1
|
Zhang L, Jiao Y, Yang H, Jia X, Li H, He C, Si W, Duan C. Supramolecular Host-Guest Strategy for the Accelerating Detection of Nitroreductase. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21198-21209. [PMID: 37070853 DOI: 10.1021/acsami.2c22851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Identifying nitroreductase (NTR) with fluorescent techniques has become a research hotspot, due to its good sensitivity and selectivity toward the early-stage cancer diagnosis and monitoring. Herein, a host-guest reporter (NAQA⊂Zn-MPPB) is successfully achieved by encapsulating the NTR probe NAQA into a new NADH-functioned metal-organic cage Zn-MPPB, which makes the reporter for ultrafast detection of NTR within dozens of seconds in solution. The host-guest strategy fuses the Zn-MPPB and NAQA to form a pseudomolecule material, which changes the reaction process of NTR and NAQA from a double substrates mechanism to a single substrate one, and accelerates the reduction efficiency of NAQA. This advantage make the new host-guest reporter exhibit a linear relationship between emission changes and NTR concentration, and it shows better sensitively toward NTR than that of NAQA. Additionally, the positively charged water-soluble metal-organic cage can encapsulate NAQA in the cavity, promote it to dissolve in an aqueous environment, and facilitate their accumulation into tumor cells. As expected, such host-guest reporter displays a fast and high efficiently imaging capability toward NTR in tumor cells and tumor-bearing mice, and flow cytometry assay is conducted to corroborate the capability as well, implying the considerably potential of host-guest strategy for early tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yang Jiao
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Hui Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Xianchao Jia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Huiyang Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Wen Si
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
2
|
Gholami L, Mahmoudi A, Kazemi Oskuee R, Malaekeh-Nikouei B. An overview of polyallylamine applications in gene delivery. Pharm Dev Technol 2022; 27:714-724. [PMID: 35880621 DOI: 10.1080/10837450.2022.2107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A chief objective of gene transportation studies is to manipulate clinically accepted carriers that can be utilized to combat incurable diseases. Despite various strategies, efficiency and application of these vectors have been hindered, owing to different obstacles. Polyallylamine (PAA) is a synthetic water-soluble, weak base cationic polymer with different properties that could be administrated as an ideal candidate for biomedical applications such as gene delivery, drug delivery, or even tissue engineering. However, some intrinsic properties of this polymer limit its application. The two associated problems with the use of PAA in gene delivery are low transfection efficiency (because of low buffering capacity) and cytotoxic effects attributed to intense cationic character. Most of the strategies for structural modification of the PAA structure have focused on introducing hydrophobic groups to the polymeric backbone that target both cytotoxicity and transfection. In this perspective, we concentrate on PAA as a gene delivery vehicle and the existing approaches for modification of this cationic polymer to give insight to researchers for exploitation of PAA as an efficient carrier in biomedical applications.
Collapse
Affiliation(s)
- Leila Gholami
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Mahmoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Szymaszek P, Fiedor P, Chachaj-Brekiesz A, Tyszka-Czochara M, Świergosz T, Ortyl J. Molecular interactions of bovine serum albumin (BSA) with pyridine derivatives as candidates for non-covalent protein probes: a spectroscopic investigation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Disruption of Crystal Packing in Thieno[2,3- b]pyridines Improves Anti-Proliferative Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030836. [PMID: 35164101 PMCID: PMC8840025 DOI: 10.3390/molecules27030836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022]
Abstract
3-Amino-2-arylcarboxamido-thieno[2,3-b]pyridines have been shown to have anti-proliferative activity, but are also known to have poor solubility. This has been previously proposed to be due to their extensive planarity, which allows for intermolecular stacking and crystal packing. We herein report the synthesis of fifteen novel thieno[2,3-b]pyridines that have incorporated bulky, but easily cleavable, ester and carbonate functional groups in an effort to decrease crystal packing. The addition of these ‘prodrug-like’ moieties into the thieno[2,3-b]pyridine resulted in compounds with increased activity against HCT-116 colon cancer cells and the triple-negative breast cancer cell line MDA-MB-231.
Collapse
|
5
|
Saito K, Shinozuka T, Nakao A, Kunikata T, Nakai D, Nagai Y, Naito S. Discovery of 3-amino-4-{(3S)-3-[(2-ethoxyethoxy)methyl]piperidin-1-yl}thieno[2,3-b]pyridine-2-carboxamide (DS96432529): A potent and orally active bone anabolic agent. Bioorg Med Chem Lett 2021; 54:128440. [PMID: 34742889 DOI: 10.1016/j.bmcl.2021.128440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
The continuing investigation of SAR of 3-aminothieno[2,3-b]pyridine-2-carboxamide derivatives has been described. In this study, C4-piperidine derivatives with polar functional groups were synthesized to develop orally available bone anabolic agents. The optimized compound 9o (DS96432529), which exhibited the best PK profile and high in vitro activity, showed the highest in vivo efficacy in this series. Moreover, significant synergistic effects were observed following co-administration of DS96432529 and alendronate or parathyroid hormone. The mechanism of action is most likely mediated through CDK8 inhibition.
Collapse
Affiliation(s)
- Keiji Saito
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Akira Nakao
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomonori Kunikata
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Daisuke Nakai
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yoko Nagai
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Satoru Naito
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
6
|
Haverkate NA, Leung E, Pilkington LI, Barker D. Tethered Aryl Groups Increase the Activity of Anti-Proliferative Thieno[2,3-b]Pyridines by Targeting a Lipophilic Region in the Active Site of PI-PLC. Pharmaceutics 2021; 13:pharmaceutics13122020. [PMID: 34959302 PMCID: PMC8705770 DOI: 10.3390/pharmaceutics13122020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
The compounds 2-amino-3-carboxamido-thieno[2,3-b]pyridines have demonstrated excellent anti-proliferative activity against human cancer cell lines, including the triple-negative breast cancer cell line MDA-MB-231. In this study, 81 novel thieno[2,3-b]pyridines were synthesised in four series to further improve their anti-proliferative activity, in particular by targeting an adjacent lipophilic pocket in the putative target enzyme phosphoinositide phospholipase C (PI-PLC). Overall, it was found that appending a propyl-aryl group at C-5 on 2-amino-3-carboxamido-thieno[2,3-b]pyridine resulted in compounds with potent biological activity, exhibiting IC50 values in the nanomolar range. The propyl linker could be an α,β-unsaturated ketone or a saturated propyl ketone, but the highest activity was obtained when allylic alcohols were the tether between thieno[2,3-b]pyridine and the appended aryl group, with compound 21r having IC50 values lower than 50 nM. Compounds with one extra carbon in the tether (i.e., a four-atom chain) were found to be considerably less active. Molecular modelling revealed this propyl tether places the newly introduced aryl ring in an untargeted lipophilic pocket within the active site of the phosphoinositide phospholipase C (PI-PLC) enzyme.
Collapse
Affiliation(s)
- Natalie A. Haverkate
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand; (N.A.H.); (L.I.P.)
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand;
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Lisa I. Pilkington
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand; (N.A.H.); (L.I.P.)
| | - David Barker
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand; (N.A.H.); (L.I.P.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Correspondence: ; Tel.: +64-9-373-7599
| |
Collapse
|
7
|
Leung E, Patel J, Hollywood JA, Zafar A, Tomek P, Barker D, Pilkington LI, van Rensburg M, Langley RJ, Helsby NA, Squire CJ, Baguley BC, Denny WA, Reynisson J, Leung IKH. Validating TDP1 as an Inhibition Target for the Development of Chemosensitizers for Camptothecin-Based Chemotherapy Drugs. Oncol Ther 2021; 9:541-556. [PMID: 34159519 PMCID: PMC8593127 DOI: 10.1007/s40487-021-00158-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022] Open
Abstract
Cancer chemotherapy sensitizers hold the key to maximizing the potential of standard anticancer treatments. We have a long-standing interest in developing and validating inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) as chemosensitizers for topoisomerase I poisons such as topotecan. Herein, by using thieno[2,3-b]pyridines, a class of TDP1 inhibitors, we showed that the inhibition of TDP1 can restore sensitivity to topotecan, results that are supported by TDP1 knockout cell experiments using CRISPR/Cas9. However, we also found that the restored sensitivity towards topoisomerase I inhibitors is likely regulated by multiple complementary DNA repair pathways. Our results showed that one of these pathways is likely modulated by PARP1, although it is also possible that other redundant and partially overlapping pathways may be involved in the DNA repair process. Our work thus raises the prospect of targeting multiple DNA repair pathways to increase the sensitivity to topoisomerase I inhibitors.
Collapse
Affiliation(s)
- Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.
| | - Jinal Patel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Jennifer A Hollywood
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Ayesha Zafar
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - David Barker
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Lisa I Pilkington
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Michelle van Rensburg
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Ries J Langley
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Nuala A Helsby
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Christopher J Squire
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.,School of Biological Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK.
| | - Ivanhoe K H Leung
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
8
|
Stroganova T, Vasilin VK, Dotsenko VV, Aksenov NA, Morozov PG, Vassiliev PM, Volynkin VA, Krapivin GD. Unusual Oxidative Dimerization in the 3-Aminothieno[2,3- b]pyridine-2-carboxamide Series. ACS OMEGA 2021; 6:14030-14048. [PMID: 34124427 PMCID: PMC8190813 DOI: 10.1021/acsomega.1c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Noncatalyzed, regio- and stereoselective hypochlorite oxidation of 3-aminothieno[2,3-b]pyridine-2-carboxamides is presented. Unexpectedly, the oxidation proceeded by different mechanistic pathways, and different products were formed, depending on the nature of solvents used. A possible mechanism, the structure of products, kinetics and dynamics of intramolecular processes, and biological activity of products are discussed.
Collapse
Affiliation(s)
- Tatyana
A. Stroganova
- Department
of Bioorganic Chemistry, Kuban State Technological
University, Krasnodar 350072, Russian Federation
| | - Vladimir K. Vasilin
- Department
of Bioorganic Chemistry, Kuban State Technological
University, Krasnodar 350072, Russian Federation
| | - Victor V. Dotsenko
- Department
of Organic Chemistry and Technologies, Kuban
State University, Krasnodar 350040, Russian Federation
- Department
of Organic Chemistry, North Caucasus Federal
University, Stavropol 355009, Russian Federation
| | - Nicolai A. Aksenov
- Department
of Organic Chemistry, North Caucasus Federal
University, Stavropol 355009, Russian Federation
| | - Pavel G. Morozov
- Department
of Chemistry of Natural Compounds, Southern
Federal University, Rostov-on-Don 344006, Russian Federation
| | - Pavel M. Vassiliev
- Volgograd
State Medical University, Volgograd 400131, Russian Federation
| | - Vitaly A. Volynkin
- Department
of Inorganic Chemistry, Kuban State University, Krasnodar 350040, Russian Federation
| | - Gennady D. Krapivin
- Scientific
Research Institute of Chemistry of Heterocyclic Compounds, Kuban State Technological University, Krasnodar 350072, Russian Federation
| |
Collapse
|
9
|
Haverkate NA, van Rensburg M, Kumara S, Reynisson J, Leung E, Pilkington LI, Barker D. Improving the solubility of anti-proliferative thieno[2,3-b]quinoline-2-carboxamides. Bioorg Med Chem 2021; 37:116092. [PMID: 33725562 DOI: 10.1016/j.bmc.2021.116092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
Thieno[2,3-b]pyridines are a class of compounds known for their potent anti-proliferative activities against a range of human cancer cell lines. In this research, a number of strategies to generate analogues that have improved aqueous solubility whilst retaining the potent anti-proliferative actions, compared to previously-explored compounds in this class, were made. Herein we report the synthesis of 80 novel compounds, comprising two series, all based on the thieno[2,3-b]pyridine core structure. Overall, it was found that introducing alternative heterocycles did not notably improve the solubility or retain anti-proliferative activity seen in previously-reported analogues. However, pleasingly it was discovered, that the best strategy for improving the solubility was the alteration of the appended alkyl ring to introduce polar groups such as alcohols, ketones and substituted amine groups. In addition to this finding, we have discovered a thieno[2,3-b]pyridine, 15e, with greater aqueous solubility that has ever been seen for this class of compounds that is also a potent inhibitor of cancer cell growth, with IC50's in the nanomolar range. This new lead structure will form the basis of future explorations into this class of compounds.
Collapse
Affiliation(s)
| | | | - Sisira Kumara
- Auckland Cancer Society Research Centre and Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK
| | - Euphemia Leung
- Auckland Cancer Society Research Centre and Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
| | | | - David Barker
- School of Chemical Sciences, University of Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
10
|
Zhou S, Huang G, Chen G. Synthesis and biological activities of drugs for the treatment of osteoporosis. Eur J Med Chem 2020; 197:112313. [PMID: 32335412 DOI: 10.1016/j.ejmech.2020.112313] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
Osteoporosis is an asymptomatic progressive disease. With the improvement of people's living standard and the aging of population, osteoporosis and its fracture have become one of the main diseases threatening the aging society. The serious medical and social burden caused by this has aroused wide public concern. Osteoporosis is listed as one of the three major diseases of the elderly. At present, the drugs for osteoporosis include bone resorption inhibitors and bone formation promoters. The purpose of these anti-osteoporosis drugs is to balance osteoblast bone formation and osteoclast bone resorption. With the development of anti-osteoporosis drugs, new anti osteoporosis drugs have been designed and synthesized. There are many kinds of new compounds with anti osteoporosis activity, but most of them are concentrated on the original drugs with anti osteoporosis activity, or the natural products with anti-osteoporosis activity are extracted from the natural products for structural modification to obtain the corresponding derivatives or analogues. These target compounds showed good ALP activity in vitro and in vivo, promoted osteoblast differentiation and mineralization, or had anti TRAP activity, inhibited osteoclast absorption. This work attempts to systematically review the studies on the synthesis and bioactivity of anti-osteoporosis drugs in the past 10 years. The structure-activity relationship was discussed, which provided a reasonable idea for the design and development of new anti-osteoporosis drugs.
Collapse
Affiliation(s)
- Shiyang Zhou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China.
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
11
|
Dotsenko VV, Buryi DS, Lukina DY, Stolyarova AN, Aksenov NA, Aksenova IV, Strelkov VD, Dyadyuchenko LV. Substituted N-(thieno[2,3-b]pyridine-3-yl)acetamides: synthesis, reactions, and biological activity. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02505-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Saito K, Shinozuka T, Nakao A, Kiho T, Kunikata T, Shiiki T, Nagai Y, Naito S. Synthesis and structure-activity relationship of 4-alkoxy-thieno[2,3-b]pyridine derivatives as potent alkaline phosphatase enhancers for osteoporosis treatment. Bioorg Med Chem Lett 2019; 29:1769-1773. [DOI: 10.1016/j.bmcl.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 12/30/2022]
|
13
|
Reynisson J. Generation of Quality Hit Matter for Successful Drug Discovery Projects. Molecules 2019; 24:molecules24030381. [PMID: 30678174 PMCID: PMC6384824 DOI: 10.3390/molecules24030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 11/26/2022] Open
Affiliation(s)
- Jóhannes Reynisson
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
14
|
Alsuraifi A, Lin PKT, Curtis A, Lamprou DA, Hoskins C. A Novel PAA Derivative with Enhanced Drug Efficacy in Pancreatic Cancer Cell Lines. Pharmaceuticals (Basel) 2018; 11:E91. [PMID: 30248980 PMCID: PMC6315666 DOI: 10.3390/ph11040091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Nanoparticles have been shown to be effective drug carriers in cancer therapy. Pancreatic cancer forms dense tumours which are often resistant to drug molecules. In order to overcome such multidrug resistance, new drug entities, novel delivery systems and combination therapy strategies are being explored. In this paper, we report the design and synthesis of a poly(allylamine)-based amphiphile modified with hydrophobic naphthalimido pendant groups. Bisnaphthalimide compounds have been shown to possess anticancer activity. The potential of this polymer to encapsulate, solubilize and enhance drug (5-fluorouricil and bis-(naphthalimidopropyl)-diaminooctane) cytotoxicity in BxPC-3 cells was evaluated. Our studies showed that the insoluble drugs could be formulated up to 4.3 mg mL-1 and 2.4 mg mL-1 inside the amphiphiles, respectively. Additionally, the novel poly(allylamine)-naphthalimide carrier resulted in an amplification of cytotoxic effect with drug treatment after 24 h, and was capable of reduction of 50% cell population at concentrations as low as 3 μg mL-1.
Collapse
Affiliation(s)
- Ali Alsuraifi
- Institute of Science and Technology in Medicine, Keele University, Keele ST5 5BG, UK.
- College of Dentistry, University of Basrah, Basrah 61004, Iraq.
| | - Paul Kong Thoo Lin
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| | - Anthony Curtis
- Institute of Science and Technology in Medicine, Keele University, Keele ST5 5BG, UK.
| | | | - Clare Hoskins
- Institute of Science and Technology in Medicine, Keele University, Keele ST5 5BG, UK.
| |
Collapse
|
15
|
Mohamed MS, Mansour YE, Amin HK, El-Araby ME. Molecular modelling insights into a physiologically favourable approach to eicosanoid biosynthesis inhibition through novel thieno[2,3-b]pyridine derivatives. J Enzyme Inhib Med Chem 2018; 33:755-767. [PMID: 29651867 PMCID: PMC6009894 DOI: 10.1080/14756366.2018.1457657] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this research, we exploited derivatives of thieno[2,3-b]pyridine as dual inhibitors of the key enzymes in eicosanoid biosynthesis, cyclooxygenase (COX, subtypes 1 and 2) and 5-lipoxygensase (5-LOX). Testing these compounds in a rat paw oedema model revealed potency higher than ibuprofen. The most active compounds 7a, 7b, 8b, and 8c were screened against COX-1/2 and 5-LOX enzymes. Compound 7a was the most powerful inhibitor of 5-LOX with IC50 = 0.15 µM, while its p-chloro analogue 7b was more active against COX-2 (IC50 = 7.5 µM). The less desirable target COX-1 was inhibited more potently by 8c with IC50 = 7.7 µM. Surflex docking programme predicted that the more stable anti- conformer of compound (7a) formed a favourable complex with the active site of 5-LOX but not COX-1. This is in contrast to the binding mode of 8c, which resembles the syn-conformer of series 7 and binds favourably to COX-1.
Collapse
Affiliation(s)
- Mosaad S Mohamed
- a Department of Pharmaceutical Organic Chemistry , Faculty of Pharmacy, Helwan University , Cairo , Egypt
| | - Yara E Mansour
- a Department of Pharmaceutical Organic Chemistry , Faculty of Pharmacy, Helwan University , Cairo , Egypt
| | - Hatem K Amin
- b Department of Biochemistry and Molecular Biology , Faculty of Pharmacy, Helwan University , Cairo , Egypt
| | - Moustafa E El-Araby
- a Department of Pharmaceutical Organic Chemistry , Faculty of Pharmacy, Helwan University , Cairo , Egypt
| |
Collapse
|