1
|
Wen J, Sui Y, Shi J, Cai S, Xiong T, Cai F, Zhou L, Li S, Mei X. In Vitro Gastrointestinal Digestion of Various Sweet Potato Leaves: Polyphenol Profiles, Bioaccessibility and Bioavailability Elucidation. Antioxidants (Basel) 2024; 13:520. [PMID: 38790625 PMCID: PMC11117659 DOI: 10.3390/antiox13050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/26/2024] Open
Abstract
The chemical composition discrepancies of five sweet potato leaves (SPLs) and their phenolic profile variations during in vitro digestion were investigated. The results indicated that Ecaishu No. 10 (EC10) provided better retention capacity for phenolic compounds after drying. Furthermore, polyphenols were progressively released from the matrix as the digestion process proceeded. The highest bioaccessibility of polyphenols was found in EC10 intestinal chyme at 48.47%. For its phenolic profile, 3-, 4-, and 5-monosubstituted caffeoyl quinic acids were 9.75%, 57.39%, and 79.37%, respectively, while 3,4-, 3,5-, and 4,5-disubstituted caffeoyl quinic acids were 6.55, 0.27 and 13.18%, respectively. In contrast, the 3,4-, 3,5-, 4,5-disubstituted caffeoylquinic acid in the intestinal fluid after dialysis bag treatment was 62.12%, 79.12%, and 62.98%, respectively, which resulted in relatively enhanced bioactivities (DPPH, 10.51 μmol Trolox/g; FRAP, 8.89 μmol Trolox/g; ORAC, 7.32 μmol Trolox/g; IC50 for α-amylase, 19.36 mg/g; IC50 for α-glucosidase, 25.21 mg/g). In summary, desirable phenolic acid release characteristics and bioactivity of EC10 were observed in this study, indicating that it has potential as a functional food ingredient, which is conducive to the exploitation of the sweet potato processing industry from a long-term perspective.
Collapse
Affiliation(s)
- Junren Wen
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Sui
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Jianbin Shi
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Sha Cai
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Tian Xiong
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Fang Cai
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| | - Lei Zhou
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
- National R & D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
- Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Product, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuyi Li
- National R & D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
- Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Product, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Mei
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (J.W.); (J.S.); (S.C.); (T.X.); (F.C.); (L.Z.)
| |
Collapse
|
2
|
Yu J, Xie J, Sun M, Xiong S, Xu C, Zhang Z, Li M, Li C, Lin L. Plant-Derived Caffeic Acid and Its Derivatives: An Overview of Their NMR Data and Biosynthetic Pathways. Molecules 2024; 29:1625. [PMID: 38611904 PMCID: PMC11013677 DOI: 10.3390/molecules29071625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, caffeic acid and its derivatives have received increasing attention due to their obvious physiological activities and wide distribution in nature. In this paper, to clarify the status of research on plant-derived caffeic acid and its derivatives, nuclear magnetic resonance spectroscopy data and possible biosynthetic pathways of these compounds were collected from scientific databases (SciFinder, PubMed and China Knowledge). According to different types of substituents, 17 caffeic acid and its derivatives can be divided into the following classes: caffeoyl ester derivatives, caffeyltartaric acid, caffeic acid amide derivatives, caffeoyl shikimic acid, caffeoyl quinic acid, caffeoyl danshens and caffeoyl glycoside. Generalization of their 13C-NMR and 1H-NMR data revealed that acylation with caffeic acid to form esters involves acylation shifts, which increase the chemical shift values of the corresponding carbons and decrease the chemical shift values of the corresponding carbons of caffeoyl. Once the hydroxyl group is ester, the hydrogen signal connected to the same carbon shifts to the low field (1.1~1.6). The biosynthetic pathways were summarized, and it was found that caffeic acid and its derivatives are first synthesized in plants through the shikimic acid pathway, in which phenylalanine is deaminated to cinnamic acid and then transformed into caffeic acid and its derivatives. The purpose of this review is to provide a reference for further research on the rapid structural identification and biofabrication of caffeic acid and its derivatives.
Collapse
Affiliation(s)
- Jiahui Yu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Human Province, School of Pharmacy, Human University of Chinese Medicine, Changsha 410208, China; (J.Y.); (J.X.); (M.S.); (S.X.); (C.X.); (Z.Z.); (M.L.)
| | - Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Human Province, School of Pharmacy, Human University of Chinese Medicine, Changsha 410208, China; (J.Y.); (J.X.); (M.S.); (S.X.); (C.X.); (Z.Z.); (M.L.)
| | - Miao Sun
- Key Laboratory for Quality Evaluation of Bulk Herbs of Human Province, School of Pharmacy, Human University of Chinese Medicine, Changsha 410208, China; (J.Y.); (J.X.); (M.S.); (S.X.); (C.X.); (Z.Z.); (M.L.)
| | - Suhui Xiong
- Key Laboratory for Quality Evaluation of Bulk Herbs of Human Province, School of Pharmacy, Human University of Chinese Medicine, Changsha 410208, China; (J.Y.); (J.X.); (M.S.); (S.X.); (C.X.); (Z.Z.); (M.L.)
| | - Chunfang Xu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Human Province, School of Pharmacy, Human University of Chinese Medicine, Changsha 410208, China; (J.Y.); (J.X.); (M.S.); (S.X.); (C.X.); (Z.Z.); (M.L.)
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Human Province, School of Pharmacy, Human University of Chinese Medicine, Changsha 410208, China; (J.Y.); (J.X.); (M.S.); (S.X.); (C.X.); (Z.Z.); (M.L.)
| | - Minjie Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Human Province, School of Pharmacy, Human University of Chinese Medicine, Changsha 410208, China; (J.Y.); (J.X.); (M.S.); (S.X.); (C.X.); (Z.Z.); (M.L.)
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Human Province, School of Pharmacy, Human University of Chinese Medicine, Changsha 410208, China; (J.Y.); (J.X.); (M.S.); (S.X.); (C.X.); (Z.Z.); (M.L.)
| |
Collapse
|
3
|
di Bitonto L, Scelsi E, Errico M, Reynel-Ávila HE, Mendoza-Castillo DI, Bonilla-Petriciolet A, Corazza ML, Shigueyuki Kanda LR, Hájek M, Stateva RP, Pastore C. A Network of Processes for Biorefining Burdock Seeds and Roots. Molecules 2024; 29:937. [PMID: 38474449 DOI: 10.3390/molecules29050937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
In this work, a novel sustainable approach was proposed for the integral valorisation of Arctium lappa (burdock) seeds and roots. Firstly, a preliminary recovery of bioactive compounds, including unsaturated fatty acids, was performed. Then, simple sugars (i.e., fructose and sucrose) and phenolic compounds were extracted by using compressed fluids (supercritical CO2 and propane). Consequently, a complete characterisation of raw biomass and extraction residues was carried out to determine the starting chemical composition in terms of residual lipids, proteins, hemicellulose, cellulose, lignin, and ash content. Subsequently, three alternative ways to utilise extraction residues were proposed and successfully tested: (i) enzymatic hydrolysis operated by Cellulases (Thricoderma resei) of raw and residual biomass to glucose, (ii) direct ethanolysis to produce ethyl levulinate; and (iii) pyrolysis to obtain biochar to be used as supports for the synthesis of sulfonated magnetic iron-carbon catalysts (Fe-SMCC) to be applied in the dehydration of fructose for the synthesis of 5-hydroxymethylfurfural (5-HMF). The development of these advanced approaches enabled the full utilisation of this resource through the production of fine chemicals and value-added compounds in line with the principles of the circular economy.
Collapse
Affiliation(s)
- Luigi di Bitonto
- Water Research Institute (IRSA), National Research Council (CNR), Viale De Blasio 5, 70132 Bari, Italy
| | - Enrico Scelsi
- Water Research Institute (IRSA), National Research Council (CNR), Viale De Blasio 5, 70132 Bari, Italy
| | - Massimiliano Errico
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Hilda Elizabeth Reynel-Ávila
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México 03940, Mexico
- Department of Chemical Engineering, Instituto Tecnológico de Aguascalientes, Aguascalientes 20256, Mexico
| | - Didilia Ileana Mendoza-Castillo
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México 03940, Mexico
- Department of Chemical Engineering, Instituto Tecnológico de Aguascalientes, Aguascalientes 20256, Mexico
| | - Adrián Bonilla-Petriciolet
- Department of Chemical Engineering, Instituto Tecnológico de Aguascalientes, Aguascalientes 20256, Mexico
| | - Marcos Lucio Corazza
- Department of Chemical Engineering, Universidade Federal do Paraná (UFPR), P.O. Box 19011, Curitiba 81531-980, PR, Brazil
| | - Luis Ricardo Shigueyuki Kanda
- Department of Chemical Engineering, Universidade Federal do Paraná (UFPR), P.O. Box 19011, Curitiba 81531-980, PR, Brazil
| | - Martin Hájek
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic
| | - Roumiana P Stateva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 103, 1113 Sofia, Bulgaria
| | - Carlo Pastore
- Water Research Institute (IRSA), National Research Council (CNR), Viale De Blasio 5, 70132 Bari, Italy
| |
Collapse
|
4
|
Liu L, Liu H, Yan H, Guo H, Bai L. Separation and purification of glycosides from medicinal plants based on strong polar separation medium with online closed-loop mode. J Pharm Biomed Anal 2023; 234:115508. [PMID: 37295190 DOI: 10.1016/j.jpba.2023.115508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Natural glycosides widely distributed in medicinal plants are valuable sources of therapeutic agents, showing various pharmacological effects. The separation and purification of natural glycosides are meaningful for their pharmacological research, which face with great challenges due to the complex of medicinal plants samples. In this work, two kinds of functional monolithic separation mediums A and S were fabricated and fully applied in the online extraction, separation and purification of active glycoside components from medicinal plants with a simple-procedure closed-loop mode. Chrysophanol glucoside and physcion glucoside were detected and separated from Rhei Radix et Rhizoma using separation medium A as a solid-phase extraction adsorbent. Rhapontin was isolated and purified from Rheum hotaoense C. Y. Cheng et Kao using separation medium S as the stationary phase of high-performance liquid chromatography. Compared to the reported literatures, high yield of 5.68, 1.20 and 4.76 mg g-1 of these three products were obtained with high purity. These two online closed-loop mode methods were carried out using high-performance liquid chromatography system, in which the sample injection, isolation and purification procedures are all online mode, and reduced loss compared to offline extraction and purification procedures, thus achieving high recovery and high purity.
Collapse
Affiliation(s)
- Lu Liu
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding 071002, China
| | - Haiyan Liu
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding 071002, China
| | - Huaizhong Guo
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding 071002, China
| | - Ligai Bai
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Mazzio E, Barnes A, Badisa R, Fierros-Romero G, Williams H, Council S, Soliman K. Functional immune boosters; the herb or its dead microbiome? Antigenic TLR4 agonist MAMPs found in 65 medicinal roots and algae's. J Funct Foods 2023; 107:105687. [PMID: 37654434 PMCID: PMC10469438 DOI: 10.1016/j.jff.2023.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Background Humans have been consuming medicinal plants (as herbs/ spices) to combat illness for centuries while ascribing beneficial effects predominantly to the plant/phytochemical constituents, without recognizing the power of obligatory resident microorganism' communities (MOCs) (live/dead bacteria, fungus, yeast, molds etc.) which remain after industrial microbial reduction methods. Very little is known about the taxonomic identity of residual antigenic microbial associated molecular patterns (MAMPs) debris in our botanical over the counter (OTC) products, which if present would be recognized as foreign (non-self) antigenic matter by host pattern recognition receptors (PRRs) provoking a host immune response; this the basis of vaccine adjuvants. As of today, only few research groups have removed the herbal MAMP biomass from herbs, all suggesting that immune activation may not be from the plant but rather its microbial biomass; a hypothesis we corroborate. Purpose The purpose of this work was to conduct a high through put screening (HTPS) of over 2500 natural plants, OTC botanical supplements and phytochemicals to elucidate those with pro-inflammatory; toll like receptor 4 (TLR4) activating properties in macrophages. Study Design The HTPS was conducted on RAW 264.7 cells vs. lipopolysaccharide (LPS) E. coli 0111:B4, testing iNOS / nitric oxide production ( NO 2 - ) as a perimeter endpoint. The data show not a single drug/chemical/ phytochemical and approximately 98 % of botanicals to be immune idle (not effective) with only 65 pro-inflammatory (hits) in a potency range of LPS. Method validation studies eliminated the possibility of false artifact or contamination, and results were cross verified through multiple vendors/ manufacturers/lot numbers by botanical species. Lead botanicals were evaluated for plant concentration of LPS, 1,3:1,6-β-glucan, 1,3:1,4-β-D-glucan and α-glucans; where the former paralleled strength in vitro. LPS was then removed from plants using high-capacity endotoxin poly lysine columns, where bioactivity of LPS null "plant" extracts were lost. The stability of E.Coli 0111:B4 in an acid stomach mimetic model was confirmed. Last, we conducted a reverse culture on aerobic plate counts (APCs) from select hits, with subsequent isolation of gram-negative bacteria (MacConkey agar). Cultures were 1) heat destroyed (retested/ confirming bioactivity) and 2) subject to taxonomical identification by genetic sequencing 18S, ITS1, 5.8 s, ITS2 28S, and 16S. Conclusion The data show significant gram negative MAMP biomass dominance in A) roots (e.g. echinacea, yucca, burdock, stinging nettle, sarsaparilla, hydrangea, poke, madder, calamus, rhaponticum, pleurisy, aconite etc.) and B) oceanic plants / algae's (e.g. bladderwrack, chlorella, spirulina, kelp, and "OTC Seamoss-blends" (irish moss, bladderwrack, burdock root etc), as well as other random herbs (eg. corn silk, cleavers, watercress, cardamom seed, tribulus, duckweed, puffball, hordeum and pollen). The results show a dominance of gram negative microbes (e.g. Klebsilla aerogenes, Pantoae agglomerans, Cronobacter sakazakii), fungus (Glomeracaea, Ascomycota, Irpex lacteus, Aureobasidium pullulans, Fibroporia albicans, Chlorociboria clavula, Aspergillus_sp JUC-2), with black walnut hull, echinacea and burdock root also containing gram positive microbial strains (Fontibacillus, Paenibacillus, Enterococcus gallinarum, Bromate-reducing bacterium B6 and various strains of Clostridium). Conclusion This work brings attention to the existence of a functional immune bioactive herbal microbiome, independent from the plant. There is need to further this avenue of research, which should be carried out with consideration as to both positive or negative consequences arising from daily consumption of botanicals highly laden with bioactive MAMPS.
Collapse
Affiliation(s)
- E. Mazzio
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - A. Barnes
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - R. Badisa
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - G. Fierros-Romero
- Florida Agricultural and Mechanical University, School of Environment, Tallahassee, FL 32307, United States
| | - H. Williams
- Florida Agricultural and Mechanical University, School of Environment, Tallahassee, FL 32307, United States
| | - S. Council
- John Gnabre Science Research Institute, Baltimore, MD 21224, United States
| | - K.F.A. Soliman
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| |
Collapse
|
6
|
Valente MDA, Ferreira P, Lima K, Moreira da Silva IB, Nobre P, Neto I, Pires M, Braz BS, Serrano R, Belo S, Silva O. Vernonia britteniana Root Phytochemical Studies, In Vitro Cercaricidal Activity on the Larval Stage of Schistosoma mansoni and Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091788. [PMID: 37176846 PMCID: PMC10181313 DOI: 10.3390/plants12091788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Vernonia britteniana Hiern. (Asteraceae) is a medicinal plant used in traditional Angolan medicine against schistosomiasis. Our study aimed to investigate the phytochemical composition and the cercaricidal and antioxidant activities in vitro of a traditional herbal preparation (Water-Vbr) and a 70% hydroethanolic extract (EtOH70%-Vbr) prepared with this medicinal plant. The activity of the extracts against Schistosoma mansoni cercariae was assessed at different extract concentrations (500, 438, and 125 µg/mL) and at different time intervals, and the phytochemical profiles were obtained by LC-UV-ESI/MS-MS. In addition, the major chemical classes of the identified metabolites were quantified by colorimetry, and the antioxidant potential was assessed using the DPPH and FRAP methods. After 30 min, 100% cercarial mortality was observed at a concentration of 500 μg/mL after exposure, and after 120 min, an LC50 of 438 μg/mL was observed for both extracts. Phenolic acid derivatives (chlorogenic acid, caffeic acid; 3,4-di-O-caffeoylquinic acid; 3,5-di-O-caffeoylquinic acid; and 4,5-di-O-caffeoylquinic acid) and triterpenoids (stigmastane-type steroidal saponins; vernoamyoside D and vernonioside D1; vernoamyoside B; and vernoniamyoside A and C) were identified as the main secondary metabolites. The Water-Vbr extract showed the highest antioxidant activity-DPPH: IC50 = 1.769 ± 0.049 µg/mL; FRAP: mean = 320.80 ± 5.1325 µgAAE/g.
Collapse
Affiliation(s)
- Maria Dos Anjos Valente
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Instituto de Investigação Veterinária, Bairro Santo António, Huambo 555, Angola
| | - Pedro Ferreira
- Global Health & Tropical Medicine, Medical Parasitology Unit, Universidade Nova de Lisboa, R. da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Katelene Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Isabel B Moreira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Paula Nobre
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Isabel Neto
- C.I.I.S.A.-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Mavilde Pires
- Instituto de Investigação Veterinária, Bairro Santo António, Huambo 555, Angola
| | - Berta São Braz
- C.I.I.S.A.-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Rita Serrano
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Silvana Belo
- Global Health & Tropical Medicine, Medical Parasitology Unit, Universidade Nova de Lisboa, R. da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
7
|
Yosri N, Alsharif SM, Xiao J, Musharraf SG, Zhao C, Saeed A, Gao R, Said NS, Di Minno A, Daglia M, Guo Z, Khalifa SAM, El-Seedi HR. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biomed Pharmacother 2023; 158:114104. [PMID: 36516694 DOI: 10.1016/j.biopha.2022.114104] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Arctium lappa L. is a medicinal edible homologous plant, commonly known as burdock or bardana, which belongs to the Asteraceae family. It is widely distributed throughout Northern Asia, Europe, and North America and has been utilized for hundreds of years. The roots, fruits, seeds, and leaves of A. lappa have been extensively used in traditional Chinese Medicine (TCM). A. lappa has attracted a great deal of attention due to its possession of highly recognized bioactive metabolites with significant therapeutic potential. Numerous pharmacological effects have been demonstrated in vitro and in vivo by A. lappa and its bioactive metabolites, including antimicrobial, anti-obesity, antioxidant, anticancer, anti-inflammatory, anti-diabetic, anti-allergic, antiviral, gastroprotective, hepatoprotective, and neuroprotective activities. Additionally, A. lappa has demonstrated considerable clinical efficacies and valuable applications in nanomedicine. Collectively, this review covers the properties of A. lappa and its bioactive metabolites, ethnopharmacology aspects, pharmacological effects, clinical trials, and applications in the field of nanomedicine. Hence, a significant attention should be paid to clinical trials and industrial applications of this plant with particular emphasis, on drug discovery and nanotechnology.
Collapse
Affiliation(s)
- Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
| | - Sultan M Alsharif
- Biology Department, Faculty of Science, Taibah University, Al Madinah 887, Saudi Arabia
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Syed G Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aamer Saeed
- Chemistry Department, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Noha S Said
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate, Naples 80131, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, Stockholm University, The Wenner-GrenInstitute, SE-106 91 Stockholm, Sweden
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE 751 24 Uppsala, Sweden; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China.
| |
Collapse
|
8
|
Visualizing the Spatial Distribution of Arctium lappa L. Root Components by MALDI-TOF Mass Spectrometry Imaging. Foods 2022; 11:foods11243957. [PMID: 36553700 PMCID: PMC9778511 DOI: 10.3390/foods11243957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
This study is aimed at developing novel analytical methods to accurately visualize the spatial distribution of various endogenous components in Arctium lappa L. (A. lappa) roots, and to precisely guide the setting of pre-treatment operations during processing technologies and understand plant metabolism process. The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) imaging technology was used for visual demonstration of the in situ spatial distribution in A. lappa roots. This work consisted of four steps: matrix selection, section preparation, matrix coating, and MALDI-TOF MS imaging analysis. Consequently, eight saccharides, four caffeoylquinic acids, four flavonoids, six amino acids, one choline, and one phospholipid were imaged and four unidentified components were found. Saccharides were distributed in the center, whereas caffeoylquinic acids and flavonoids were mainly present in the epidermis and cortex. Furthermore, amino acids were mainly detected in the phloem, and choline in the cambium, while phosphatidylserine was found in the secondary phloem and cambium. This study demonstrated that MALDI-TOF MS imaging technology could provide a technical support to understand the spatial distribution of components in A. lappa roots, which would promote the processing technologies for A. lappa roots and help us to understand the plant metabolism process.
Collapse
|
9
|
Lucas Tenório CJ, Assunção Ferreira MR, Lira Soares LA. Recent advances on preparative LC approaches for polyphenol separation and purification: Their sources and main activities. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Zhao WY, Yan JJ, Zhang M, Wang C, Feng L, Lv X, Huo XK, Sun CP, Chen LX, Ma XC. Natural soluble epoxide hydrolase inhibitors from Inula britanica and their potential interactions with soluble epoxide hydrolase: Insight from inhibition kinetics and molecular dynamics. Chem Biol Interact 2021; 345:109571. [PMID: 34217688 DOI: 10.1016/j.cbi.2021.109571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
Soluble epoxide hydrolase (sEH) is a potential drug target to treat inflammation and neurodegenerative diseases. In this study, we found that the extract of Inula britanica exhibited significantly inhibitory effects against sEH, therefore, we investigated its phytochemical constituents to obtain seven new compounds together with sixteen known ones (1-20), including two pairs of novel enantiomers, (2S,3S)-britanicafanin A (1a), (2R,3R)-britanicafanin A (1b), (2R,3S)-britanicafanin B (2a), and (2S,3R)-britanicafanin B (2b), and three new lignans britanicafanins C-E (3-5). Their structures were determined by HRESIMS, 1D and 2D NMR, and electronic circular dichroism (ECD) spectra as well as quantum chemical computations. All the isolates were evaluated for their inhibitory effects against sEH, compounds 1-3, 5-7, 9, 10, 13, 14, and 17-20 showed significant inhibitory effects against sEH with IC50 values from 3.56 μM to 26.93 μM. The inhibition kinetics results indicated that compounds 9, 10, 13, and 19 were all uncompetitive inhibitors, and their inhibition constants (Ki) values were 7.11, 1.99, 4.06, and 8.78 μM, respectively. Their potential interactions were analyzed by molecular docking and molecular dynamics (MD), which suggested that amino acid residues Asp335 and Asn359, especially Gln384, played an important role in the inhibition of compounds 10 and 13 on sEH, and compounds 10 and 13 could be considered as the potential candidates for the development of sEH inhibitors.
Collapse
Affiliation(s)
- Wen-Yu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Juan-Juan Yan
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Chao Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Lei Feng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xia Lv
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiao-Kui Huo
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
11
|
Zhang M, Wang YW, Zhu YZ, Gu XL. Discovery of quality control ingredients in burdock root by combining anti-tumor effects and UHPLC-QqQ-MS/MS. Biomed Chromatogr 2021; 35:e5187. [PMID: 34061396 DOI: 10.1002/bmc.5187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/09/2022]
Abstract
Burdock root is the root of Arctium lappa L., a plant of the Compositae family, which has the effects of dispersing wind and heat, detoxifying and reducing swelling. In order to better control the quality of burdock root, a screening study of quality control indicators was carried out. The current research combines biological activity evaluation with chemical analysis to screen and identify the biologically active compounds of burdock root as chemical components for the quality control of herbal medicine. The efficacy of 10 batches of ethanol extracts of burdock roots was evaluated by a tumor inhibition experiment in S180 tumor-bearing mice. The five main chemical components of these extracts were simultaneously quantitatively measured by ultra-high performance liquid chromatography combined with triple quadrupole mass spectrometry. Pearson correlation analysis was used to establish the relationship between these extracts' biological activity and chemical properties. The results showed that chlorogenic acid, caffeic acid and cynarin were positively correlated with the effect of inhibiting tumor growth, and further bioassays confirmed this conclusion. In conclusion, chlorogenic acid, caffeic acid and cynarin can be used as quality control markers for burdock root's antitumor effect.
Collapse
Affiliation(s)
- Ming Zhang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - You-Wen Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan-Zhang Zhu
- Department of pharmacy, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiao-Ling Gu
- Department of Clinical Pharmacy, GuangMing Chinese Medicine Hospital of Pudong New Area, Shanghai, China
| |
Collapse
|
12
|
Wang H, Shan H, Lü H. Preparative Separation and Purification of Liquiritin and Glycyrrhizic Acid from Glycyrrhiza uralensis Fisch by High-Speed Countercurrent Chromatography. J Chromatogr Sci 2021; 58:823-830. [PMID: 32869089 DOI: 10.1093/chromsci/bmaa050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/28/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022]
Abstract
The technique of high-speed countercurrent chromatography (HSCCC) was applied to the preparative isolation and purification of liquiritin and glycyrrhizic acid from a crude extract of Glycyrrhiza uralensis Fisch for the first time. Using single factor and orthogonal design experiments, the best extraction conditions were 70% ethanol, 1:25 ratio of solid-to-liquid (w/v) and extracted 1.5 h at 80°C. The contents of liquiritin and glycyrrhizic acid in the crude extract were 1.3 and 5.3%, respectively. Using the two-phase solvent system of ethyl acetate-methanol-water (5:2:5, v/v), 6.0 mg liquiritin (the purity was 96.7%, and the recovery was 89.3%), and 20.5 mg glycyrrhizic acid (the purity was 98.9%, and the recovery was 77.1%) were obtained from 500 mg crude extraction by HSCCC, respectively. The retention rate of stationary phase was 51.0%. Their structures were identified by high-performance liquid chromatography, melting points, ultraviolet radiation, Fourier transform infrared (FTIR), Electrospray ionization mass spectrometry (ESI-MS), 1H Nuclear Magnetic Resonance (NMR) and 13C NMR spectra. The scavenging abilities of glycyrrhizic acid to 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radicals were stronger than those of liquiritin.
Collapse
Affiliation(s)
- Hao Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang, Qingdao, Shandong 266109, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, 700 Changcheng Road, Chengyang, Qingdao, Shandong 266109, China
| | - Haitao Lü
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang, Qingdao, Shandong 266109, China
| |
Collapse
|
13
|
Effect of Drying Methods on Volatile Compounds of Burdock ( Arctium lappa L.) Root Tea as Revealed by Gas Chromatography Mass Spectrometry-Based Metabolomics. Foods 2021; 10:foods10040868. [PMID: 33921154 PMCID: PMC8071549 DOI: 10.3390/foods10040868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Burdock (Arctium lappa L.) is one of the nutritional foods widely planted in many countries. Dried burdock root (BR) is available as a herbal tincture and tea in many Asian countries with good flavor and taste. In this study, the volatile components in dried BR were identified and the effects of different drying methods on the volatile components were investigated by HS-GC-MS method. A total of 49 compounds were identified. Different drying methods including hot-air drying (HD, at 50, 60, 70, and 80 °C), vacuum drying (VD, at 50, 60, 70, and 80 °C), sunlight drying (SD), natural drying (ND), and vacuum freeze drying (VFD) were evaluated by HS-GC-MS-based metabolomics method. Results showed that different drying methods produced different effects on the volatile compounds. It was observed that 2,3-pentanedione, 1-(1H-pyrrol-2-yl)-ethanone, furfural, and heptanal were detected at higher concentrations in HD 80 and VD 70. The traditional HD and SD methods produced more flavor substances than VFD. The BR treated by the VFD method could maintain the shape of the fresh BR pieces while HD50 and VD80 methods could maintain the color of fresh BR pieces. These findings could help better understand the flavor of the corresponding processed BR and provide a guide for the drying and processing of BR tea.
Collapse
|
14
|
Li L, Qiu Z, Dong H, Ma C, Qiao Y, Zheng Z. Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from the roots of Arctium lappa L.: A comparison. Int J Biol Macromol 2021; 182:187-196. [PMID: 33836197 DOI: 10.1016/j.ijbiomac.2021.03.177] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022]
Abstract
In this work, we comparatively analyzed the structure and antioxidant activities of different polysaccharide fractions from Arctium lappa L. A total of four water-soluble polysaccharide fractions (ALP-1, ALP-2, ALP-3 and ALP-4) were obtained from the roots of Arctium lappa L. They differed in monosaccharide composition, molecular weight and linkage mode. ALP-1 and ALP-2 mainly consisted of fructose, with average molecular weights of 2.676 × 103 and 2.503 × 104 g/mol, respectively. ALP-3 and ALP-4 were mainly composed of fructose, arabinose and galactose, with average molecular weights of 9.709 × 104 and 6.790 × 104 g/mol, respectively. Furthermore, Fourier transform infrared spectrometry, methylation analysis and nuclear magnetic resonance spectroscopy suggested that the main polysaccharide ALP-1 had a linear chain of (1 → 2)-linked β-D-Fructofuranosyl backbone (n ≈ 15) linked to a terminal (1 → 2)-linked α-d-Glucopyranosyl at the non-reducing end. All five polysaccharides displayed high antioxidant ability, especially ALP-4 in H2O2-induced HepG2 cell model and ALP-1 in metronidazole [MET]-induced zebrafish model. These findings provided comparative information on the structure and biological activity of different burdock polysaccharides and highlighted their potential as antioxidants in functional foods.
Collapse
Affiliation(s)
- Lingyu Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China
| | - Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, PR China
| | - Chunxia Ma
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, PR China
| | - Yiteng Qiao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China.
| |
Collapse
|
15
|
Potential use of low-field nuclear magnetic resonance to determine the drying characteristics and quality of Arctium lappa L. in hot-blast air. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Liu W, Li J, Zhang X, Zu Y, Yang Y, Liu W, Xu Z, Gao H, Sun X, Jiang X, Zhao Q. Current Advances in Naturally Occurring Caffeoylquinic Acids: Structure, Bioactivity, and Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10489-10516. [PMID: 32846084 DOI: 10.1021/acs.jafc.0c03804] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Caffeoylquinic acids (CQAs) are a broad class of secondary metabolites that have been found in edible and medicinal plants from various families. It has been 100 years since the discovery of chlorogenic acid in 1920. In recent years, a number of naturally derived CQAs have been isolated and structurally elucidated. Accumulated evidence demonstrate that CQAs have a wide range of biological activities, such as antioxidation, antibacterial, antiparasitic, neuroprotective, anti-inflammatory, anticancer, antiviral, and antidiabetic effects. Up to date, some meaningful progresses on the biosynthesis and total synthesis of CQAs have also been made. Therefore, it is necessary to comprehensively summarize the structure, biological activity, biosynthesis, and chemical synthesis of CQAs. This review provides extensive coverage of naturally occurring CQAs discovered from 1990 until 2020. Modern isolation techniques, chemical data (including structure, biosynthesis, and total synthesis), and bioactivity are summarized. This would be helpful for further research of CQAs as potential pharmaceutical agents.
Collapse
Affiliation(s)
- Wenwu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Jingda Li
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Xuemei Zhang
- School of Life Sciences, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Yuxin Zu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Yue Yang
- School of Life Sciences, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Wenjie Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Zihua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Huan Gao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Xue Sun
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Xiaowen Jiang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| |
Collapse
|
17
|
Unlimited recycling counter-current chromatography for the preparative separation of natural products: Naphthaquinones as examples. J Chromatogr A 2020; 1626:461368. [DOI: 10.1016/j.chroma.2020.461368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/29/2022]
|
18
|
|
19
|
Mi QL, Liang MJ, Gao Q, Song CM, Huang HT, Xu Y, Wang J, Deng L, Yang GY, Guo YD, Chen ZY, Li XM. Arylbenzofuran Lignans from the Seeds of Arctium lappa and Their Bioactivity. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-02942-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Wang H, Shan H, Lü H. Preparative separation of liquiritigenin and glycyrrhetic acid from Glycyrrhiza uralensis Fisch using hydrolytic extraction combined with high-speed countercurrent chromatography. Biomed Chromatogr 2020; 34:e4788. [PMID: 31899545 DOI: 10.1002/bmc.4788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/11/2022]
Abstract
The objective of this paper was to develop a preparative method for the isolation and purification of liquiritigenin and glycyrrhetic acid from Glycyrrhiza uralensis Fisch using hydrolytic extraction combined with high-speed countercurrent chromatography (HSCCC). Liquiritigenin and glycyrrhetic acid were well hydrolyzed from liquiritin and glycyrrhizic acid by hydrochloric acid, respectively. The optimal extraction conditions were obtained by single-factor and orthogonal experiments, which were 100% ethanol, 1.5 mol/L hydrochloric acid, 1:25 ratio of solid to liquid, and extracted 2 h for one time. Using the two-phase solvent system of n-hexane-ethyl acetate-methanol-water (4:5:4:5, v/v), 2.1 mg liquiritigenin (the purity was 96.5% with a recovery of 87.6%) and 12.3 mg glycyrrhetic acid (the purity was 97.1% with a recovery of 74.4%) were obtained from 315-mg crude extraction by HSCCC. The retention ratio of stationary phase was 47.2%. Their structures were identified by HPLC, melting points, UV, Fourier-transform infrared, Electrospray ionization-MS, 1 H nuclear magnetic resonance (NMR), and 13 C NMR spectra. According to the antioxidant activity assays, liquiritigenin and glycyrrhetic acid had some scavenging abilities on 1,1-diphenyl-2-picrylhydrazyl free radicals; liquiritigenin had stronger scavenging ability on hydroxyl radicals.
Collapse
Affiliation(s)
- Hao Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, P. R. China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P. R. China
| | - Haitao Lü
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, P. R. China
| |
Collapse
|
21
|
Ma T, Xu L, Wang X, Li J, Guo L, Wang X. Preparative separation of seven phenolic acids from Xanthii Fructus using pH-zone-refining counter-current chromatography combined with semi-preparative high performance liquid chromatography. RSC Adv 2019; 9:36524-36529. [PMID: 35539068 PMCID: PMC9075151 DOI: 10.1039/c9ra06969k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/01/2019] [Indexed: 02/02/2023] Open
Abstract
Phenolic acids represented by caffeoylquinic acids in Xanthii Fructus have various pharmacological activities such as anti-inflammatory, anti-nociceptive, anti-oxidative and anti-allergic effects. In this study, pH-zone-refining counter-current chromatography was successfully applied in the segmentation of crude samples and further separation of phenolic acids from Xanthii Fructus. We initially segmented 1.6 g of the crude sample to yield three sample fractions using a two-phase solvent system composed of EtOAc-ACN-H2O (4 : 1 : 5, v/v/v) with 10 mM TFA added to the organic phase as the stationary phase and 10 mM NH3·H2O added to the aqueous phase as the mobile phase. The first fraction was separated using EtOAc-H2O (1 : 1, v/v) (10 mM TFA was added in the upper phase and 20 mM NH3·H2O was added in the lower phase) solvent system, the second fraction containing low-content compounds was separated using semi-preparative high performance liquid chromatography, and the third fraction contained one pure compound. As a result, seven phenolic acids including six caffeoylquinic acid isomers (3-caffeoylquinic acid, 4-caffeoylquinic acid, 5-caffeoylquinic acid, 1,5-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, and 4,5-O-dicaffeoylquinic acid) and caffeic acid were successfully isolated from Xanthii Fructus with purities above 90%. This study demonstrated that pH-ZRCCC is an efficient preparative separation method for phenolic acids, especially isomeric caffeoylquinic acids, from natural products.
Collapse
Affiliation(s)
- Tianyu Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Lihua Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Xinming Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Jia Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China +86-531-82964889 +86-531-82605319
| | - Xiao Wang
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| |
Collapse
|
22
|
Liang MJ, Deng L, Zeng WL, Gao Q, Xiang HY, Li J, Liu X, Mi QL, Hu SS, Yang GY, Li YP, Guo YD. Two New Flavones from the Seeds of Arctium lappa and Their Bioactivity. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02886-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Zhang XJ, Liu SF, Lu Y, Wang JY, Chen KS. Immunomodulatory activity of a fructooligosaccharide isolated from burdock roots. RSC Adv 2019; 9:11092-11100. [PMID: 35520210 PMCID: PMC9063030 DOI: 10.1039/c8ra10091h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/25/2019] [Indexed: 01/03/2023] Open
Abstract
Immunomodulatory activity of burdock fructooligosaccharide (BFO-1) on immune cells in in vitro normal mice, immunosuppressed mice treated with cyclophosphamide and S180 tumor-bearing mice.
Collapse
Affiliation(s)
| | | | - Yan Lu
- School of Life Science
- Shandong University
- Qingdao
- China
| | - Jian-yue Wang
- School of Life Science
- Shandong University
- Qingdao
- China
| | - Kao-shan Chen
- School of Life Science
- Shandong University
- Qingdao
- China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs
| |
Collapse
|
24
|
Guo YD, Mi QL, Yang GY, Zeng WL, Liang MJ, Hu SS, Gao Q, Song CM, Huang HT, Xu Y, Xiang HY, Deng L, Li YK. Three New Arylbenzofuran Lignans from Arctium lappa and Their Anti-Tobacco Mosaic Virus Activity. HETEROCYCLES 2019. [DOI: 10.3987/com-19-14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Dong H, Yao X, Liu D, Zhou T, Wu G, Zheng X, Wang X. Effect of inorganic salt on partition of high-polarity parishins in two-phase solvent systems and separation by high-speed counter-current chromatography from Gastrodia elata Blume. J Sep Sci 2018; 42:871-877. [PMID: 30580477 DOI: 10.1002/jssc.201801012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/14/2018] [Accepted: 12/07/2018] [Indexed: 01/07/2023]
Abstract
Parishins are high-polarity and major bioactive constituents in Gastrodia elata Blume. In this study, the effect of several inorganic salts on the partition of parishins in two-phase solvent systems was investigated. Adding ammonium sulfate, which has a higher solubility in water, was found to significantly promote the partition of parishins in the upper organic polar solvents. Based on the results, a two-phase solvent system composed of butyl alcohol/acetonitrile/near-saturated ammonium sulfate solution/water (1.5:0.5:1.2:1, v/v/v/v) was used for the purification of parishins by high-speed counter-current chromatography. Fractions obtained from high-speed counter-current chromatography were subjected to semi-preparative high-performance liquid chromatography to remove salt and impurities. As a result, parishin E (6.0 mg), parishin B (7.8 mg), parishin C (3.2 mg), gastrodin (15.3 mg), and parishin A (7.3 mg) were isolated from water extract of Gastrodia elata Blume (400 mg). These results demonstrated that adding inorganic salt that has high solubility in water to the two-phase solvent system in high-speed counter-current chromatography was a suitable approach for the purification of high-polarity compounds.
Collapse
Affiliation(s)
- Hongjing Dong
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Xue Yao
- Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Dahui Liu
- Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Tao Zhou
- Yunnan University of Traditional Chinese Medicine, Kunming, P. R. China
| | - Guozhen Wu
- Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xiuhua Zheng
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Xiao Wang
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| |
Collapse
|
26
|
Mamat N, Lu XY, Kabas M, Aisa HA. Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) Willd. Int J Mol Med 2018; 42:2665-2675. [PMID: 30226537 PMCID: PMC6192770 DOI: 10.3892/ijmm.2018.3861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022] Open
Abstract
Vitiligo is a depigmentation disorder of the skin. It is primarily caused by the destruction of melanocytes or obstruction of the melanin synthesis pathway. Melanin is a type of skin pigment that determines skin color. The seeds of Vernonia anthelmintica (L.) Willd (Kaliziri) are used for treating skin diseases including vitiligo in traditional Uyghur medicine. 1,5‑Dicaffeoylquinic acid (1,5‑diCQA) is a natural polyphenolic compound widely distributed in plants and extracted from Kaliziri seeds. Therefore, in the present study, the effect of 1,5‑diCQA on melanin synthesis in B16 cell was evaluated, and its molecular mechanism was explored. The results indicated that 1,5‑diCQA treatment of B16 cells stimulated an increase of intracellular melanin level and tyrosinase (TYR) activity without cytotoxicity. Reverse transcription quantitative polymerase chain reaction results also indicated that 1,5‑diCQA may markedly improve the protein expression and RNA transcription of microphthalmia‑associated transcription factor (MITF), melanogenic enzyme Tyr, tyrosinase‑related protein 1 (TRP 1) and tyrosinase‑related protein 2 (TRP 2). Additional results identified that 1,5‑diCQA may promote the phosphorylation of p38 mitogen‑activated protein kinase (p38 MAPK) and extracellular signal‑regulated kinase (ERK) MAPK. Notably, the increased levels of intracellular melanin synthesis and tyrosinase expression induced by 1,5‑diCQA treatment were significantly attenuated by the protein kinase A (PKA) inhibitor H‑89. Intracellular cyclic adenosine monophosphate (cAMP) concentration and phosphorylation of cAMP‑response element binding protein was increased following 1,5‑diCQA treatment. These results indicated that 1,5‑diCQA stimulated melanogenesis via the MAPK and cAMP/PKA signaling pathways in B16 cells, which has potential therapeutic implications for vitiligo.
Collapse
Affiliation(s)
- Nuramina Mamat
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, Xinjiang 830011, P.R. China
| | - Xue Ying Lu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, Xinjiang 830011, P.R. China
| | - Maidina Kabas
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, Xinjiang 830011, P.R. China
| | - Haji Akber Aisa
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, Xinjiang 830011, P.R. China
| |
Collapse
|
27
|
Kim MI, Kim JH, Syed AS, Kim YM, Choe KK, Kim CY. Application of Centrifugal Partition Chromatography for Bioactivity-Guided Purification of Antioxidant-Response-Element-Inducing Constituents from Atractylodis Rhizoma Alba. Molecules 2018; 23:molecules23092274. [PMID: 30200578 PMCID: PMC6225303 DOI: 10.3390/molecules23092274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/28/2023] Open
Abstract
Activity-guided separation of antioxidant response element (ARE)-inducing constituents from the rhizomes of Atractylodis Rhizoma Alba was performed by the combination of centrifugal partition chromatography (CPC) and an ARE luciferase reporter assay. From 3 g of the active n-hexane fraction, one polyacetylene, (6E,12E)-tetradeca-6,12-dien-8,10-diyne-1,3-diyl diacetate (47.3 mg), and two sesquiterpenes, atractylenolide I (40.9 mg), and selina-4(14),7(11)-dien-8-one (6.0 mg) were successfully isolated by CPC with n-hexane–ethyl acetate–methanol–water (8:2:8:2, v/v). The chemical structures of the isolated compounds were determined by 1H- and 13C-NMR and ESI-MS. Among the isolated compounds, (6E,12E)-tetradeca-6,12-diene-8,10-diyne-1,3-diol diacetate and selina-4(14),7(11)-dien-8-one increased ARE activity 32.9-fold and 16.6-fold, respectively, without significant cytotoxicity, when 5 µM sulforaphane enhanced ARE activity 27.1-fold. However, atractylenolide I did not increase ARE activity at 100 µM, and showed cytotoxicity at concentrations over 10 µM.
Collapse
Affiliation(s)
- Myeong Il Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Ji Hoon Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Ahmed Shah Syed
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sindh, Jamshoro 76080, Pakistan.
| | - Young-Mi Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Kevin Kyungsik Choe
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Chul Young Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| |
Collapse
|