid profile. Finally, the adjunct cultures increased the complexity of the flavour profile of the chocolate as they received a higher score for descriptors commonly used for fine chocolate, such as honey and red fruits. The results obtained showed that the selected strains can be an added value to the development of specific flavours that are desirable at industrial level.
Collapse
|
12
|
Lima CODC, De Castro GM, Solar R, Vaz ABM, Lobo F, Pereira G, Rodrigues C, Vandenberghe L, Martins Pinto LR, da Costa AM, Koblitz MGB, Benevides RG, Azevedo V, Uetanabaro APT, Soccol CR, Góes-Neto A. Unraveling potential enzymes and their functional role in fine cocoa beans fermentation using temporal shotgun metagenomics. Front Microbiol 2022; 13:994524. [PMID: 36406426 PMCID: PMC9671152 DOI: 10.3389/fmicb.2022.994524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/04/2022] [Indexed: 03/23/2024] Open
Abstract
Cocoa beans fermentation is a spontaneous process, essential for the generation of quality starting material for fine chocolate production. The understanding of this process has been studied by the application of high-throughput sequencing technologies, which grants a better assessment of the different microbial taxa and their genes involved in this microbial succession. The present study used shotgun metagenomics to determine the enzyme-coding genes of the microbiota found in two different groups of cocoa beans varieties during the fermentation process. The statistical evaluation of the most abundant genes in each group and time studied allowed us to identify the potential metabolic pathways involved in the success of the different microorganisms. The results showed that, albeit the distinction between the initial (0 h) microbiota of each varietal group was clear, throughout fermentation (24-144 h) this difference disappeared, indicating the existence of selection pressures. Changes in the microbiota enzyme-coding genes over time pointed to the distinct ordering of fermentation at 24-48 h (T1), 72-96 h (T2), and 120-144 h (T3). At T1, the significantly more abundant enzyme-coding genes were related to threonine metabolism and those genes related to the glycolytic pathway, explained by the abundance of sugars in the medium. At T2, the genes linked to the metabolism of ceramides and hopanoids lipids were clearly dominant, which are associated with the resistance of microbial species to extreme temperatures and pH values. In T3, genes linked to trehalose metabolism, related to the response to heat stress, dominated. The results obtained in this study provided insights into the potential functionality of microbial community succession correlated to gene function, which could improve cocoa processing practices to ensure the production of more stable quality end products.
Collapse
Affiliation(s)
- Carolina O. de C. Lima
- Department of Biological Sciences, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| | - Giovanni M. De Castro
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Solar
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Aline B. M. Vaz
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Francisco Lobo
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gilberto Pereira
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Cristine Rodrigues
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Luciana Vandenberghe
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | - Andréa Miura da Costa
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Maria Gabriela Bello Koblitz
- Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Guimarães Benevides
- Department of Biological Sciences, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Aristóteles Góes-Neto
- Department of Biological Sciences, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
13
|
Díaz-Muñoz C, Verce M, De Vuyst L, Weckx S. Phylogenomics of a Saccharomyces cerevisiae cocoa strain reveals adaptation to a West African fermented food population. iScience 2022; 25:105309. [PMID: 36304120 PMCID: PMC9593892 DOI: 10.1016/j.isci.2022.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Various yeast strains have been proposed as candidate starter cultures for cocoa fermentation, especially strains of Saccharomyces cerevisiae. In the current study, the genome of the cocoa strain S. cerevisiae IMDO 050523 was unraveled based on a combination of long- and short-read sequencing. It consisted of 16 nuclear chromosomes and a mitochondrial chromosome, which were organized in 20 contigs, with only two small gaps. A phylogenomic analysis of this genome together with another 105 S cerevisiae genomes, among which 20 from cocoa strains showed a geographical distribution of the latter, including S. cerevisiae IMDO 050523. Its genome clustered together with that of a West African fermented food population, indicating a wider adaptation to West African food niches than cocoa. Furthermore, S. cerevisiae IMDO 050523 contained genetic signatures involved in sucrose hydrolysis, pectin degradation, osmotolerance, and conserved amino acid changes in key ester-producing enzymes that could point toward specific niche adaptations.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium,Corresponding author
| |
Collapse
|
14
|
Yeasts as Producers of Flavor Precursors during Cocoa Bean Fermentation and Their Relevance as Starter Cultures: A Review. FERMENTATION 2022. [DOI: 10.3390/fermentation8070331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the fermentation of cocoa beans, the yeasts produce volatile organic compounds (VOCs). Through reactions associated with amino acid metabolism, yeasts generate important aroma precursors as acetate esters and fatty acid ethyl esters are essential in developing fruity flavors and aromas in the final product (usually chocolate). In addition, some yeasts may have pectinolytic and antifungal activity, which is desirable in the post-harvest process of cocoa. The main yeast species in cocoa fermentation are Saccharomyces cerevisiae, Pichia kudriavzevii, and Hanseniaspora opuntiae. These produce higher alcohols and acetyl-CoA to make acetate–esters, compounds that produce floral and fruity notes. However, there are still controversies in scientific reports because some mention that there are no significant differences in the sensory characteristics of the final product. Others mention that the fermentation of cocoa by yeast has a significant influence on improving the sensory attributes of the final product. However, using yeasts as starter cultures for cocoa bean fermentation is recommended to homogenize sensory attributes such as notes and flavors in chocolate.
Collapse
|
15
|
Alvarez-Villagomez K, Ledesma-Escobar C, Priego-Capote F, Robles-Olvera V, García-Alamilla P. Influence of the starter culture on the volatile profile of processed cocoa beans by gas chromatography–mass spectrometry in high resolution mode. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Screening Wild Yeast Isolated from Cocoa Bean Fermentation Using Volatile Compounds Profile. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030902. [PMID: 35164165 PMCID: PMC8838919 DOI: 10.3390/molecules27030902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/03/2022]
Abstract
Yeasts are one of the main ingredients responsible for flavor precursors production associated with sensorial characteristics in chocolate. Using wild yeast isolated from cocoa beans fermentation is emerging as a strategy for developing starter cultures. However, the volatile compounds (VCs) produced by yeasts are not yet known. This study aimed to select wild yeasts with the potential to produce volatile compounds associated with desirable flavor attributes. A total of 150 wild yeasts strains were isolated from the spontaneous cocoa beans fermentation, of which 40 were identified by morphology and physiological features. VCs produced were identified and quantified using SPME-GC-MS and GC-FID and profiles were evaluated statistically by PCA and cluster analysis for the compounds that had a high odor threshold value. Thirty-six VCs produced by these yeasts were identified into six main families, namely esters, alcohols, acids, aldehydes, ketones, and pyrazines. PCA showed the separation of the yeasts into two main clusters. Strains, Y195 and Y246, belong to the first cluster and are the highest producers of alcohols related to floral perceptions. In the second cluster, thirty-three yeasts were grouped by their ability to produce esters. Of all of them, Y110MRS stood out for producing 2-phenyl ethyl acetate and isoamyl acetate associated with fruity perceptions. This screening allowed us to identify yeasts that produced VCs of technological interest and which could be used to develop a starter culture.
Collapse
|
17
|
Díaz-Muñoz C, De Vuyst L. Functional yeast starter cultures for cocoa fermentation. J Appl Microbiol 2021; 133:39-66. [PMID: 34599633 PMCID: PMC9542016 DOI: 10.1111/jam.15312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023]
Abstract
The quest to develop a performant starter culture mixture to be applied in cocoa fermentation processes started in the 20th century, aiming at achieving high‐quality, reproducible chocolates with improved organoleptic properties. Since then, different yeasts have been proposed as candidate starter cultures, as this microbial group plays a key role during fermentation of the cocoa pulp‐bean mass. Yeast starter culture‐initiated fermentation trials have been performed worldwide through the equatorial zone and the effects of yeast inoculation have been analysed as a function of the cocoa variety (Forastero, Trinitario and hybrids) and fermentation method (farm‐, small‐ and micro‐scale) through the application of physicochemical, microbiological and chemical techniques. A thorough screening of candidate yeast starter culture strains is sometimes done to obtain the best performing strains to steer the cocoa fermentation process and/or to enhance specific features, such as pectinolysis, ethanol production, citrate assimilation and flavour production. Besides their effects during cocoa fermentation, a significant influence of the starter culture mixture applied is often found on the cocoa liquors and/or chocolates produced thereof. Thus, starter culture‐initiated cocoa fermentation processes constitute a suitable strategy to elaborate improved flavourful chocolate products.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
18
|
Bioprospecting of indigenous yeasts involved in cocoa fermentation using sensory and chemical strategies for selecting a starter inoculum. Food Microbiol 2021; 101:103896. [PMID: 34579856 DOI: 10.1016/j.fm.2021.103896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/11/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023]
Abstract
Cocoa fermentation is the key and most relevant process in the synthesis of aroma and flavor precursor molecules in dry beans or raw material for producing chocolate. Because this process occurs in an uncontrolled manner, the chemical and sensory quality of beans can vary and be negatively affected. One of the strategies for the standardization and improvement of the sensory quality of chocolate is the introduction of microbial starter cultures. Among these, yeasts involved in fermentation have been studied because of their pectinolytic and metabolic potential in the production of volatile compounds. This study was aimed at isolating and characterizing, both sensory and chemically, yeasts involved in cocoa fermentation that could be used as starter cultures from two agro-ecological regions for the cultivation of cocoa in Colombia. The microbiological analyses identified 22 species represented mostly by Saccharomyces cerevisiae, Wickerhamomyces anomalus and Pichia sp. The preliminary sensory analysis of eight of these species showed that Hanseniaspora thailandica and Pichia kluyveri presented sensory profiles characterized by high intensity levels of fruity notes, which could be ascribed to the production of ethyl acetate, isoamyl acetate, and 2-phenylethyl acetate.
Collapse
|
19
|
Moreira I, Costa J, Vilela L, Lima N, Santos C, Schwan R. Influence of S. cerevisiae and P. kluyveri as starters on chocolate flavour. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4409-4419. [PMID: 33421137 DOI: 10.1002/jsfa.11082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/27/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fermented cocoa beans (Theobroma cacao L.) are a pivotal raw material for chocolate production. A cocktail yeast applied in the cocoa fermentation process can promote the formation of pleasant metabolites. Saccharomyces, Pichia and Hanseniaspora have been widely used in fermentation to improve the final product organoleptic profile, highlighting that fermentation is a critical point for chocolate flavour precursor production. This study aims to evaluate the impact of Pichia kluyveri and Saccharomyces cerevisiae strains as starter cultures on the fermentation for two cocoa hybrids, FA13 and CEPEC2002. RESULTS During fermentation processes, volatile organic compounds (VOCs) and protein profiles were assessed. Chocolates produced were also assessed regarding the presence of VOCs. Eighty VOCs were identified using gas chromatography coupled to mass spectrometry analysis. Mass spectrometry provided the protein profile evolution during fermentation and showed that the profiles changed with inoculation type (spontaneous versus inoculated fermentation). Chocolate obtained from FA13 inoculated with S. cerevisiae strain contained a greater amount of organics acids, being categorised as sourer than chocolate produced by spontaneous fermentation of FA13. CEPEC2002 inoculated with S. cerevisiae strain in co-culture with P. kluyveri strain generated less sour and sweeter chocolate than spontaneous fermentation only. CONCLUSIONS Chocolates from inoculated assays with starter cultures were more accepted by evaluators, highlighting that P. kluyveri and S. cerevisiae influence the composition of VOCs. Besides, protein profiles also changed throughout fermentation. Further investigation should be conducted to clarify protein degradation dynamics during inoculated fermentations to define which of the microbial cultures positively affect the chocolate sensory characteristics. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Igor Moreira
- Department of Food Science, Federal University of Lavras, Lavras, Brazil
| | - Jéssica Costa
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Leonardo Vilela
- Department of Biology, Federal University of Lavras, Lavras, Brazil
| | - Nelson Lima
- CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho, University of Minho, Braga, Portugal
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco, Chile
| | - Rosane Schwan
- Department of Biology, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
20
|
Del Frari G, Ferreira RB. Microbial Blends: Terminology Overview and Introduction of the Neologism "Skopobiota". Front Microbiol 2021; 12:659592. [PMID: 34276594 PMCID: PMC8283781 DOI: 10.3389/fmicb.2021.659592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Giovanni Del Frari
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo Boavida Ferreira
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
How Climatic Seasons of the Amazon Biome Affect the Aromatic and Bioactive Profiles of Fermented and Dried Cocoa Beans? Molecules 2021; 26:molecules26133759. [PMID: 34206169 PMCID: PMC8270247 DOI: 10.3390/molecules26133759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 11/21/2022] Open
Abstract
In addition to the vast diversity of fauna and flora, the Brazilian Amazon has different climatic periods characterized by periods with greater and lesser rainfall. The main objective of this research was to verify the influence of climatic seasons in the Brazilian Amazon (northeast of Pará state) concerning the aromatic and bioactive profiles of fermented and dried cocoa seeds. About 200 kg of seeds was fermented using specific protocols of local producers. Physicochemical analyzes (total titratable acidity, pH, total phenolic compounds, quantification of monomeric phenolics and methylxanthines) and volatile compounds by GC-MS were carried out. We observed that: in the summer, the highest levels of aldehydes were identified, such as benzaldehyde (6.34%) and phenylacetaldehyde (36.73%), related to the fermented cocoa and honey aromas, respectively; and a total of 27.89% of this same class was identified during winter. There were significant differences (p ≤ 0.05, Tukey test) in the profile of bioactive compounds (catechin, epicatechin, caffeine, and theobromine), being higher in fermented almonds in winter. This study indicates that the climatic seasons in the Amazon affect the aromatic and bioactive profiles and could produce a new identity standard (summer and winter Amazon) for the cocoa almonds and their products.
Collapse
|
22
|
Abstract
Acetic acid bacteria are involved in many food and beverage fermentation processes. They play an important role in cocoa bean fermentation through their acetic acid production. They initiate the development of some of the flavor precursors that are necessary for the organoleptic quality of cocoa, and for the beans’ color. The development of starter cultures with local strains would enable the preservation of the microbial biodiversity of each country in cocoa-producing areas, and would also control the fermentation. This approach could avoid the standardization of cocoa bean fermentation in the producing countries. One hundred and thirty acetic acid bacteria were isolated from three different cocoa-producing countries, and were identified based on their 16S rRNA gene sequence. The predominate strains were grown in a cocoa pulp simulation medium (CPSM-AAB) in order to compare their physiological traits regarding their specific growth rate, ethanol and lactic acid consumption, acetic acid production, and relative preferences of carbon sources. Finally, the intraspecific diversity of the strains was then assessed through the analysis of their genomic polymorphism by (GTG)5-PCR fingerprinting. Our results showed that Acetobacter pasteurianus was the most recovered species in all of the origins, with 86 isolates out of 130 cultures. A great similarity was observed between the strains according to their physiological characterization and genomic polymorphisms. However, the multi-parametric clustering results in the different groups highlighted some differences in their basic metabolism, such as their efficiency in converting carbon substrates to acetate, and their relative affinity to lactic acid and ethanol. The A. pasteurianus strains showed different behaviors regarding their ability to oxidize ethanol and lactic acid into acetic acid, and in their relative preference for each substrate. The impact of these behaviors on the cocoa quality should be investigated, and should be considered as a criterion for the selection of acetic acid bacteria starters.
Collapse
|
23
|
De Vuyst L, Leroy F. Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiol Rev 2021; 44:432-453. [PMID: 32420601 DOI: 10.1093/femsre/fuaa014] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/16/2020] [Indexed: 01/07/2023] Open
Abstract
Cured cocoa beans are obtained through a post-harvest, batchwise process of fermentation and drying carried out on farms in the equatorial zone. Fermentation of cocoa pulp-bean mass is performed mainly in heaps or boxes. It is made possible by a succession of yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) activities. Yeasts ferment the glucose of the cocoa pulp into ethanol, perform pectinolysis and produce flavour compounds, such as (higher) alcohols, aldehydes, organic acids and esters. LAB ferment the glucose, fructose and citric acid of the cocoa pulp into lactic acid, acetic acid, mannitol and pyruvate, generate a microbiologically stable fermentation environment, provide lactate as carbon source for the indispensable growth of AAB, and contribute to the cocoa and chocolate flavours by the production of sugar alcohols, organic acids, (higher) alcohols and aldehydes. AAB oxidize the ethanol into acetic acid, which penetrates into the bean cotyledons to prevent seed germination. Destruction of the subcellular seed structure in turn initiates enzymatic and non-enzymatic conversions inside the cocoa beans, which provides the necessary colour and flavour precursor molecules (hydrophilic peptides, hydrophobic amino acids and reducing sugars) for later roasting of the cured cocoa beans, the first step of the chocolate-making.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
24
|
Mass Spectrometry-Based Flavor Monitoring of Peruvian Chocolate Fabrication Process. Metabolites 2021; 11:metabo11020071. [PMID: 33530548 PMCID: PMC7911988 DOI: 10.3390/metabo11020071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 02/03/2023] Open
Abstract
Flavor is one of the most prominent characteristics of chocolate and is crucial in determining the price the consumer is willing to pay. At present, two types of cocoa beans have been characterized according to their flavor and aroma profile, i.e., (1) the bulk (or ordinary) and (2) the fine flavor cocoa (FFC). The FFC has been distinguished from bulk cocoa for having a great variety of flavors. Aiming to differentiate the FFC bean origin of Peruvian chocolate, an analytical methodology using gas chromatography coupled to mass spectrometry (GC-MS) was developed. This methodology allows us to characterize eleven volatile organic compounds correlated to the aromatic profile of FFC chocolate from this geographical region (based on buttery, fruity, floral, ethereal sweet, and roasted flavors). Monitoring these 11 flavor compounds during the chain of industrial processes in a retrospective way, starting from the final chocolate bar towards pre-roasted cocoa beans, allows us to better understand the cocoa flavor development involved during each stage. Hence, this methodology was useful to distinguish chocolates from different regions, north and south of Peru, and production lines. This research can benefit the chocolate industry as a quality control protocol, from the raw material to the final product.
Collapse
|
25
|
Díaz-Muñoz C, Van de Voorde D, Comasio A, Verce M, Hernandez CE, Weckx S, De Vuyst L. Curing of Cocoa Beans: Fine-Scale Monitoring of the Starter Cultures Applied and Metabolomics of the Fermentation and Drying Steps. Front Microbiol 2021; 11:616875. [PMID: 33505385 PMCID: PMC7829357 DOI: 10.3389/fmicb.2020.616875] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
Starter culture-initiated cocoa fermentation processes can be applied to improve the quality of cured cocoa beans. However, an accurate monitoring of the microbial strains inoculated in fresh cocoa pulp-bean mass to assess their contribution to the cocoa bean curing process is still lacking. In the present study, eight different cocoa fermentation processes were carried out with Trinitario cocoa in vessels in Costa Rica to assess the contribution of two candidate yeast starter culture strains, namely Saccharomyces cerevisiae IMDO 050523 and Pichia kudriavzevii IMDO 020508, inoculated in combination with Limosilactobacillus fermentum IMDO 0611222 and Acetobacter pasteurianus IMDO 0506386. A multiphasic approach, consisting of culture-dependent selective plating and incubation, rRNA-PCR-DGGE community profiling of agar plate washes, and culture-independent high-throughput amplicon sequencing, combined with a metabolite target analysis of non-volatile and volatile organic compounds (VOCs), was performed on samples from the fermentation and/or drying steps. The different starter culture mixtures applied effectively steered the cocoa fermentation processes performed. Moreover, the use of an amplicon sequence variant (ASV) approach, aligning these ASVs to the whole-genome sequences of the inoculated strains, allowed the monitoring of these inoculated strains and their differentiation from very closely related variants naturally present in the background or spontaneous fermentation processes. Further, traits such as malolactic fermentation during the fermentation step and acetoin and tetramethylpyrazine formation during the drying step could be unraveled. Finally, the yeast strains inoculated influenced the substrate consumption and metabolite production during all starter culture-initiated fermentation processes. This had an impact on the VOC profiles of the cured cocoa beans. Whereas the P. kudriavzevii strain produced a wide range of VOCs in the cocoa pulp, the S. cerevisiae strain mostly influenced the VOC composition of the cured cocoa beans.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dario Van de Voorde
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Eduardo Hernandez
- Laboratorio de Calidad e Innovación Agroalimentaria, Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
26
|
Chagas Junior GCA, Ferreira NR, Andrade EHDA, do Nascimento LD, de Siqueira FC, Lopes AS. Profile of Volatile Compounds of On-Farm Fermented and Dried Cocoa Beans Inoculated with Saccharomyces cerevisiae KY794742 and Pichia kudriavzevii KY794725. Molecules 2021; 26:molecules26020344. [PMID: 33440885 PMCID: PMC7827241 DOI: 10.3390/molecules26020344] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023] Open
Abstract
This study aimed to identify the volatile compounds in the fermented and dried cocoa beans conducted with three distinct inoculants of yeast species due to their high fermentative capacity: Saccharomyces cerevisiae, Pichia kudriavzevii, the mixture in equal proportions 1:1 of both species, and a control fermentation (with no inoculum application). Three starter cultures of yeasts, previously isolated and identified in cocoa fermentation in the municipality of Tomé-Açu, Pará state, Brazil. The seeds with pulp were removed manually and placed in wooden boxes for the fermentation process that lasted from 6 to 7 days. On the last day of fermentation, the almonds were packaged properly and placed to dry (36 °C), followed by preparation for the analysis of volatile compounds by GC-MS technique. In addition to the control fermentation, a high capacity for the formation of desirable compounds in chocolate by the inoculants with P. kudriavzevii was observed, which was confirmed through multivariate analyses, classifying these almonds with the highest content of aldehydes, esters, ketones and alcohols and low concentration of off-flavours. We conclude that the addition of mixed culture starter can be an excellent alternative for cocoa producers, suggesting obtaining cocoa beans with desirable characteristics for chocolate production, as well as creating a product identity for the producing region.
Collapse
Affiliation(s)
- Gilson Celso Albuquerque Chagas Junior
- Laboratório de Processos Biotecnológicos (LABIOTEC), Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), Belém 66075-110, Brazil;
- Correspondence: (G.C.A.C.J.); (N.R.F.); (A.S.L.)
| | - Nelson Rosa Ferreira
- Laboratório de Processos Biotecnológicos (LABIOTEC), Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), Belém 66075-110, Brazil;
- Correspondence: (G.C.A.C.J.); (N.R.F.); (A.S.L.)
| | - Eloisa Helena de Aguiar Andrade
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1900, Terra Firme, Belém 66077-830, Brazil; (E.H.d.A.A.); (L.D.d.N.)
| | - Lidiane Diniz do Nascimento
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1900, Terra Firme, Belém 66077-830, Brazil; (E.H.d.A.A.); (L.D.d.N.)
| | - Francilia Campos de Siqueira
- Laboratório de Processos Biotecnológicos (LABIOTEC), Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), Belém 66075-110, Brazil;
| | - Alessandra Santos Lopes
- Laboratório de Processos Biotecnológicos (LABIOTEC), Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), Belém 66075-110, Brazil;
- Correspondence: (G.C.A.C.J.); (N.R.F.); (A.S.L.)
| |
Collapse
|
27
|
Kouamé C, Loiseau G, Grabulos J, Boulanger R, Mestres C. Development of a model for the alcoholic fermentation of cocoa beans by a Saccharomyces cerevisiae strain. Int J Food Microbiol 2020; 337:108917. [PMID: 33126076 DOI: 10.1016/j.ijfoodmicro.2020.108917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/30/2020] [Accepted: 10/04/2020] [Indexed: 11/25/2022]
Abstract
The aromatic quality of chocolate requires the use of cocoa with high aromatic potential, this being acquired during the fermentation of cocoa beans. Traditional fermentation is still often carried out on a small scale with wild strains of yeasts and acetic bacteria and under poorly controlled conditions leading to cocoa quality ranging from best to worst. This study is the first part of a project aiming to control quality of cocoa to produce high aromatic quality chocolate by using a mixed starter of selected strains of yeast and acetic bacteria and by controlling the conditions of fermentation. To achieve this objective, a mathematical model of the alcoholic fermentation of cocoa beans has been developed. The growth, glucose consumption and ethanol production of Saccharomyces cerevisiae LM strain in synthetic broth were modeled for the most important intrinsic (pH, glucose, ethanol, free nitrogen and oxygen levels) and extrinsic (temperature, oxygen level) fermentation parameters. The model was developed by combining the effects of individual conditions in a multiplicative way using the gamma concept. The model was validated in liquid synthetic medium at two different inoculation levels 104 and 106 CFU/mL with an increase in temperature that recorded during spontaneous fermentations. The model clearly shows that the level of inoculation and the speed of the increase in temperature clearly drive yeast growth, while other factors including pH and ethanol, free nitrogen and oxygen levels have no significant impact on yeast growth.
Collapse
Affiliation(s)
- Christelle Kouamé
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France
| | - Gérard Loiseau
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France.
| | - Joël Grabulos
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France
| | - Renaud Boulanger
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France
| | - Christian Mestres
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ Réunion, Montpellier, France
| |
Collapse
|
28
|
Domínguez-Pérez LA, Beltrán-Barrientos LM, González-Córdova AF, Hernández-Mendoza A, Vallejo-Cordoba B. Artisanal cocoa bean fermentation: From cocoa bean proteins to bioactive peptides with potential health benefits. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
29
|
Chemical implications and time reduction of on-farm cocoa fermentation by Saccharomyces cerevisiae and Pichia kudriavzevii. Food Chem 2020; 338:127834. [PMID: 32810810 DOI: 10.1016/j.foodchem.2020.127834] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
The use of starters during fermentation has been gaining momentum as it can warrant high-quality chocolate. The objective of this study was to investigate the influence of Saccharomyces cerevisiae (Sc) and Pichia kudriavzevii (Pk) during on-farm fermentation on physico-chemical and microbiological characteristics and levels of methylxanthines and bioactive amines of cocoa. Four treatments were used: ScPk (1:1), only Sc, only Pk, and no starter (control). The starters lead to changes throughout fermentation, but provided fermented cocoa with similar pH, titratable acidity, reducing sugars and phenolic compounds. ScPk shortened fermentation time by 24 h. The ScPk fermented and dried cocoa had higher levels of monomeric phenols, methylxanthines, phenylethylamine and lower levels of the putrefactive amines - putrescine and cadaverine (p < 0.05). The results were confirmed by multivariate analysis. Based on these results, the mixture of both yeasts species is a promising starter for cocoa fermentation decreasing duration time and modulating high-quality components.
Collapse
|
30
|
de C Lima CO, Vaz ABM, De Castro GM, Lobo F, Solar R, Rodrigues C, Martins Pinto LR, Vandenberghe L, Pereira G, Miúra da Costa A, Benevides RG, Azevedo V, Trovatti Uetanabaro AP, Soccol CR, Góes-Neto A. Integrating microbial metagenomics and physicochemical parameters and a new perspective on starter culture for fine cocoa fermentation. Food Microbiol 2020; 93:103608. [PMID: 32912581 DOI: 10.1016/j.fm.2020.103608] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/28/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Cocoa beans used for chocolate production are fermented seeds of Theobroma cacao obtained by a natural fermentation process. The flavors and chemical compounds produced during the fermentation process make this step one of the most important in fine chocolate production. Herein, an integrative analysis of the variation of microbial community structure, using a shotgun metagenomics approach and associated physicochemical features, was performed during fermentation of fine cocoa beans. Samples of Forastero variety (FOR) and a mixture of two hybrids (PS1319 and CCN51) (MIX) from Bahia, Brazil, were analyzed at 7 different times. In the beginning (0 h), the structures of microbial communities were very different between FOR and MIX, reflecting the original plant-associated microbiomes. The highest change in microbial community structures occurred at the first 24 h of fermentation, with a marked increase in temperature and acetic acid concentration, and pH decrease. At 24-48 h both microbial community structures were quite homogenous regarding temperature, acetic acid, succinic acid, pH, soluble proteins and total phenols. During 72-96 h, the community structure resembles an acidic and warmer environment, prevailing few acetic acid bacteria. Taxonomic richness and abundance at 72-144 h exhibited significant correlation with temperature, reducing sugars, succinic, and acetic acids. Finally, we recommend that dominant microbial species of spontaneous fine cocoa fermentations should be considered as inoculum in accordance with the farm/region and GMP to maintain a differential organoleptic feature for production of fine chocolate. In our study, a starter inoculum composed of Acetobacter pausterianus and Hanseniaspora opuntiae strains is indicated.
Collapse
Affiliation(s)
- Carolina O de C Lima
- Department of Biological Sciences, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, BA, 44036-900, Brazil
| | - Aline B M Vaz
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Giovanni M De Castro
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Francisco Lobo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Ricardo Solar
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Cristine Rodrigues
- Bioprocess Engineering and Biotechnology Department. Universidade Federal de Paraná (UFPR), Curitiba, PR, 81531-980, Brazil
| | - Luiz Roberto Martins Pinto
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Luciana Vandenberghe
- Bioprocess Engineering and Biotechnology Department. Universidade Federal de Paraná (UFPR), Curitiba, PR, 81531-980, Brazil
| | - Gilberto Pereira
- Bioprocess Engineering and Biotechnology Department. Universidade Federal de Paraná (UFPR), Curitiba, PR, 81531-980, Brazil
| | - Andréa Miúra da Costa
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Raquel Guimarães Benevides
- Department of Biological Sciences, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, BA, 44036-900, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | | | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department. Universidade Federal de Paraná (UFPR), Curitiba, PR, 81531-980, Brazil
| | - Aristóteles Góes-Neto
- Department of Biological Sciences, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, BA, 44036-900, Brazil; Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
31
|
Pacheco-Montealegre ME, Dávila-Mora LL, Botero-Rute LM, Reyes A, Caro-Quintero A. Fine Resolution Analysis of Microbial Communities Provides Insights Into the Variability of Cocoa Bean Fermentation. Front Microbiol 2020; 11:650. [PMID: 32351482 PMCID: PMC7174660 DOI: 10.3389/fmicb.2020.00650] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/20/2020] [Indexed: 01/18/2023] Open
Abstract
Cocoa bean fermentation is an important microbial process, where most metabolites that affect chocolate quality and aroma are generated. Production of reproducible high-quality beans is a major challenge because most fermentations occur in open containers with a lack of variable control. Here we present a study that aims to identify the effect of farm protocols, climate, and bean mass exposure, in the dynamics and composition of microbial communities. Using high-throughput sequencing of molecular markers for bacteria and yeasts, complemented with culture-based methods, we evaluated the microbial diversity and dynamics associated to spontaneous cocoa fermentation in two distinct agro-ecological zones in Colombia. The bacterial communities were classified at two levels of evolutionary relationship, at a coarse resolution (OTU-level) and at a finer resolution (oligotype-level). A total of six bacterial OTUs were present in both farms, following a microbial succession that starts with the Enterobacteraceae family (one OTU), transitioning to the Lactobacillaceae family (three OTUs), and finishing with Acetobacteraceae family (two OTUs). When undesirable practices were done, OTUs were observed at unexpected moments during the fermentation. At a finer taxonomic resolution, 48 oligotypes were identified, with 46 present in both farms. These oligotypes have different patterns of prevalence. In the case of Lactobacillaceae a high evenness was observed among oligotypes. In contrast, for Enterobacteraceae and Acetobacteraceae a high dominance of one or two oligotypes was observed, these oligotypes were the same for both farms, despite geographic location and season of sampling. When the overall fermentations were compared using correlations matrices of oligotypes abundance, they show a clear clustering by farm, suggesting that farm protocols generate a unique fingerprint in the dynamics and interactions of the microbial communities. The comparison between the upper and middle layers of the bean mass showed that environmental exposure affects the paces at which ecological successions occur, and therefore, is an important source of cocoa quality heterogeneity. In conclusion, the results presented here showed that the dynamics of microbial fermentation can be used to identify the sources of variability and evidence the need for better fermentation technologies that favor the production of reproducible high-quality cocoa beans.
Collapse
Affiliation(s)
- Mauricio Edilberto Pacheco-Montealegre
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA sede Tibaitatá, Mosquera, Colombia
- Grupo de Biología Computacional y Ecología Microbiana BCEM - Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogota, Colombia
| | | | - Lina Marcela Botero-Rute
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA sede Tibaitatá, Mosquera, Colombia
| | - Alejandro Reyes
- Grupo de Biología Computacional y Ecología Microbiana BCEM - Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogota, Colombia
| | - Alejandro Caro-Quintero
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA sede Tibaitatá, Mosquera, Colombia
| |
Collapse
|
32
|
Deuscher Z, Gourrat K, Repoux M, Boulanger R, Labouré H, Le Quéré JL. Key Aroma Compounds of Dark Chocolates Differing in Organoleptic Properties: A GC-O Comparative Study. Molecules 2020; 25:E1809. [PMID: 32326405 PMCID: PMC7221797 DOI: 10.3390/molecules25081809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 02/04/2023] Open
Abstract
Dark chocolate samples were previously classified into four sensory categories. The classification was modelled based on volatile compounds analyzed by direct introduction mass spectrometry of the chocolates' headspace. The purpose of the study was to identify the most discriminant odor-active compounds that should characterize the four sensory categories. To address the problem, a gas chromatography-olfactometry (GC-O) study was conducted by 12 assessors using a comparative detection frequency analysis (cDFA) approach on 12 exemplary samples. A nasal impact frequency (NIF) difference threshold combined with a statistical approach (Khi² test on k proportions) revealed 38 discriminative key odorants able to differentiate the samples and to characterize the sensory categories. A heatmap emphasized the 19 most discriminant key odorants, among which heterocyclic molecules (furanones, pyranones, lactones, one pyrrole, and one pyrazine) played a prominent role with secondary alcohols, acids, and esters. The initial sensory classes were retrieved using the discriminant key volatiles in a correspondence analysis (CA) and a hierarchical cluster analysis (HCA). Among the 38 discriminant key odorants, although previously identified in cocoa products, 21 were formally described for the first time as key aroma compounds of dark chocolate. Moreover, 13 key odorants were described for the first time in a cocoa product.
Collapse
Affiliation(s)
- Zoé Deuscher
- Centre des Sciences du Goût et de l’Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
| | - Karine Gourrat
- Centre des Sciences du Goût et de l’Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
- ChemoSens Platform, CSGA, F-21000 Dijon, France
| | - Marie Repoux
- Valrhona, 14 av. du Président Roosevelet, F-26602 Tain l’Hermitage, France
| | - Renaud Boulanger
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Réunion, F-34000 Montpellier, France
| | - Hélène Labouré
- Centre des Sciences du Goût et de l’Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jean-Luc Le Quéré
- Centre des Sciences du Goût et de l’Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
33
|
Ordoñez-Araque RH, Landines-Vera EF, Urresto-Villegas JC, Caicedo-Jaramillo CF. Microorganisms during cocoa fermentation: systematic review. FOODS AND RAW MATERIALS 2020. [DOI: 10.21603/2308-4057-2020-1-155-162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Cocoa (Theobroma cacao L.) originates from Ecuador. It is one of the oldest foods in the world. The fact that cocoa is the main component in chocolate industry makes it one of the most quoted raw materials today. The chemical, physical, microbiological, and sensory properties of cocoa determine its quality and, as a result, economic and nutritional value. The research objective was to conduct a detailed analysis of cocoa fermentation process and to study the transformations this raw material is subjected to during processing.
Study objects and methods. The present article introduces a substantial bibliographic review based on three databases: Science Direct, Scopus, and Medline. The scientific publications were selected according to several factors. First, they had to be relevant in terms of cocoa fermentation. Second, they were written in English or Spanish. Third, the papers were indexed in high-impact journals. The initial selection included 350 articles, while the final list of relevant publications featured only 50 works that met all the requirements specified above.
Results and discussion. The main characteristics of yeasts, lactic bacteria, and acetic bacteria were analyzed together with their main parameters to describe their activities during different stages of alcoholic, lactic, and acetic fermentation. A thorough analysis of the main enzyme-related processes that occur during fermentation makes it possible to optimize the use of substrates, temperature, time, pH, acidity, and nutrients. As a result, the finished product contains an optimal concentration of volatile compounds that are formed in the beans during fermentation. The study featured the main strains of fermentation-related microorganisms, their activities, main reactions, and products.
Conclusion. This study makes it possible to improve the process of fermentation to obtain beans with a better chemical composition.
Collapse
|
34
|
Parapouli M, Vasileiadis A, Afendra AS, Hatziloukas E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol 2020; 6:1-31. [PMID: 32226912 PMCID: PMC7099199 DOI: 10.3934/microbiol.2020001] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/19/2020] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae is the best studied eukaryote and a valuable tool for most aspects of basic research on eukaryotic organisms. This is due to its unicellular nature, which often simplifies matters, offering the combination of the facts that nearly all biological functions found in eukaryotes are also present and well conserved in S. cerevisiae. In addition, it is also easily amenable to genetic manipulation. Moreover, unlike other model organisms, S. cerevisiae is concomitantly of great importance for various biotechnological applications, some of which date back to several thousands of years. S. cerevisiae's biotechnological usefulness resides in its unique biological characteristics, i.e., its fermentation capacity, accompanied by the production of alcohol and CO2 and its resilience to adverse conditions of osmolarity and low pH. Among the most prominent applications involving the use of S. cerevisiae are the ones in food, beverage -especially wine- and biofuel production industries. This review focuses exactly on the function of S. cerevisiae in these applications, alone or in conjunction with other useful microorganisms involved in these processes. Furthermore, various aspects of the potential of the reservoir of wild, environmental, S. cerevisiae isolates are examined under the perspective of their use for such applications.
Collapse
Affiliation(s)
- Maria Parapouli
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| | - Anastasios Vasileiadis
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| | - Amalia-Sofia Afendra
- Genetics Laboratory, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Efstathios Hatziloukas
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
35
|
Exogenous bacterial composition changes dominate flavor deterioration of dried carrots during storage. Food Chem Toxicol 2019; 134:110833. [DOI: 10.1016/j.fct.2019.110833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/22/2022]
|
36
|
Papalexandratou Z, Kaasik K, Kauffmann LV, Skorstengaard A, Bouillon G, Espensen JL, Hansen LH, Jakobsen RR, Blennow A, Krych L, Castro-Mejía JL, Nielsen DS. Linking cocoa varietals and microbial diversity of Nicaraguan fine cocoa bean fermentations and their impact on final cocoa quality appreciation. Int J Food Microbiol 2019; 304:106-118. [PMID: 31176963 DOI: 10.1016/j.ijfoodmicro.2019.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/16/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Nicaraguan cocoa bean fermentations of several single local cocoa varieties originating from the same region (North Highlands of Nicaragua, San Jose de Bocay/El Cuá) were compared to fermentations of blended cocoa varietals from other producing regions of the country (Waslala and Nueva Guinea) making use of High Throughput Sequencing techniques, metabolite target analysis and sensory evaluation of cocoa liquor samples. A succession of the important cocoa-related yeasts Hanseniaspora uvarum/opuntiae, Saccharomyces cerevisiae and/or Pichia kudriavzevii was seen for single varietals and Nueva Guinea fermentations, while Kazachstania humilis dominated the mid and end phase of the Waslala cocoa fermentations. Tatumella species (mainly Tatumella terrea and Tatumella punctata) predominated the bacterial community at the onset of all fermentations followed by unusually late (generally 2 days into the fermentations) appearance of Lactobacillus fermentum relative to fermentations in other parts of the World. Acetobacter spp. were the main acetic acid bacteria during all fermentations, but also Gluconobacter spp. were involved in some single-variety fermentations. All fermentations proved complete as determined by metabolite analysis with bean sucrose being fully depleted and pulp sugars exhausted after 48-72 h of fermentation. From an organoleptic point of view, all Nicaraguan cocoas of this study reflected fine fruity (citrus or berry-like) flavours with distinct herbal or caramel notes. Floral notes were associated with the cases where P. kudriavzevii was involved in the later stages of fermentation. Intense citrus/fruity character was related to high pulp and bean citrate concentrations. Off-notes were found in some over-fermented batches where Bacillus spp. was detected. No relation between cut-test results and organoleptic appreciation was seen.
Collapse
Affiliation(s)
| | - Kristina Kaasik
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | | | - Albert Skorstengaard
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Gregoire Bouillon
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Julie Leth Espensen
- Ingemann Fine Cocoa, Managua, Nicaragua; Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Lars H Hansen
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | | | - Andreas Blennow
- Department of Plant & Environmental Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Josué L Castro-Mejía
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | | |
Collapse
|
37
|
Bastos VS, Uekane TM, Bello NA, de Rezende CM, Flosi Paschoalin VM, Del Aguila EM. Dynamics of volatile compounds in TSH 565 cocoa clone fermentation and their role on chocolate flavor in Southeast Brazil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:2874-2887. [PMID: 31205343 PMCID: PMC6542924 DOI: 10.1007/s13197-019-03736-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 10/26/2022]
Abstract
The effects of indigenous fermentation on volatile compound profiles in a Theobroma cacao L, TSH565 clone, resistant to Moniliophtora perniciosa and Phytophthora spp. were evaluated in Southern Brazil. Sixty-three volatile flavor compounds in pulp and 36 in grains were identified by SPME-HS/GC-MS and classified as terpenes, alcohols, esters, ketones and aldehydes, among others. The relative amount of these compounds and their evolution until the end of the fermentation process were assessed in both fresh and fermented grains/pulp masses. β-myrcene and β-cis-ocimene, among terpenes, were detected in high amounts and are associated to a fine chocolate aroma. The sensory evaluation of chocolates manufactured from the fermented cocoa was performed by trained panelists, which defined 15 sensory descriptors. Chocolates from the TSH565 cultivar were characterized by a rich, fruity, intense cocoa flavor and bitterness, which are valuable sensorial and commercial attributes.
Collapse
Affiliation(s)
- Valdeci S. Bastos
- Instituto de Química, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, Rio de Janeiro, RJ 21.941-909 Brazil
- Instituto Federal de Educação, Ciência e Tecnologia (IFS), Parque de Exposições João de Oliveira Dantas - Rodovia Juscelino Kubitschek, s/n - Nova Esperança, Nossa Senhora da Glória, SE 49680-000 Brazil
| | - Thais M. Uekane
- Instituto de Química, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, Rio de Janeiro, RJ 21.941-909 Brazil
| | - Neyde A. Bello
- CEPLAC - Comissão Executiva do Plano da Lavoura Cacaueira, km 22, Rodovia Ilhéus-Itabuna, S/N, Ilhéus, BA 45660-000 Brazil
| | - Claudia M. de Rezende
- Instituto de Química, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, Rio de Janeiro, RJ 21.941-909 Brazil
| | - Vânia M. Flosi Paschoalin
- Instituto de Química, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, Rio de Janeiro, RJ 21.941-909 Brazil
| | - Eduardo M. Del Aguila
- Instituto de Química, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, Rio de Janeiro, RJ 21.941-909 Brazil
| |
Collapse
|
38
|
Processing chocolate milk drink by low-pressure cold plasma technology. Food Chem 2019; 278:276-283. [DOI: 10.1016/j.foodchem.2018.11.061] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/22/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023]
|
39
|
Castro-Alayo EM, Idrogo-Vásquez G, Siche R, Cardenas-Toro FP. Formation of aromatic compounds precursors during fermentation of Criollo and Forastero cocoa. Heliyon 2019; 5:e01157. [PMID: 30775565 PMCID: PMC6356086 DOI: 10.1016/j.heliyon.2019.e01157] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/05/2018] [Accepted: 01/21/2019] [Indexed: 11/26/2022] Open
Abstract
There are three main genetic varieties of cocoa (Theobroma cacao L) used in chocolate making: Forastero, Trinitario and Criollo, which are distinguished by their aroma, an attribute that determines their quality. Criollo cocoa is of the highest quality and is used in the manufacture of fine chocolates because of its fruity aroma. The aroma of Criollo cocoa is defined by volatile compounds such as pyrazines and aldehydes, which are formed during roasting of the bean, from aroma precursors (reducing sugars and free amino acids) that are generated inside the bean via enzymatic reactions during fermentation; for this reason, fermentation is the most important process in the value chain. This review discusses the production of aroma precursors of Criollo and Forastero cocoa by studying the kinetics of spontaneous fermentation and the role of starter cultures to produce aroma precursors. Fine aroma precursors produced in the pulp during the fermentation phase will migrate into the bean when it's permeability is improved and then retained during the drying phase. Diffusion of aroma precursors into the cocoa bean may be possible, this process is mathematically characterized by the coefficient of molecular diffusion D, which describe the process of mass transfer via Fick's Second Law. The current state of knowledge is analyzed based on existing research and reports some gaps in the literature, suggesting future research that will be necessary for a better understanding of cocoa fermentation.
Collapse
Affiliation(s)
- Efraín M. Castro-Alayo
- Institute of Research, Innovation and Development for the Agricultural and Agroindustrial Sector of the Amazonas Region (IIDAA - Amazonas), Faculty of Engineering and Agricultural Sciences, Toribio Rodríguez de Mendoza National University of Amazonas, Higos Urco Street 342-350-356, Chachapoyas, Amazonas, Peru
- Section of Industrial Engineering, Department of Engineering, Pontifical Catholic University of Peru, Av. Universitaria 1801, San Miguel, Lima 32, Peru
| | - Guillermo Idrogo-Vásquez
- Institute of Research, Innovation and Development for the Agricultural and Agroindustrial Sector of the Amazonas Region (IIDAA - Amazonas), Faculty of Engineering and Agricultural Sciences, Toribio Rodríguez de Mendoza National University of Amazonas, Higos Urco Street 342-350-356, Chachapoyas, Amazonas, Peru
| | - Raúl Siche
- Institute of Research and Development, National University of Trujillo, Av. Juan Pablo II s/n, University City, Trujillo, Peru
| | - Fiorella P. Cardenas-Toro
- Section of Industrial Engineering, Department of Engineering, Pontifical Catholic University of Peru, Av. Universitaria 1801, San Miguel, Lima 32, Peru
| |
Collapse
|
40
|
Bastos VS, Santos MF, Gomes LP, Leite AM, Flosi Paschoalin VM, Del Aguila EM. Analysis of the cocobiota and metabolites of Moniliophthora perniciosa-resistant Theobroma cacao beans during spontaneous fermentation in southern Brazil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4963-4970. [PMID: 29577311 DOI: 10.1002/jsfa.9029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 02/13/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Cocoa bean fermentation is a spontaneous process involving a succession of microbial activities, yeasts, lactic acid, and acetic acid bacteria. The spontaneous fermentation of cocoa beans by Theobroma cacao TSH565 clonal variety, a highly productive hybrid resistant to Moniliophthora perniciosa and Phytophthora spp., was investigated. The natural cocobiota involved in the spontaneous fermentation of this hybrid in southern Brazil, was investigated by using both a culture-dependent microbiological analysis and a molecular analysis. The changes in the physicochemical characteristics and the kinetics of substrate utilization and metabolite production during fermentation were also evaluated. RESULTS Yeasts (178) and bacteria (244) isolated during fermentation were identified by partial sequencing of the ITS and 16S rDNAs, respectively. After 144 h of fermentation, the indigenous yeast community was composed of Hanseniaspora spp., Saccharomyces spp., and Pichia spp. The bacterial population comprised Lactococcus spp., Staphylococcus spp., Acetobacter spp. and Lactobacilli strains. The kinetics of substrate transformation reflected the dynamic composition of the cocobiota. Substrates such as glucose, fructose, sucrose, and citric acid, present at the beginning of fermentation, were metabolized to produce ethanol, acetic acid, and lactic acid. CONCLUSION The results described here provide new insights into microbial diversity in cocoa bean-pulp mass fermentation and the kinetics of metabolites synthesis, and pave the way for the selection of starter cultures to increase efficiency and consistency to obtain homogeneous and best quality cocoa products. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valdeci S Bastos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia, Nossa Sra. da Glória, Brazil
| | - Maria Fs Santos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laidson P Gomes
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Analy Mo Leite
- Universidade Federal do Rio de Janeiro/Campus Macaé. Rua Aloísio da Silva Gomes, Macaé, Brazil
| | | | - Eduardo M Del Aguila
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Bio-mediated generation of food flavors – Towards sustainable flavor production inspired by nature. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Moreira IMDV, Vilela LDF, Santos C, Lima N, Schwan RF. Volatile compounds and protein profiles analyses of fermented cocoa beans and chocolates from different hybrids cultivated in Brazil. Food Res Int 2018; 109:196-203. [PMID: 29803442 DOI: 10.1016/j.foodres.2018.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 11/26/2022]
Abstract
Cocoa beans from different geographical and genetic origins show distinct fermentation dynamics which result in different chocolate qualities. In order to understand the effects of genetic improvement of cocoa plants, in this work volatile compounds and proteins profiles of beginning and end of the fermentation from different cocoa hybrids (CEPEC2004, PH15, PS1319, SJ02) were searched. Moreover, sensorial characterization of the produced chocolate from these hybrids was performed. According to the results obtained, different volatile compounds were identified in fermented beans and in the chocolate produced. Chocolate from CEPEC2004 was the most accepted by judges and correlated with sweet and bitter taste which can be explained by the presence of desired flavor compounds, such as 2,3-butanediol and 2-methyl-1-butanol. A higher presence of acids (undesirable compounds) was observed in chocolates samples from PS1319 hybrid, that have resulted in the low acceptance by judges. In addition, MALDI-TOF MS analysis showed that during fermentation the protein profile was different among the hybrids, which indicates this kind of compounds also contributes to the cocoa-specific flavor.
Collapse
Affiliation(s)
| | - Leonardo de Figueiredo Vilela
- Post-Graduate Program in Agricultural Microbiology, Federal University of Lavras, Lavras 37200-000, Minas Gerais, Brazil
| | - Cledir Santos
- Post-Graduate Program in Agricultural Microbiology, Federal University of Lavras, Lavras 37200-000, Minas Gerais, Brazil; Department of Chemical Sciences and Natural Resources, CIBAMA, BIOREN, Universidad de La Frontera, Temuco 4811-230, Chile.
| | - Nelson Lima
- CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho, University of Minho, 4710-057 Braga, Portugal
| | - Rosane Freitas Schwan
- Post-Graduate Program in Agricultural Microbiology, Federal University of Lavras, Lavras 37200-000, Minas Gerais, Brazil
| |
Collapse
|
43
|
|