1
|
Milošević K, Lončarević D, Kalagasidis Krušić M, Hadnađev-Kostić M, Dostanić J. Eco-Friendly g-C 3N 4/Carboxymethyl Cellulose/Alginate Composite Hydrogels for Simultaneous Photocatalytic Degradation of Organic Dye Pollutants. Int J Mol Sci 2024; 25:7896. [PMID: 39063138 PMCID: PMC11277058 DOI: 10.3390/ijms25147896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The presented study was focused on the simple, eco-friendly synthesis of composite hydrogels of crosslinked carboxymethyl cellulose (CMC)/alginate (SA) with encapsulated g-C3N4 nanoparticles. The structural, textural, morphological, optical, and mechanical properties were determined using different methods. The encapsulation of g-C3N4 into CMC/SA copolymer resulted in the formation of composite hydrogels with a coherent structure, enhanced porosity, excellent photostability, and good adhesion. The ability of composite hydrogels to eliminate structurally different dyes with the same or opposite charge properties (cationic Methylene Blue and anionic Orange G and Remazol Brilliant Blue R) in both single- and binary-dye systems was examined through adsorption and photocatalytic reactions. The interactions between the dyes and g-C3N4 and the negatively charged CMC/SA copolymers had a notable influence on both the adsorption capacity and photodegradation efficiency of the prepared composites. Scavenger studies and leaching tests were conducted to gain insights into the primary reactive species and to assess the stability and long-term performance of the g-C3N4/CMC/SA beads. The commendable photocatalytic activity and excellent recyclability, coupled with the elimination of costly catalyst separation requirements, render the g-C3N4/CMC/SA composite hydrogels cost-effective and environmentally friendly materials, and strongly support their selection for tackling environmental pollution issues.
Collapse
Affiliation(s)
- Ksenija Milošević
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.L.); (J.D.)
| | - Davor Lončarević
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.L.); (J.D.)
| | - Melina Kalagasidis Krušić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Milica Hadnađev-Kostić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21102 Novi Sad, Serbia;
| | - Jasmina Dostanić
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.L.); (J.D.)
| |
Collapse
|
2
|
Das TK, Jesionek M, Çelik Y, Poater A. Catalytic polymer nanocomposites for environmental remediation of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165772. [PMID: 37517738 DOI: 10.1016/j.scitotenv.2023.165772] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The removal of harmful chemicals and species from water, soil, and air is a major challenge in environmental remediation, and a wide range of materials have been studied in this regard. To identify the optimal material for particular applications, research is still ongoing. Polymer nanocomposites (PNCs), which combine the benefits of nanoparticles with polymers, an alternative to conventional materials, may open up new possibilities to overcome this difficulty. They have remarkable mechanical capabilities and compatibility due to their polymer matrix with a very high surface area to volume ratio brought about by their special physical and chemical properties, and the extremely reactive surfaces of the nanofillers. Composites also provide a viable answer to the separation and reuse problems that hinder nanoparticles in routine use. Understanding these PNCs materials in depth and using them in practical environmental applications is still in the early stages of development. The review article demonstrates a crisp introduction to the PNCs with their advantageous properties as a catalyst in environmental remediation. It also provides a comprehensive explanation of the design procedure and synthesis methods for fabricating PNCs and examines in depth the design methods, principles, and design techniques that guide proper design. Current developments in the use of polymer nanocomposites for the pollutant treatment using three commonly used catalytic processes (catalytic and redox degradation, electrocatalytic degradation, and biocatalytic degradation) are demonstrated in detail. Additionally, significant advances in research on the aforementioned catalytic process and the mechanism by which contaminants are degraded are also amply illustrated. Finally, there is a summary of the research challenges and future prospects of catalytic PNCs in environmental remediation.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Institute of Physics - Center for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland.
| | - Marcin Jesionek
- Institute of Physics - Center for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
| | - Yasemin Çelik
- Department of Materials Science and Engineering, Eskişehir Technical University, 26555 Eskişehir, Turkey
| | - Albert Poater
- Institute of Computational Chemistry and Catalysis, Department of Chemistry, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| |
Collapse
|
3
|
Manjunatha M, Mahalingam H. Upcycling of waste EPS beads to immobilized codoped TiO 2 photocatalysts for ciprofloxacin degradation and E. coli disinfection under sunlight. Sci Rep 2023; 13:14631. [PMID: 37670130 PMCID: PMC10480149 DOI: 10.1038/s41598-023-41705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
The emerging global problem of antimicrobial resistance needs immediate attention. In this regard, this work demonstrates the use of expanded polystyrene waste in the synthesis of immobilized photocatalytic films for the treatment of antibiotics as well as for bacterial disinfection. A boron-cerium codoped TiO2 catalyst (of specific composition: B0.8Ce0.2TiO2) was immobilized in an expanded polystyrene (EPS) film prepared from waste EPS beads. These films were studied for the degradation of ciprofloxacin (CIP) and disinfection of E. coli under sunlight. The film with a catalyst loading of 20 wt% showed a maximum degradation of 89% in 240 min with a corresponding TOC reduction of 84%. A 7.4 and 6.3 log reduction from the bacterial inactivation studies in the presence and absence of antibiotics, respectively, was obtained. The EPS film was stable after five times of reuse, and no significant chemical changes in the used film were observed from FTIR analysis. The average thickness of the prepared film was found from FESEM analysis to be 1.09 mm. These EPS films were also tested for degradation of other antibiotics, such as norfloxacin, levofloxacin and moxifloxacin. The EPS films were tested in two different reactor volumes at optimum conditions. Also, the effectiveness of B0.8Ce0.2TiO2/EPS film in real water samples indicates its potential in large-scale and real-world applications. Thus, these B0.8Ce0.2TiO2/EPS films can be effectively employed for both degradation of ciprofloxacin and the disinfection of E. coli under solar light to solve the increasing problem of antimicrobial resistance.
Collapse
Affiliation(s)
- Manasa Manjunatha
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore, Karnataka, 575025, India
| | - Hari Mahalingam
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore, Karnataka, 575025, India.
| |
Collapse
|
4
|
Gulati S, Lingam B HN, Kumar S, Goyal K, Arora A, Varma RS. Improving the air quality with Functionalized Carbon Nanotubes: Sensing and remediation applications in the real world. CHEMOSPHERE 2022; 299:134468. [PMID: 35364076 DOI: 10.1016/j.chemosphere.2022.134468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
With the world developing exponentially every day, the collateral damage to air is incessant. There are many methods to purify the air but using carbon nanotubes (CNTs) as adsorbents remains one of the most efficient and reliable methods, due to their high maximum adsorption capacity which renders them extremely useful for removing pollutants from the air. The different types of CNTs, their synthesis, functionalization, purification, functioning, and advantages over conventional filters are deliberated along with diverse types of CNTs like single-walled (SWCNTs), multiwalled (MWCNTs), and others, which can be functionalized and deployed for the removal of harmful gases like oxides of nitrogen and sulphur, and ozone, and volatile organic compounds (VOCs), among others. A comprehensive description of CNTs is provided in this overview with illustrative examples from the past five years. The fabrication methods and target gases of many CNTs-based gas sensors are highlighted, in addition to the comparison of their properties, mainly sensitivity. The effect of functionalization on sensors has been discussed in detail for various composites targeting specific gases, including the future outlook of functionalized CNTs in assorted practical applications.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India.
| | - Harish Neela Lingam B
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India
| | - Kartika Goyal
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India
| | - Aryan Arora
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
5
|
Alshorifi FT, Alswat AA, Mannaa MA, Alotaibi MT, El-Bahy SM, Salama RS. Facile and Green Synthesis of Silver Quantum Dots Immobilized onto a Polymeric CTS-PEO Blend for the Photocatalytic Degradation of p-Nitrophenol. ACS OMEGA 2021; 6:30432-30441. [PMID: 34805673 PMCID: PMC8600520 DOI: 10.1021/acsomega.1c03735] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 05/17/2023]
Abstract
Immobilization of inorganic metal quantum dots (especially, noble transition metals) onto organic polymers to synthesize nanometal-polymer composites (NMPCs) has attracted considerable attention because of their advanced optical, electrical, catalytic/photocatalytic, and biological properties. Herein, novel, highly efficient, stable, and visible light-active NMPC photocatalysts consisting of silver quantum dots (Ag QDs) immobilized onto polymeric chitosan-polyethylene oxide (CTS-PEO) blend sheets have been successfully prepared by an in situ self-assembly facile casting method as a facile and green approach. The CTS-PEO blend polymer acts as a reducing and a stabilizing agent for Ag QDs which does not generate any environmental chemical pollutant. The prepared x wt % Ag QDs/CTS-PEO composites were fully characterized through X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis, and UV/visible spectroscopy. The characterization results indicated the successful synthesis of the Ag QDs/CTS-PEO composites by the interactions and complexation between x wt % Ag QDs and CTS-PEO blend sheets. TEM images revealed small granules randomly distributed onto the CTS-PEO blend sheets, indicating the immobilization of Ag QDs onto CTS-PEO composites. The presence of a surface plasmon resonance (SPR) band and the shifting of the absorption edge toward higher wavelengths in the UV/vis spectra indicated the formation of x wt % Ag QDs/CTS-PEO composites. The Ag QDs in the polymeric blend matrix led to remarkable enhancement in the optical, thermal, electrical, and photocatalytic properties of x wt % Ag QDs/CTS-PEO composites. The photocatalytic efficiency of the prepared composites was evaluated by the photodegradation of p-nitrophenol (PNP) under simulated sunlight. The maximum photocatalytic degradation reached 91.1% efficiency within 3 h for the 12.0 wt % Ag QDs/CTS-PEO photocatalyst. Generally, the Ag QDs immobilized onto CTS-PEO blend composites significantly enhance the SPR effect and the synergistic effect and reduce the band gap, leading to a high photocatalytic activity.
Collapse
Affiliation(s)
- Fares T. Alshorifi
- Department
of Chemistry, Faculty of Science, Sheba
Region University, Sanaa 15452, Yemen
- Department
of Chemistry, Faculty of Science, Sana’a
University, Sanaa 15452, Yemen
| | - Abdullah A. Alswat
- Chemistry
Department, Faculty of Education and Applied Science, Arhab Sana’a University, Sanaa 15452, Yemen
| | - Mohammed A. Mannaa
- Chemistry
Department, Faculty of Applied Science, Sa’ada University, Sanaa 15452, Yemen
| | - Mohammed T. Alotaibi
- Department
of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Salah M. El-Bahy
- Department
of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Reda S. Salama
- Basic
Science
Department, Faculty of Engineering, Delta
University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
6
|
Gheorghita R, Anchidin-Norocel L, Filip R, Dimian M, Covasa M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers (Basel) 2021; 13:2729. [PMID: 34451268 PMCID: PMC8399127 DOI: 10.3390/polym13162729] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/21/2023] Open
Abstract
Research regarding the use of biopolymers has been of great interest to scientists, the medical community, and the industry especially in recent years. Initially used for food applications, the special properties extended their use to the pharmaceutical and medical industries. The practical applications of natural drug encapsulation materials have emerged as a result of the benefits of the use of biopolymers as edible coatings and films in the food industry. This review highlights the use of polysaccharides in the pharmaceutical industries and as encapsulation materials for controlled drug delivery systems including probiotics, focusing on their development, various applications, and benefits. The paper provides evidence in support of research studying the use of biopolymers in the development of new drug delivery systems, explores the challenges and limitations in integrating polymer-derived materials with product delivery optimization, and examines the host biological/metabolic parameters that can be used in the development of new applications.
Collapse
Affiliation(s)
- Roxana Gheorghita
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Liliana Anchidin-Norocel
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
| | - Roxana Filip
- Hipocrat Clinical Laboratory, 720003 Suceava, Romania;
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
7
|
Mansurov RR, Safronov AP, Chernyuk SD, Zverev VS. Photocatalytic Activity of Titanium Dioxide Immobilized in Polyacrylamide Hydrogels with Different Degrees of Crosslinking. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221060021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Zhu FD, Hu YJ, Yu L, Zhou XG, Wu JM, Tang Y, Qin DL, Fan QZ, Wu AG. Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Front Pharmacol 2021; 12:683935. [PMID: 34122112 PMCID: PMC8187807 DOI: 10.3389/fphar.2021.683935] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, an inflammatory response within the central nervous system (CNS), is a main hallmark of common neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), among others. The over-activated microglia release pro-inflammatory cytokines, which induces neuronal death and accelerates neurodegeneration. Therefore, inhibition of microglia over-activation and microglia-mediated neuroinflammation has been a promising strategy for the treatment of neurodegenerative diseases. Many drugs have shown promising therapeutic effects on microglia and inflammation. However, the blood–brain barrier (BBB)—a natural barrier preventing brain tissue from contact with harmful plasma components—seriously hinders drug delivery to the microglial cells in CNS. As an emerging useful therapeutic tool in CNS-related diseases, nanoparticles (NPs) have been widely applied in biomedical fields for use in diagnosis, biosensing and drug delivery. Recently, many NPs have been reported to be useful vehicles for anti-inflammatory drugs across the BBB to inhibit the over-activation of microglia and neuroinflammation. Therefore, NPs with good biodegradability and biocompatibility have the potential to be developed as an effective and minimally invasive carrier to help other drugs cross the BBB or as a therapeutic agent for the treatment of neuroinflammation-mediated neurodegenerative diseases. In this review, we summarized various nanoparticles applied in CNS, and their mechanisms and effects in the modulation of inflammation responses in neurodegenerative diseases, providing insights and suggestions for the use of NPs in the treatment of neuroinflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yu-Jiao Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Anesthesia, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qing-Ze Fan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Senol-Arslan D. Isotherms, kinetics and thermodynamics of pb(ii) adsorption by crosslinked chitosan/sepiolite composite. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03688-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Crosslinked chitosan embedded TiO 2 NPs and carbon dots-based nanocomposite: An excellent photocatalyst under sunlight irradiation. Int J Biol Macromol 2020; 164:3676-3686. [PMID: 32888996 DOI: 10.1016/j.ijbiomac.2020.08.230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 08/29/2020] [Indexed: 11/21/2022]
Abstract
Herein, a new hybrid nanocomposite, comprising of titania nanoparticles (TiO2 NPs) and carbon dots (CDs) deposited polyvinyl imidazole crosslinked chitosan [cl-Ch-p(VI)/TiO2NPs-CDs] has been developed. The nanocomposite has been synthesised by in-situ deposition of TiO2 NPs and CDs onto the surface of the copolymer under microwave irradiation. To the best of our knowledge, this in-situ approach has effectively been applied for the first time to fabricate green fluorescent CDs from sugar cane juice at moderate temperature (75 °C) under microwave irradiation. The developed nanocomposite has been characterized using UV-Vis spectroscopy, 13C NMR, XRD, HR-TEM, STEM and XPS analyses. The results suggest that the successful deposition of TiO2 NPs and CDs onto the surface of crosslinked chitosan is achieved. The experimental studies indicate that the NPs/CDs-impregnated nanocomposite allows efficient photocatalytic degradation of toxic organic compounds (~98.6% degradation of 2,4-dicholorophenol, ~95.8% degradation of Reactive Blue 4, ~98.2% degradation of Reactive Red 15) in the presence of sunlight. Finally, LC-MS analysis of the resultant degraded materials reveals the formation of organic molecules with lower molecular mass.
Collapse
|
11
|
Abstract
Pathogenic microorganisms can spread throughout the world population, as the current COVID-19 pandemic has dramatically demonstrated. In this scenario, a protection against pathogens and other microorganisms can come from the use of photoactive materials as antimicrobial agents able to hinder, or at least limit, their spreading by means of photocatalytically assisted processes activated by light—possibly sunlight—promoting the formation of reactive oxygen species (ROS) that can kill microorganisms in different matrices such as water or different surfaces without affecting human health. In this review, we focus the attention on TiO2 nanoparticle-based antimicrobial materials, intending to provide an overview of the most promising synthetic techniques, toward possible large-scale production, critically review the capability of such materials to promote pathogen (i.e., bacteria, virus, and fungi) inactivation, and, finally, take a look at selected technological applications.
Collapse
|
12
|
Comparative Study on the Influence of Noble Metal Nanoparticles (Ag, Au, Pd) on the Photocatalytic Activity of ZnO NPs Embedded in Renewable Castor Oil Polymer Matrices. MATERIALS 2020; 13:ma13163468. [PMID: 32781645 PMCID: PMC7475861 DOI: 10.3390/ma13163468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Hybrid polymeric materials, due to the unique combination of properties that can be obtained by the convenient variation of organic and inorganic components, represent an attractive alternative for many applications, especially photocatalysis. Herein, we report the preparation of nanocomposite films containing functionalized ZnO nanoparticles, as well as in situ photogenerated noble metal nanoparticles (Ag, Au, Pd), for the achieving of materials with enhanced photocatalytic activity under visible light. The flexible free-standing nanocomposite films were synthesized by photopolymerization of a monomer mixture (silane castor oil urethane dimethacrylate and polypropylene oxide urethane dimethacrylate) in the presence of a Irgacure 819 photoinitiator. The efficiency of ZnO NPs functionalization was established by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis, while the polymer composites were characterized by UV-Vis spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy to evidence the formation, size and distribution of the nanoparticles inside the photocrosslinked matrix. To establish the photocatalytic capacity of nanocomposite films, the decomposition of various pollutants (methyl orange, phenol, metronidazole) was monitored under visible light irradiation, the best results being obtained for Au/ZnO film. Also, the advantage of immobilizing the catalysts in a polymeric support and its recycling ability without a significant decrease in photocatalytic efficiency was analysed.
Collapse
|
13
|
Abstract
Solar radiation is becoming increasingly appreciated because of its influence on living matter and the feasibility of its application for a variety of purposes. It is an available and everlasting natural source of energy, rapidly gaining ground as a supplement and alternative to the nonrenewable energy feedstock. Actually, an increasing interest is involved in the development of efficient materials as the core of photocatalytic and photothermal processes, allowing solar energy harvesting and conversion for many technological applications, including hydrogen production, CO2 reduction, pollutants degradation, as well as organic syntheses. Particularly, photosensitive nanostructured hybrid materials synthesized coupling inorganic semiconductors with organic compounds, and polymers or carbon-based materials are attracting ever-growing research attention since their peculiar properties overcome several limitations of photocatalytic semiconductors through different approaches, including dye or charge transfer complex sensitization and heterostructures formation. The aim of this review was to describe the most promising recent advances in the field of hybrid nanostructured materials for sunlight capture and solar energy exploitation by photocatalytic processes. Beside diverse materials based on metal oxide semiconductors, emerging photoactive systems, such as metal-organic frameworks (MOFs) and hybrid perovskites, were discussed. Finally, future research opportunities and challenges associated with the design and development of highly efficient and cost-effective photosensitive nanomaterials for technological claims were outlined.
Collapse
|
14
|
Abstract
In the present comprehensive review we have specifically focused on polymer nanocomposites used as photocatalytic materials in fine organic reactions or in organic pollutants degradation. The selection of the polymer substrates for the immobilization of the active catalyst particles is motivated by several advantages displayed by them, such as: Environmental stability, chemical inertness and resistance to ultraviolet radiations, mechanical stability, low prices and ease availability. Additionally, the use of polymer nanocomposites as photocatalysts offers the possibility of a facile separation and reuse of the materials, eliminating thus the post-treatment separation processes and implicitly reducing the costs of the procedure. This review covers the polymer-based photocatalytic materials containing the most popular inorganic nanoparticles with good catalytic performance under UV or visible light, namely TiO2, ZnO, CeO2, or plasmonic (Ag, Au, Pt, Pd) NPs. The study is mainly targeted on the preparation, photocatalytic activity, strategies directed toward the increase of photocatalytic efficiency under visible light and reuse of the hybrid polymer catalysts.
Collapse
|
15
|
Au/ZnO Hybrid Nanostructures on Electrospun Polymeric Mats for Improved Photocatalytic Degradation of Organic Pollutants. WATER 2019. [DOI: 10.3390/w11091787] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An innovative approach for the fabrication of hybrid photocatalysts on a solid porous polymeric system for the heterogeneous photocatalytic degradation of organic pollutants is herein presented. Specifically, gold/zinc oxide (Au/ZnO)-based porous nanocomposites are formed in situ by a two-step process. In the first step, branched ZnO nanostructures fixed on poly(methyl methacrylate) (PMMA) fibers are obtained upon the thermal conversion of zinc acetate-loaded PMMA electrospun mats. Subsequently, Au nanoparticles (NPs) are directly formed on the surface of the ZnO through an adsorption dipping process and thermal treatment. The effect of different concentrations of the Au ion solutions to the formation of Au/ZnO hybrids is investigated, proving that for 1 wt % of Au NPs with respect to the composite there is an effective metal–semiconductor interfacial interaction. As a result, a significant improvement of the photocatalytic performance of the ZnO/PMMA electrospun nanocomposite for the degradation of methylene blue (MB) and bisphenol A (BPA) under UV light is observed. Therefore, the proposed method can be used to prepare flexible fibrous composites characterized by a high surface area, flexibility, and light weight. These can be used for heterogeneous photocatalytic applications in water treatment, without the need of post treatment steps for their removal from the treated water which may restrict their wide applicability and cause secondary pollution.
Collapse
|
16
|
Taghipour S, Hosseini SM, Ataie-Ashtiani B. Engineering nanomaterials for water and wastewater treatment: review of classifications, properties and applications. NEW J CHEM 2019. [DOI: 10.1039/c9nj00157c] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on their characteristics and applicability, a new category of NMs is proposed for water and wastewater treatment.
Collapse
Affiliation(s)
- Shabnam Taghipour
- Department of Civil Engineering
- Sharif University of Technology
- Tehran
- Iran
| | | | - Behzad Ataie-Ashtiani
- Department of Civil Engineering
- Sharif University of Technology
- Tehran
- Iran
- National Centre for Groundwater Research & Training and College of Science & Engineering
| |
Collapse
|
17
|
Liras M, Barawi M, de la Peña O’Shea VA. Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications. Chem Soc Rev 2019; 48:5454-5487. [DOI: 10.1039/c9cs00377k] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hybrid materials photocatalysts based on conjugated polymers and inorganic semiconductors provide a sustainable way to remove pollutants or store energy in the form of solar fuels by processes such as water splitting, CO2 photoreduction and NH3 production (artificial photosynthesis).
Collapse
Affiliation(s)
- Marta Liras
- Photoactivated Processes Unit
- IMDEA Energía
- Móstoles
- Spain
| | - Mariam Barawi
- Photoactivated Processes Unit
- IMDEA Energía
- Móstoles
- Spain
| | | |
Collapse
|
18
|
Khan A, Nair V, Colmenares JC, Gläser R. Lignin-Based Composite Materials for Photocatalysis and Photovoltaics. Top Curr Chem (Cham) 2018; 376:20. [PMID: 29721856 PMCID: PMC5932104 DOI: 10.1007/s41061-018-0198-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/19/2018] [Indexed: 10/31/2022]
Abstract
Depleting conventional fuel reserves has prompted the demand for the exploration of renewable resources. Biomass is a widely available renewable resource that can be valorized to produce fuels, chemicals, and materials. Among all the fractions of biomass, lignin has been underutilized. Due to its complex structure, recalcitrant nature, and heterogeneity, its valorization is relatively challenging. This review focuses on the utilization of lignin for the preparation of composite materials and their application in the field of photocatalysis and photovoltaics. Lignin can be used as a photocatalyst support for its potential application in photodegradation of contaminants. The interaction between the components in hybrid photocatalysts plays a significant role in determining the photocatalytic performance. The application of lignin as a photocatalyst support tends to control the size of the particles and allows uniform distribution of the particles that influence the characteristics of the photocatalyst. Lignin as a semiconductive polymer dopant for photoanodes in photovoltaic cells can improve the photoconversion efficiency of the cell. Recent success in the development of lignosulfonates dopant for hole transport materials in photovoltaics will pave the way for further research in lignin-based high-performance organic electronic devices.
Collapse
Affiliation(s)
- Ayesha Khan
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Vaishakh Nair
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Juan Carlos Colmenares
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Roger Gläser
- Institute of Chemical Technology, Leipzig University, Linnéstr. 3, 04103, Leipzig, Germany.
| |
Collapse
|
19
|
Mansurov RR, Safronov AP, Lakiza NV, Beketov IV. Photocatalytic Activity of Titanium Dioxide Nanoparticles Immobilized in the Polymer Network of Polyacrylamide Hydrogel. RUSS J APPL CHEM+ 2018. [DOI: 10.1134/s1070427217100238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|