1
|
Bonet F, Campuzano O, Córdoba-Caballero J, Alcalde M, Sarquella-Brugada G, Braza-Boïls A, Brugada R, Hernández-Torres F, Quezada-Feijoo M, Ramos M, Mangas A, Ranea JAG, Toro R. Role of miRNA-mRNA Interactome in Pathophysiology of Arrhythmogenic Cardiomyopathy. Biomedicines 2024; 12:1807. [PMID: 39200271 PMCID: PMC11351583 DOI: 10.3390/biomedicines12081807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Arrhythmogenic cardiomyopathy is an inherited entity characterized by irregular cell-cell adhesion, cardiomyocyte death and fibro-fatty replacement of ventricular myocytes, leading to malignant ventricular arrythmias, contractile dysfunction and sudden cardiac death. Pathogenic variants in genes that encode desmosome are the predominant cause of arrhythmogenic cardiomyopathy. Moreover, signalling pathways such as Wnt/ß-catenin and transforming growth factor-β have been involved in the disease progression. However, still little is known about the molecular pathophysiological mechanisms that underlie arrhythmogenic cardiomyopathy pathogenesis. We used mRNA and small RNA sequencing to analyse the transcriptome of health and arrhythmogenic cardiomyopathy of autopsied human hearts. Our results showed 697 differentially expressed genes and eight differentially expressed miRNAs. Functional enrichment revealed mitochondrial respiratory-related pathways, impaired response to oxidative stress, apoptotic signalling pathways and inflammatory response-related and extracellular matrix response pathways. Furthermore, analysis of the miRNA-mRNA interactome identified eleven negatively correlated miRNA-target pairs for arrhythmogenic cardiomyopathy. Our finding revealed novel arrhythmogenic cardiomyopathy-related miRNAs with important regulatory function in disease pathogenesis, highlighting their value as potential key targets for therapeutic approaches.
Collapse
Affiliation(s)
- Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (F.B.); (J.C.-C.); (A.M.)
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain; (G.S.-B.); (R.B.)
- Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), 17190 Salt, Spain;
- Centro Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - José Córdoba-Caballero
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (F.B.); (J.C.-C.); (A.M.)
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain;
| | - Mireia Alcalde
- Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), 17190 Salt, Spain;
- Centro Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain; (G.S.-B.); (R.B.)
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital, 08950 Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Aitana Braza-Boïls
- Centro Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Cardiopatías Familiares, Muerte Súbita y Mecanismos de Enfermedad (CAFAMUSME) Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Ramon Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain; (G.S.-B.); (R.B.)
- Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), 17190 Salt, Spain;
- Centro Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Cardiology Service, Hospital Josep Trueta de Girona, 17007 Girona, Spain
| | - Francisco Hernández-Torres
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (M.Q.-F.)
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Monica Ramos
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (M.Q.-F.)
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (F.B.); (J.C.-C.); (A.M.)
- Medicine Department, School of Medicine, University of Cadiz, 11003 Cádiz, Spain
- Lipid and Atherosclerotic Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Juan A. G. Ranea
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain;
- Institute of Biomedical Research in Málaga and platform of nanomedicine (IBIMA Plataforma BIONAND), 29071 Málaga, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Instituto de Salud Carlos III (ISCIII), 28020 Madrid, Spain
| | - Rocío Toro
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain; (F.B.); (J.C.-C.); (A.M.)
- Medicine Department, School of Medicine, University of Cadiz, 11003 Cádiz, Spain
| |
Collapse
|
2
|
Teng C, Guo S, Li Y, Ren G. Transcriptome Analysis Reveals the Mechanism of Quinoa Polysaccharides Inhibiting 3T3-L1 Preadipocyte Proliferation. Foods 2024; 13:2311. [PMID: 39123503 PMCID: PMC11311824 DOI: 10.3390/foods13152311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Quinoa is a highly nutritious and biologically active crop. Prior studies have demonstrated that quinoa polysaccharides exhibit anti-obesity activity. This investigation confirmed that quinoa polysaccharides have the ability to inhibit the growth of 3T3-L1 preadipocytes. The objective of transcriptome research was to investigate the mechanism of quinoa water-extracted polysaccharides and quinoa alkaline-extracted polysaccharides that hinder the growth of 3T3-L1 preadipocytes. There were 2194 genes that showed differential expression between untreated cells and those treated with high concentrations of quinoa water-extracted polysaccharides (QWPHs). There were 1774 genes that showed differential expression between untreated cells and those treated with high concentrations of quinoa alkaline-extracted polysaccharides (QAPHs). Through gene ontology and KEGG pathway analysis, 20 characteristic pathways are found significantly enriched between the untreated group and the QAPH and QWPH groups. These pathways include the NOD-like receptor, Hepatitis C, and the PI3K-Akt signaling pathway. Atp13A4 and Gbgt1 have been identified as genes that are upregulated and downregulated in both the untreated group and the QWPH group, as well as in the untreated group and the QAPH group. These findings establish a theoretical foundation for exploring quinoa polysaccharides as an anti-obesity agent.
Collapse
Affiliation(s)
- Cong Teng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Shengyuan Guo
- College of Food and Bioengineering, Chengdu University, Chengdu 610106, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ying Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Guixing Ren
- College of Food and Bioengineering, Chengdu University, Chengdu 610106, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Song Y, Wei D, Raza SHA, Zhao Y, Jiang C, Song X, Wu H, Wang X, Luoreng Z, Ma Y. Research progress of intramuscular fat formation based on co-culture. Anim Biotechnol 2023; 34:3216-3236. [PMID: 36200856 DOI: 10.1080/10495398.2022.2127410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Intramuscular fat (IMF) is closely related to the meat quality of livestock and poultry. As a new cell culture technique in vitro, cell co-culture has been gradually applied to the related research of IMF formation because it can simulate the changes of microenvironment in vivo during the process of IMF cell formation. In the co-culture model, in addition to studying the effects of skeletal muscle cells on the proliferation and differentiation of IMF, we can also consider the role of many secretion factors in the formation of IMF, thus making the cell research in vitro closer to the real level in vivo. This paper reviewed the generation and origin of IMF, summarized the existing co-culture methods and systems, and discussed the advantages and disadvantages of each method as well as the challenges faced in the establishment of the system, with emphasis on the current status of research on the formation of IMF for human and animal based on co-culture technology.
Collapse
Affiliation(s)
- Yaping Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Dawei Wei
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | | | - Yiang Zhao
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Chao Jiang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xiaoyu Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Hao Wu
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| |
Collapse
|
4
|
Liu J, Che Y, Cai K, Zhao B, Qiao L, Pan Y, Yang K, Liu W. miR-136 Regulates the Proliferation and Adipogenic Differentiation of Adipose-Derived Stromal Vascular Fractions by Targeting HSD17B12. Int J Mol Sci 2023; 24:14892. [PMID: 37834341 PMCID: PMC10573499 DOI: 10.3390/ijms241914892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Fat deposition involves the continuous differentiation of adipocytes and lipid accumulation. Studies have shown that microRNA miR-136 and 17β-hydroxysteroid dehydrogenase type 12 (HSD17B12) play important roles in lipid accumulation. However, the regulatory mechanism through which miR-136 targets HSD17B12 during ovine adipogenesis remains unclear. This study aimed to elucidate the role of miR-136 and HSD17B12 in adipogenesis and their relationship in ovine adipose-derived stromal vascular fractions (SVFs). The target relationship between miR-136 and HSD17B12 was predicted and confirmed using bioinformatics and a dual-luciferase reporter assay. The results showed that miR-136 promoted proliferation and inhibited adipogenic differentiation of ovine SVFs. We also found that HSD17B12 inhibited proliferation and promoted adipogenic differentiation of ovine SVFs. Collectively, our results indicate that miR-136 facilitates proliferation and attenuates adipogenic differentiation of ovine SVFs by targeting HSD17B12. These findings provide a theoretical foundation for further elucidation of the regulatory mechanisms of lipid deposition in sheep.
Collapse
Affiliation(s)
- Jianhua Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Jinzhong 030801, China
| | - Yutong Che
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ke Cai
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Bishi Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Liying Qiao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yangyang Pan
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Kaijie Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wenzhong Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
5
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
miR-503 targets MafK to inhibit subcutaneous preadipocyte adipogenesis causing a decrease of backfat thickness in Guanzhong Black pigs. Meat Sci 2023; 198:109116. [PMID: 36657261 DOI: 10.1016/j.meatsci.2023.109116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Reducing backfat thickness (BFT), determined by subcutaneous fat deposition, is vital in Chinese developed pig breeds. The level of miR-503 in the backfat of Guanzhong Black pigs was found to be lower than that in Large White pigs, implying that miR-503 may be related to BFT. However, the effect and mechanism of miR-503 on adipogenic differentiation in subcutaneous preadipocytes remain unknown. Compared with Large White pigs, the BFT and body fat content of Guanzhong Black pigs were greater, but the level of miR-503 was lower in subcutaneous adipose tissue (SAT) at 180 days of age. Furthermore, miR-503 promoted preadipocyte proliferation by increasing the proportion of S-phase and EdU-positive cells. However, miR-503 inhibited preadipocyte differentiation by downregulating adipogenic gene expression. Mechanistically, miR-503 directly targeted musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) in both proliferating and differentiating preadipocytes to repress adipogenesis. Our findings provide a novel miRNA biomarker for reducing pig BFT levels to improve carcass quality.
Collapse
|
7
|
Wang J, Chen JF, Ma Q, Mo DL, Sun JJ, Ren QL, Zhang JQ, Lu QX, Xing BS. Identification and characterization of circRNAs related to meat quality during embryonic development of the longissimus dorsi muscle in two pig breeds. Front Genet 2022; 13:1019687. [PMID: 36457752 PMCID: PMC9705349 DOI: 10.3389/fgene.2022.1019687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/27/2022] [Indexed: 11/26/2023] Open
Abstract
Meat quality, an important economic trait, is regulated by many factors, especially by genetic factors, including coding genes, miRNAs, and lncRNAs. Recent studies have elucidated that circRNAs also play a key role in muscle development and lipid deposition. However, the functions and regulatory mechanisms of circRNAs in meat quality remain mostly unknown. The circRNA expression profiles between Huainan pigs (Chinese indigenous pigs, fat-type, Huainan HN) and Large White pigs (Western commercial pigs, lean-type, LW) in the longissimus dorsi (LD) muscle at 38, 58, and 78 days post conception (dpc) were compared by sequencing. In total, 39,887 circRNAs were identified in 18 samples, and 60, 78, and 86 differentially expressed circRNAs (DECs) were found at the three stages mentioned above between these two breeds. The parent genes of DECs were enriched in myogenesis, proliferation, adipogenesis and muscle fiber-type transition. The circRNA-miRNA interaction networks included 38 DECs and 47 miRNAs, and these miRNAs were involved in muscle development and lipid metabolism. Two shared DECs (circ_0030593 and circ_0032760) of these three stages were selected, their head-to-tail junction sites were validated by Sanger sequencing, and RT‒qPCR results suggested that these two DECs might be involved in intramuscular fat deposition. These findings provide a basis for understanding the role of circRNAs in meat quality.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jun-Feng Chen
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Ma
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - De-Lin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Jie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qiao-Ling Ren
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Qing Zhang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qing-Xia Lu
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bao-Song Xing
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
8
|
Effects of the Long-Term Consumption of a High-Sucrose Diet on microRNA Expression in Visceral Adipose Tissue of Rats. Nutrients 2022; 14:nu14173465. [PMID: 36079722 PMCID: PMC9460050 DOI: 10.3390/nu14173465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Noncoding microRNAs are involved in lipid and carbohydrate metabolism pathways and are powerful regulators of gene expression. The goals of this study were to evaluate the temporal expression profiles of miRNAs in rat adipose tissue and predict mRNA−microRNA interactions. Newly weaned Wistar rats were divided into groups fed a standard diet and high-sucrose diet (HSD). The HSD contains 66.86% carbohydrates (40.45% standard diet, 40.45% condensed milk, and 8.58% crystal sugar), and the HSD was provided for 4, 8 and 15-week periods to investigate the expression levels of miRNAs in visceral adipose tissue using RT−qPCR. Target selection, enriched pathways and networks were analyzed in silico. The factor consumption time significantly was associated to decreases (p < 0.05) in the expression levels of the following miRNAs: 124-5p, 125-5p, 126-5p, 200c-3p, and 212-3p in all experimental groups. The factor diet significantly influenced rno-miR-124-5p, 200c-3p, and 212-3p expression (p < 0.05). A significant reduction (p < 0.05) in rno-miR-27a-3p expression was observed. The biological processes involved key pathways regulating fat deposition. Our findings provide important insights into downregulated miRNA expression patterns in visceral adipose tissue, adiposity level, hyperinsulinemia and increased VLDL-c and triglyceride levels.
Collapse
|
9
|
Wang Y, Zhang J, Chu X, Wang M, Xin Y, Liu S. MiR-146a-5p, targeting ErbB4, promotes 3T3-L1 preadipocyte differentiation through the ERK1/2/PPAR-γ signaling pathway. Lipids Health Dis 2022; 21:54. [PMID: 35705996 PMCID: PMC9202118 DOI: 10.1186/s12944-022-01662-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Background MicroRNAs (MiRNAs) are known to participate in preadipocyte differentiation, but the manner in which miR-146a-5p participates in this process remains unclear. This study was performed to examine the participation of miR-146a-5p in 3T3-L1 cell differentiation. Material and Methods miR-146a-5p expression was upregulated and down-regulated to examine effects on 3T3-L1 cell differentiation. Bioinformatics analysis was performed to predict its target genes, and the signaling pathway it regulates was identified by qRT-PCR and Western blotting. The expression of miR-146a-5p in epididymal adipose tissue from obese mice and in an obese mouse adipose cell model was examined by qRT-PCR. Results 3T3-L1 cells differentiated into mature adipocytes successfully, as verified by increased areas of intracellular lipid droplets and elevated expression of mature adipocyte markers, and these cells had elevated miR-146a-5p expression. The intracellular lipid droplet and triglyceride contents and the expression of mature adipocyte markers were significantly increased in miR-146a-5p–overexpressing 3T3-L1 cells and markedly decreased in miR-146a-5p–inhibited 3T3-L1 cells. ErbB4 was a predicted target gene of miR-146a-5p. In miR-146a-5p–overexpressing 3T3-L1 cells, ErbB4 expression and ERK1/2 phosphorylation were decreased and the expression of PPAR-γ was increased; the opposite was observed in miR-146a-5p–inhibited 3T3-L1 cells. In addition, miR-146a-5p expression was significantly increased in the mouse epididymal adipose tissue and adipose cell model. Conclusions Upregulated miR-146a-5p expression was related to 3T3-L1 cell differentiation. MiR-146a-5p promoted 3T3-L1 cell differentiation by targeting ErbB4 and via the ERK1/2/PPAR-γ signaling pathway. Supplementary information The online version contains supplementary material available at 10.1186/s12944-022-01662-6.
Collapse
Affiliation(s)
- Yifen Wang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China
| | - Jie Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China
| | - Xueru Chu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Mengke Wang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China.
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, 1 Jiaozhou Road, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
10
|
Dietary Improvement during Lactation Normalizes miR-26a, miR-222 and miR-484 Levels in the Mammary Gland, but Not in Milk, of Diet-Induced Obese Rats. Biomedicines 2022; 10:biomedicines10061292. [PMID: 35740314 PMCID: PMC9219892 DOI: 10.3390/biomedicines10061292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
We aimed to evaluate in rats whether the levels of specific miRNA are altered in the mammary gland (MG) and milk of diet-induced obese dams, and whether improving maternal nutrition during lactation attenuates such alterations. Dams fed with a standard diet (SD) (control group), with a Western diet (WD) prior to and during gestation and lactation (WD group), or with WD prior to and during gestation but moved to SD during lactation (Rev group) were followed. The WD group showed higher miR-26a, miR-222 and miR-484 levels than the controls in the MG, but the miRNA profile in Rev animals was not different from those of the controls. The WD group also displayed higher miR-125a levels than the Rev group. Dams of the WD group, but not the Rev group, displayed lower mRNA expression levels of Rb1 (miR-26a’s target) and Elovl6 (miR-125a’s target) than the controls in the MG. The WD group also presented lower expression of Insig1 (miR-26a’s target) and Cxcr4 (miR-222’s target) than the Rev group. However, both WD and Rev animals displayed lower expression of Vegfa (miR-484’s target) than the controls. WD animals also showed greater miR-26a, miR-125a and miR-222 levels in the milk than the controls, but no differences were found between the WD and Rev groups. Thus, implementation of a healthy diet during lactation normalizes the expression levels of specific miRNAs and some target genes in the MG of diet-induced obese dams but not in milk.
Collapse
|
11
|
New long-non coding RNAs related to fat deposition based on pig model. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Obesity is a problem in the last decades since the development of certain technologies has forced submission to a faster pace of life, resulting in nutritional changes. Domestic pigs are an excellent animal model in recognition of adiposity-related processes, corresponding to the size of individual organs, the distribution of body fat in the organism, and similar metabolism. The present study applied next-generation sequencing to identify adipose tissue (AT) transcriptomic signals related to increased fat content by identifying differentially expressed genes (DEGs), including long-non coding RNAs in Złotnicka White pigs (n=16). Moreover, besides commonly used functional analysis, we applied the Freiburg RNA tool to predict DE lncRNA targets based on calculation hybridisation energy. And in addition, DE lncRNAs were recognized based on information available in databases. The obtained results show that closely 230 gene expression was found to be dependent on fat content, included 8 lncRNAs. The most interesting was that among identified DE lncRNAs was transcript corresponding to human MALAT1, which was previously considered in the obesity-related context. Moreover, it was identified that in ENSSSCG00000048394, ENSSSCG00000047210, ENSSSCG00000047442 and ENSSSCG00000041577 lncRNAs are contained repeat insertion domains of LncRNAs (RIDLs) considered as important gene expression regulatory elements, and ENSSSCG00000041577 seems to be the host for mir1247(NR_031649.1). The analysis of energy hybridisation between DE lncRNAs and DEGs using the Freiburg IntaRNAv2 tool, including isoforms expressed in AT, showed that ENSSSCG00000047210 lncRNA interacted with the highest number of DEGs and ENSSSCG00000047210 expression was only correlated with positive fat-related DEGs. The functional analysis showed that down-regulated DEGs involved in ECM proteoglycan pathways could be under control of both positive and negative fat-related lncRNAs. The present study, using pigs as an animal model, expands our current knowledge of possible gene expression regulation by lncRNAs in fat tissue and indicates for MALAT1 role in the fat deposition determination, which function is still often questioned or doubtful.
Collapse
|
12
|
Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022; 477:1155-1193. [PMID: 35084674 PMCID: PMC8793096 DOI: 10.1007/s11010-022-04356-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more importantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logical that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.
Collapse
|
13
|
Zhai B, Zhao Y, Fan S, Yuan P, Li H, Li S, Li Y, Zhang Y, Huang H, Li H, Kang X, Li G. Differentially Expressed lncRNAs Related to the Development of Abdominal Fat in Gushi Chickens and Their Interaction Regulatory Network. Front Genet 2022; 12:802857. [PMID: 35003230 PMCID: PMC8740130 DOI: 10.3389/fgene.2021.802857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
Chickens are one of the most important sources of meat worldwide, and the growth status of abdominal fat is closely related to production efficiency. Long noncoding RNAs (lncRNAs) play an important role in lipid metabolism and deposition regulation. However, research on the expression profile of lncRNAs related to the development of abdominal fat in chickens after hatching and their interaction regulatory networks is still lacking. To characterize the lncRNA expression profile during the development of chicken abdominal fat, abdominal adipose tissues from 6-, 14-, 22-, and 30-week-old Chinese Gushi chickens were herein used to construct 12 cDNA libraries, and a total of 3,827 new lncRNAs and 5,466 previously annotated lncRNAs were revealed. At the same time, based on the comparative analysis of five combinations, 276 differentially expressed lncRNAs (DE-lncRNAs) were screened. Functional enrichment analysis showed that the predicted target genes of these DE-lncRNAs were significantly enriched in pathways related to the posttranscriptional regulation of gene expression, negative regulation of cell proliferation, cell adhesion and other biological processes, glycosphingolipid biosynthesis, PPAR signaling, fatty acid degradation, fatty acid synthesis and others. In addition, association analysis of the lncRNA transcriptome profile was performed, and DE-lncRNA-related lncRNA-mRNA, lncRNA-miRNA and lncRNA-miRNA-mRNA interaction regulatory networks were constructed. The results showed that DE-lncRNA formed a complex network with PPAR pathway components, including PPARD, ACOX1, ADIPOQ, CPT1A, FABP5, ASBG2, LPL, PLIN2 and related miRNAs, including mir-200b-3p, mir-130b-3p, mir-215-5p, mir-122-5p, mir-223 and mir-125b-5p, and played an important regulatory role in biological processes such as lipid metabolism, adipocyte proliferation and differentiation. This study described the dynamic expression profile of lncRNAs in the abdominal fat of Gushi chickens for the first time and constructed the DE-lncRNA interaction regulatory network. The results expand the number of known lncRNAs in chicken abdominal fat and provide valuable resources for further elucidating the posttranscriptional regulatory mechanism of chicken abdominal fat development or deposition.
Collapse
Affiliation(s)
- Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hongtai Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shuaihao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Hetian Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| |
Collapse
|
14
|
Zhang P, Li X, Zhang S, Wu S, Xiao Q, Gu Y, Guo X, Lin X, Chen L, Zhao Y, Niu L, Tang G, Jiang Y, Shen L, Zhu L. miR-370-3p Regulates Adipogenesis through Targeting Mknk1. Molecules 2021; 26:molecules26226926. [PMID: 34834018 PMCID: PMC8619113 DOI: 10.3390/molecules26226926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/04/2022] Open
Abstract
Excessive fat accumulation can lead to obesity, diabetes, hyperlipidemia, atherosclerosis, and other diseases. MicroRNAs are a class of microRNAs that regulate gene expression and are highly conserved in function among species. microRNAs have been shown to act as regulatory factors to inhibit fat accumulation in the body. We found that miR-370-3p was expressed at lower levels in the fat mass of mice on a high-fat diet than in mice on a normal control diet. Furthermore, our data showed that the overexpression of miR-370-3p significantly suppressed the mRNA expression levels of adipogenic markers. Thus, miR-370-3p overexpression reduced lipid accumulation. Conversely, the inhibition of miR-370-3p suppressed 3T3-L1 preadipocyte proliferation and promoted preadipocyte differentiation. In addition, Mknk1, a target gene of miR-370-3p, plays an opposing role in preadipocyte proliferation and differentiation. Moreover, consistent results from in vitro as well as in vivo experiments suggest that the inhibition of fat accumulation by miR-370-3p may result from the inhibition of saturated fatty acids that promote the accumulation of polyunsaturated fatty acids. In conclusion, these results suggest that miR-370-3p plays an important role in adipogenesis and fatty acid metabolism through the regulation of Mknk1.
Collapse
Affiliation(s)
- Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinrong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Gu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyu Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xutao Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| |
Collapse
|
15
|
MicroRNA-200b Regulates the Proliferation and Differentiation of Ovine Preadipocytes by Targeting p27 and KLF9. Animals (Basel) 2021; 11:ani11082417. [PMID: 34438874 PMCID: PMC8388755 DOI: 10.3390/ani11082417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The miR-200b has been shown to play an important role in preadipocyte proliferation and differentiation. Herein, we explored the role of miR-200b in ovine adipocyte development, using Oil Red O staining, cell viability analysis, EdU and RT-qPCR. The results showed that miR-200b facilitated proliferation and suppressed the differentiation of preadipocytes. The dual fluorescent reporter vector experiments showed that miR-200b directly targeted p27 and KLF9. Meanwhile, we demonstrated that p27 significantly inhibited the proliferation, while KLF9 significantly promoted the differentiation of preadipocytes. Abstract MicroRNAs (miRNAs) are crucial regulatory molecules in lipid deposition and metabolism. However, the effect of miR-200b on the regulation of proliferation and adipogenesis of ovine preadipocytes is unknown in the sheep (Ovis aries). In this study, the expression profiles of miR-200b were investigated in the seven tissues of Tibetan ewes and differentiated preadipocytes. The effect of miR-200b, as well as its target genes p27 and KLF9, on the proliferation of ovine preadipocytes and adipogenesis was also investigated, using cell viability analysis, EdU staining, Oil Red O staining and reverse transcription-quantitative PCR (RT-qRCR). The miR-200b was expressed in all the tissues investigated, and it was highly expressed in lung, liver, subcutaneous adipose and spleen tissues. The expression of miR-200b continuously decreased when the differentiation of ovine preadipocytes initiated. The miR-200b mimic dramatically accelerated the proliferation but inhibited differentiation of ovine preadipocytes. The miR-200b inhibitor resulted in an opposite effect on the proliferation and differentiation of ovine preadipocytes. The dual luciferase reporter assay results showed that miR-200b mimic significantly decreased the luciferase activity of p27 and KLF9 in HEK293 cells transfected with wild-type dual luciferase reporter vectors. This suggests that p27 and KLF9 are the target genes of miR-200b. In over-expressed-p27 preadipocytes, the number of EdU-labeled preadipocytes and the expression levels of proliferation marker genes CDK2, CDK4, CCND1 and PCNA significantly decreased. In addition, the transfection of over-expressed-KLF9 vector into adipocytes remarkably increased the accumulation of lipid droplets and the expression levels of differentiation marker genes aP2, PPARγ, LPL and GLUT4. These results suggest that miR-200b accelerated the proliferation but inhibited the adipogenic differentiation of ovine preadipocytes by targeting p27 and KLF9, respectively.
Collapse
|
16
|
Shao J, Pan T, Wang J, Tang T, Li Y, Jia X, Lai S. MiR-208b Regulates Rabbit Preadipocyte Proliferation and Differentiation. Genes (Basel) 2021; 12:genes12060890. [PMID: 34207778 PMCID: PMC8228405 DOI: 10.3390/genes12060890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/13/2023] Open
Abstract
microRNAs (miRNAs) play an important role in gene regulation in animals by pairing with target gene mRNA. Many miRNAs are differentially expressed in the adipose tissue, often with conserved expression. In our study, we found that miR-208b expression was observed differently in the preadipocyte differentiation model. When miR-208b was overexpressed in the preadipocyte differentiation model, the overexpressed group displayed higher expression of PPARγ and FABP4—the markers of preadipocyte differentiation. Oil Red O staining revealed that the count of lipid droplets was increased in the overexpressed group. When the expression of miR-208b was inhibited, the above indicators showed an opposite trend. Moreover, results from both 5-ethynyl-2′-deoxyuridine (EDU) and cell counting kit (CCK) analysis showed that miR-208b promoted the proliferation of preadipocyte. Expression of gene CSNK2A2, a direct miR-208b target, was downregulated in the overexpressed group, providing a possible link to multiple signal pathways. Overall, our data indicate that miR-208b play a positive regulatory effect on the proliferation and differentiation of rabbit preadipocyte.
Collapse
Affiliation(s)
- Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (J.W.); (T.T.); (Y.L.); (X.J.)
| | - Ting Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (J.W.); (T.T.); (Y.L.); (X.J.)
| | - Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (J.W.); (T.T.); (Y.L.); (X.J.)
| | - Yanhong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (J.W.); (T.T.); (Y.L.); (X.J.)
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (J.W.); (T.T.); (Y.L.); (X.J.)
| | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (J.W.); (T.T.); (Y.L.); (X.J.)
- Correspondence:
| |
Collapse
|
17
|
Catanzaro G, Filardi T, Sabato C, Vacca A, Migliaccio S, Morano S, Ferretti E. Tissue and circulating microRNAs as biomarkers of response to obesity treatment strategies. J Endocrinol Invest 2021; 44:1159-1174. [PMID: 33111214 PMCID: PMC8124039 DOI: 10.1007/s40618-020-01453-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Obesity, characterized by an increased amount of adipose tissue, is a metabolic chronic alteration which has reached pandemic proportion. Lifestyle changes are the first line therapy for obesity and a large variety of dietary approaches have demonstrated efficacy in promoting weight loss and improving obesity-related metabolic alterations. Besides diet and physical activity, bariatric surgery might be an effective therapeutic strategy for morbid obese patients. Response to weight-loss interventions is characterised by high inter-individual variability, which might involve epigenetic factors. microRNAs have critical roles in metabolic processes and their dysregulated expression has been reported in obesity. AIM The aim of this review is to provide a comprehensive overview of current studies evaluating changes in microRNA expression in obese patients undergoing lifestyle interventions or bariatric surgery. RESULTS A considerable number of studies have reported a differential expression of circulating microRNAs before and after various dietary and bariatric surgery approaches, identifying several candidate biomarkers of response to weight loss. Significant changes in microRNA expression have been observed at a tissue level as well, with entirely different patterns between visceral and subcutaneous adipose tissue. Interestingly, relevant differences in microRNA expression have emerged between responders and non-responders to dietary or surgical interventions. A wide variety of dysregulated microRNA target pathways have also been identified, helping to understand the pathophysiological mechanisms underlying obesity and obesity-related metabolic diseases. CONCLUSIONS Although further research is needed to draw firm conclusions, there is increasing evidence about microRNAs as potential biomarkers for weight loss and response to intervention strategies in obesity.
Collapse
Affiliation(s)
- G Catanzaro
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - T Filardi
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - C Sabato
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - A Vacca
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - S Migliaccio
- Department of Movement, Human and Health Sciences, "Foro Italico" University of Rome, Rome, Italy
| | - S Morano
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - E Ferretti
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
18
|
Wawrzkiewicz-Jałowiecka A, Lalik A, Soveral G. Recent Update on the Molecular Mechanisms of Gonadal Steroids Action in Adipose Tissue. Int J Mol Sci 2021; 22:5226. [PMID: 34069293 PMCID: PMC8157194 DOI: 10.3390/ijms22105226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
The gonadal steroids, including androgens, estrogens and progestogens, are involved in the control of body fat distribution in humans. Nevertheless, not only the size and localization of the fat depots depend on the sex steroids levels, but they can also highly affect the functioning of adipose tissue. Namely, the gonadocorticoids can directly influence insulin signaling, lipid metabolism, fatty acid uptake and adipokine production. They may also alter energy balance and glucose homeostasis in adipocytes in an indirect way, e.g., by changing the expression level of aquaglyceroporins. This work presents the recent advances in understanding the molecular mechanism of how the gonadal steroids influence the functioning of adipose tissue leading to a set of detrimental metabolic consequences. Special attention is given here to highlighting the sexual dimorphism of adipocyte functioning in terms of health and disease. Particularly, we discuss the molecular background of metabolic disturbances occurring in consequence of hormonal imbalance which is characteristic of some common endocrinopathies such as the polycystic ovary syndrome. From this perspective, we highlight the potential drug targets and the active substances which can be used in personalized sex-specific management of metabolic diseases, in accord with the patient's hormonal status.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Anna Lalik
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
19
|
Han F, Zhou L, Zhao L, Wang L, Liu L, Li H, Qiu J, He J, Liu N. Identification of miRNA in Sheep Intramuscular Fat and the Role of miR-193a-5p in Proliferation and Differentiation of 3T3-L1. Front Genet 2021; 12:633295. [PMID: 33936163 PMCID: PMC8083875 DOI: 10.3389/fgene.2021.633295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/25/2021] [Indexed: 12/22/2022] Open
Abstract
Intramuscular fat (IMF) is one of the most critical parameters affecting meat quality and mainly affected by genetic factors. MicroRNA as an important regulatory factor, which is still a lack of research in the development of sheep IMF deposition. We used RNA sequencing (RNA-seq) and cell-level validation to explore the role of miRNA in IMF deposition. As for this purpose, longissimus thoracis et lumborum (LTL) samples of 2 month-old (Mth-2) and 12 months-old (Mth-12) Aohan fine-wool sheep (AFWS) were used to identified miRNAs expression. We found 59 differentially expressed miRNAs (DE-miRNA) between these age groups and predicted their 1,796 target genes. KEGG functional enrichment analysis revealed eight pathways involved in lipid metabolism-related processes, including fatty acid elongation and the AMPK signaling pathway. A highly expressed DE-miRNA, miR-193a-5p, was found to serve a function in 3T3-L1 preadipocyte differentiation. Luciferase assay demonstrated that miR-193a-5p directly binds to the 3′-UTR region of ACAA2. By constructing mimics and inhibitor vector transfecting into 3T3-L1 cells to explore the effect of miR-193a-5p on cell proliferation and differentiation, we demonstrated that overexpression of miR-193a-5p inhibited 3T3-L1 preadipocyte proliferation, as evidenced by decreased mRNA and protein expression of CDK4 and CyclinB. CCK-8 assay showed that miR-193a-5p significantly inhibited cell proliferation. Similarly, the overexpression of miR-193a-5p inhibited 3T3-L1 preadipocyte differentiation and adipocyte-specific molecular markers’ expression, leading to a decrease in PPARγ and C/EBPα and ACAA2. Inhibition of miR-193a-5p had the opposite effects. Our study lists the miRNAs associated with intramuscular lipid deposition in sheep and their potential targets, striving to improve sheep meat quality.
Collapse
Affiliation(s)
- Fuhui Han
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lisheng Zhou
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Le Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lei Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lirong Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Haijuan Li
- Aohan Fine Wool Sheep Stud Farm, Chifeng, China
| | - Jixian Qiu
- Runlin Animal Industry Co., Ltd., Linqing, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
20
|
Liu H, Wang J, Yan R, Jin S, Wan Z, Cheng J, Li N, Chen L, Le C. MicroRNA-204-5p mediates sevoflurane-induced cytotoxicity in HT22 cells by targeting brain-derived neurotrophic factor. Histol Histopathol 2020; 35:1353-1361. [PMID: 33006132 DOI: 10.14670/hh-18-266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Sevoflurane is widely used as an inhalational anesthetic in clinical practice. However, sevoflurane can cause cytotoxicity and induce learning capacity decline in patients. A previous publication indicated that miR-204-5p might have a close relationship with sevoflurane-induced neurotoxicity. When exposed to sevoflurane, the expression of miR-204-5p in neonatal hippocampus of rats was significantly increased. Hence, we aimed to investigate the role of miR-204-5p in sevoflurane-induced neurotoxicity using a mouse hippocampal neuronal cell line (HT22). METHODS The levels of miR-204-5p in HT22 cells were detected by RT-qPCR. In addition, the effects of miR-204-5p on cell viability, apoptosis and proliferation were evaluated by CCK-8, flow cytometric, and immunofluorescence assay, respectively. Western blotting was used to detect expressions of Bax, Bcl-2, active caspase 3, BDNF, TrkB, p-TrkB, Akt and p-Akt in HT22 cells. ELISA assay was used to examine the levels of total superoxide dismutase (SOD), reduced glutathione (GSH), malondialdehyde (MDA) and reactive oxygen species (ROS) in cells. Meanwhile, the dual luciferase reporter system assay was employed to explore the interaction of miR-204-5p and BDNF in cells. RESULTS The level of miR-204-5p was increased in sevoflurane-treated HT22 cells. Moreover, downregulation of miR-204-5p inhibited sevoflurane-induced apoptosis and promoted cell proliferation by upregulating the proteins of Bcl-2 and downregulating the expressions of Bax and active caspase-3 in HT22 cells. In addition, inhibition of miR-204-5p alleviated sevoflurane-induced oxidative injuries in HT22 cells via decline of ROS and MDA and upregulation of SOD and GSH. Furthermore, bioinformatics and dual luciferase assay demonstrated that miR-204-5p can inhibit the TrkB/Akt pathway by targeting BDNF. CONCLUSION Our findings indicated that downregulation of miR-204-5p can decrease oxidative status in HT22 cells and alleviate sevoflurane-induced cytotoxicity through stimulating the BDNF/TrkB/Akt pathway. Therefore, miR-204-5p might be a potential biomarker and therapeutic target for the treatment of sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Hongchao Liu
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China
| | - Jun Wang
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China
| | - Rongrong Yan
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China
| | - Shuangfen Jin
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China
| | - Zhenzhen Wan
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China
| | - Jing Cheng
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China
| | - Na Li
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China
| | - Lin Chen
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China.
| | - Chengjin Le
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China.
| |
Collapse
|
21
|
Wang W, Li X, Ding N, Teng J, Zhang S, Zhang Q, Tang H. miR-34a regulates adipogenesis in porcine intramuscular adipocytes by targeting ACSL4. BMC Genet 2020; 21:33. [PMID: 32171241 PMCID: PMC7073017 DOI: 10.1186/s12863-020-0836-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content is an important factor in porcine meat quality. Previously, we showed that miR-34a was less abundant in liver tissue from pigs with higher backfat thickness, compared to pigs with lower backfat thickness. The purpose of this present study was to explore the role of miR-34a in adipogenesis. RESULT Bioinformatics analysis identified Acyl-CoA synthetase long chain family member 4 (ACSL4) as a putative target of miR-34a. Using a luciferase reporter assay, we verified that miR-34a binds the ACSL4 mRNA at the 3'UTR. To examine the role of the miR-34a-ACSL4 interaction in IMF deposition in the pig, mRNA and protein expression of the ACSL4 gene was measured in primary intramuscular preadipocytes transfected with miR-34a mimic and inhibitor. Our results showed that ACSL4 is expressed throughout the entire differentiation process in pig preadipocytes, similar to the lipogenesis-associated genes PPARγ and aP2. Transfection with miR-34a mimic reduced lipid droplet formation during adipogenesis, while miR-34a inhibitor increased lipid droplet accumulation. Transfection with miR-34a mimic also reduced the mRNA and protein expression of ACSL4 and lipogenesis genes, including PPARγ, aP2, and SREBP-1C, but increased the expression of steatolysis genes such as ATGL and Sirt1. In contrast, the miR-34a inhibitor had the opposite effect on gene expression. Further, knockdown of ACSL4 decreased lipid droplet accumulation. CONCLUSIONS Our results support the hypothesis that miR-34a regulates intramuscular fat deposition in porcine adipocytes by targeting ACSL4.
Collapse
Affiliation(s)
- Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Tai’an City, 271018 Shandong Province China
| | - Xiuxiu Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Tai’an City, 271018 Shandong Province China
| | - Ning Ding
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Tai’an City, 271018 Shandong Province China
| | - Jun Teng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Tai’an City, 271018 Shandong Province China
| | - Shen Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Tai’an City, 271018 Shandong Province China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Tai’an City, 271018 Shandong Province China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Tai’an City, 271018 Shandong Province China
| |
Collapse
|
22
|
Pei D, Cao J, Qin G, Wang X. Measurement of circulating miRNA-125a exhibits good value in the management of etanercept-treated psoriatic patients. J Dermatol 2019; 47:140-146. [PMID: 31820498 DOI: 10.1111/1346-8138.15157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022]
Abstract
This study aimed to explore the correlation of miR-125a with risk and severity of psoriasis, and further investigate the potential of miR-125a for predicting response to etanercept (ETN) treatment in psoriatic patients. Moderate to severe plaque psoriatic patients (n = 126) about to undergo ETN treatment for 6 months were recruited. Their plasma samples were obtained, and Psoriasis Area and Severity Index (PASI) scores and PASI-75 response rate were assessed at baseline (M0), and at 1 (M1), 3 (M3) and 6 months (M6) of treatment. Referring to PASI-75 response status at M6, patients were categorized as PASI-75 responders and PASI-75 non-responders. Healthy controls (HC, n =120) were also enrolled and their plasma samples were collected. In addition, plasma miR-125a was determined by quantitative polymerase chain reaction. miR-125a was decreased in psoriatic patients compared with HC; further, the receiver-operator curve (ROC) exhibited that miR-125a was of good value in differentiating psoriatic patients from HC with an area under the curve (AUC) of 0.802. In psoriatic patients, miR-125a was negatively associated with PASI score to some extent. Interestingly, baseline miR-125a was lower in PASI-75 responders than PASI-75 non-responders; further, ROC showed it predicted PASI-75 response at M6 to some extent with AUC of 0.672. Multivariate logistic regression also revealed that miR-125a was an independent predictive factor for worse PASI-75 response at M6. Furthermore, miR-125a expression was gradually increased during the treatment in PASI-75 responders, but unchanged in PASI-75 non-responders. Measurement of circulating miR-125a exhibits good value in the management of ETN-treated psoriatic patients.
Collapse
Affiliation(s)
- Dan Pei
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jingjing Cao
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Guifang Qin
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xue Wang
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
23
|
Chu Y, Yao Y, Li X. MiR-370 enhances cell cycle and represses lipid accumulation in porcine adipocytes. Anim Biotechnol 2019; 32:334-342. [PMID: 31795803 DOI: 10.1080/10495398.2019.1697278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) are emerging as an important regulator during adipose development. Previous studies have revealed that miR-370 is related to lipid metabolic homeostasis, however, its roles in lipid accumulation remain to be established. In this study, we demonstrated that ssc-miR-370 was highly conserved across domestic animals, and relatively enriched in adipose tissues and skeletal muscles. Overexpression of ssc-miR-370 significantly promoted the proliferation of porcine preadipocytes through facilitating G1/S phase transition. Meanwhile, ssc-miR-370 mimics dramatically suppressed adipogenic differentiation, indicated by reduced triglyceride deposition as well as downregulated PPARγ and aP2 expressions. Furthermore, ssc-miR-370 was demonstrated to repress FoxO1 expression via directly targeting FoxO1 3'-UTR using dual luciferase activity assay. Our data evaluates miR-370 as a novel adipogenic modulator, which may be a potential target to reduce backfat thickness in pigs and fight obesity in humans.
Collapse
Affiliation(s)
- Yixin Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
24
|
Ghasemi A, Hashemy SI, Azimi-Nezhad M, Dehghani A, Saeidi J, Mohtashami M. The cross-talk between adipokines and miRNAs in health and obesity-mediated diseases. Clin Chim Acta 2019; 499:41-53. [PMID: 31476303 DOI: 10.1016/j.cca.2019.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple studies have revealed a direct correlation between obesity and the development of multiple comorbidities, including metabolic diseases, cardiovascular disorders, chronic inflammatory disease, and cancers. However, the molecular mechanism underlying the link between obesity and the progression of these diseases is not completely understood. Adipokines are factors that are secreted by adipocytes and play a key role in whole body homeostasis. Collaboratively, miRNAs are suggested to have key functions in the development of obesity and obesity-related disorders. Based on recently emerging evidence, obesity leads to the dysregulation of both adipokines and obesity-related miRNAs. In the present study, we described the correlations between obesity and its related diseases that are mediated by the mutual regulatory effects of adipokines and miRNAs. METHODS We reviewed current knowledge of the modulatory effects of adipokines on miRNAs activity and their relevant functions in pathological conditions and vice versa. RESULTS Our research reveals the ability of adipokines and miRNAs to control the expression and activity of the other class of molecules, and their effects on obesity-related diseases. CONCLUSIONS This study may help researchers develop a roadmap for future investigations and provide opportunities to develop new therapeutic and diagnostic methods for treating obesity-related diseases.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Azimi-Nezhad
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment en Physiopathologie Cardiovascular Université de Lorraine, France
| | - Alireza Dehghani
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
25
|
Ji S, Su X, Zhang H, Han Z, Zhao Y, Liu Q. MicroRNA-372 functions as a tumor suppressor in cell invasion, migration and epithelial-mesenchymal transition by targeting ATAD2 in renal cell carcinoma. Oncol Lett 2018; 17:2400-2408. [PMID: 30719113 PMCID: PMC6350190 DOI: 10.3892/ol.2018.9871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/05/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, renal cell carcinoma (RCC) has exhibited an increasing incidence and mortality rate worldwide. Accumulating evidence has identified that microRNAs (miRNAs) function as negative or positive regulators of many malignant tumors; however, the roles of miR-372 in RCC remain unclear. The focus of the present study was the functions of miR-372 in RCC metastasis and EMT. Data revealed that miR-372 expression levels were significantly downregulated in RCC tissue samples and cells. Moreover, the decreased expression levels were strongly associated with the poor survival rates and adverse clinical characteristics of RCC patients. Accordingly, miR-372 overexpression markedly inhibited RCC cell invasion, migration and EMT. In terms of the potential mechanisms, ATAD2, the expression of which was inversely correlated with miR-372 expression in RCC, was identified as a direct functional target of miR-372. Notably, ATAD2 silence exerted suppressive functions in RCC cells, being similar to the effects of miR-372 overexpression. In conclusion, findings of this study indicate that miR-372 repressed RCC EMT and metastasis via targeting ATAD2, suggesting that the miR-372/ATAD2 axis may be therapeutic biomarkers for RCC.
Collapse
Affiliation(s)
- Shiqi Ji
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Xiaolin Su
- Department of Emergency, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100021, P.R. China
| | - Haijian Zhang
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Zhixing Han
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Yuqian Zhao
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Qingjun Liu
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
26
|
Shen L, Li Q, Wang J, Zhao Y, Niu L, Bai L, Shuai S, Li X, Zhang S, Zhu L. miR-144-3p Promotes Adipogenesis Through Releasing C/EBPα From Klf3 and CtBP2. Front Genet 2018; 9:677. [PMID: 30619490 PMCID: PMC6305703 DOI: 10.3389/fgene.2018.00677] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNAs, have been proved as novel and potent regulators of adipogenesis. A previous study has found out that miR-144-3p was a biomarker of type 2 diabetes, but the role of miR-144-3p in regulating adipogenesis was still unclear. In the present study, the expression of miR-144-3p increased in obese mice and during the 3T3-L1 differentiation process. Overexpression of miR-144-3p suppressed the expression of cell cycle regulatory factors and inhibited pre-adipocytes proliferation. Besides, overexpression of miR-144-3p accelerated lipid accumulation in adipocytes and positively regulated adipogenesis, which was also accompanied by increasing the expression of genes related to fatty acid synthesis and decreasing the expression of genes involved in fatty acid oxidation. Furthermore, luciferase activity assays indicated that miR-144-3p directly targeted Klf3 and CtBP2. The process was also confirmed by the mRNA and protein expression of Klf3 and CtBP2, which were suppressed by miR-144-3p. Furthermore, miR-144-3p targeting Klf3/CtBP2 would induce C/EBPα activity by releasing corepressors (Klf3 and CtBP2) from its promoter region. Moreover, we also observed that miR-144-3p could promote adipogenesis in mice injected with miR-144-3p agomir through tail-vein injection. Taken together, these results support that miR-144-3p can facilitate adipogenesis both in vitro and in vivo, which implies that miR-144-3p could be a target for therapeutic intervention in obesity and metabolic syndrome in the future.
Collapse
Affiliation(s)
- Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiang Li
- Sichuan Province General Station of Animal Husbandry, Chengdu, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Surong Shuai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|