1
|
Hirata S, Mishiro K, Washiyama K, Munekane M, Fuchigami T, Arano Y, Takahashi K, Kinuya S, Ogawa K. In Vivo Stability Improvement of Astatobenzene Derivatives by Introducing Neighboring Substituents. J Med Chem 2025. [PMID: 39757786 DOI: 10.1021/acs.jmedchem.4c02188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
211At is a promising radiohalogen for targeted α therapy. However, some astatinated compounds undergo deastatination in vivo, leading to unintended astatine accumulation in nontarget tissues. Recently, a group reported that the in vivo stability of an astato group on an alkyl group could be improved by placing specific substituents around the astato group. We hypothesized that such an approach could be applied to improve the stability of an astato group on aromatic groups. We designed and synthesized astatobenzene derivatives with neighboring substituents with different physical properties. In vitro and in vivo stabilities of these derivatives were evaluated by comparing with corresponding radioiodinated analogues. Notably, a derivative with two ortho dimethylcarbamoyl substituents significantly improved the stability of the astato group. This study supports the notion that strategic structural modification of substituents adjacent to an astato group can enhance its in vivo stability, potentially leading to the development of effective 211At-labeled radiopharmaceuticals.
Collapse
Affiliation(s)
- Saki Hirata
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kohshin Washiyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yasushi Arano
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8675, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-Machi 13-1, Kanazawa, Ishikawa 920-8641, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
2
|
Tian H, Guo H, Liu J, Du Y, Ren H, Li H. Polymeric nanoparticles in radiopharmaceutical delivery strategies. J Mater Chem B 2024. [PMID: 39693049 DOI: 10.1039/d4tb02076f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The potential applications of polymer nanoparticles (NPs) in the biomedical field have been the subject of extensive research. Radiopharmaceuticals that combine radionuclides and drugs using polymer nanoparticles (NPs) as carriers can be externally labelled, internally labelled or interfacially labelled with radionuclides at different sites. Consequently, they can be employed as delivery agents for a range of diseases. Currently, polymeric nanoparticles can deliver isotopes via active targeting, passive targeting and stimuli-responsive release systems. The objective is to deliver drugs and nuclides to the target site in an efficient manner, thereby maximizing efficacy and minimizing side effects. The development of drug release systems has the potential to address the growing social and economic challenges currently facing modern healthcare. This paper presents a detailed synthesis of the methods used to create polymer nanoparticles (NPs) and strategies for the targeted delivery of radiopharmaceuticals with radionuclides labelled at different locations. Additionally, the paper outlines the current progress of polymer NPs for use in imaging and therapeutic applications, as well as the future challenges that lie ahead in this field.
Collapse
Affiliation(s)
- Haidong Tian
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
| | - Huijun Guo
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jiadi Liu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
| | - Yongpeng Du
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Hongyan Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100039, China
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
| |
Collapse
|
3
|
Wenker STM, van Lith SAM, Tamborino G, Konijnenberg MW, Bussink J, Heskamp S. The potential of targeted radionuclide therapy to treat hypoxic tumor cells. Nucl Med Biol 2024; 140-141:108971. [PMID: 39579561 DOI: 10.1016/j.nucmedbio.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Tumor hypoxia contributes to cancer progression and therapy resistance. Several strategies have been investigated to relieve tumor hypoxia, of which some were successful. However, their clinical application remains challenging and therefore they are not used in daily clinical practice. Here, we review the potential of targeted radionuclide therapy (TRT) to eradicate hypoxic cancer cells. We present an overview of the published TRT strategies using β--particles, α-particles, and Auger electrons. Altogether, we conclude that α-particle emitting radionuclides are most promising since they can cause DNA double strand breaks independent of oxygen levels. Future directions for research are addressed, including more adequate in vitro and in vivo models to proof the potential of TRT to eliminate hypoxic cancer cells. Furthermore, dosimetry and radiobiology are identified as key to better understand the mechanism of action and dose-response relationships in hypoxic tumor areas. Finally, we can conclude that in order to achieve long-term anti-tumor efficacy, TRT combination treatment strategies may be necessary.
Collapse
Affiliation(s)
- S T M Wenker
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands; Department of Radiation Oncology, Radiotherapy & Oncoimmunology laboratory, Radboudumc, Nijmegen, the Netherlands
| | - S A M van Lith
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
| | - G Tamborino
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - M W Konijnenberg
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - J Bussink
- Department of Radiation Oncology, Radiotherapy & Oncoimmunology laboratory, Radboudumc, Nijmegen, the Netherlands
| | - S Heskamp
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Sakmár M, Kozempel J, Kučka J, Janská T, Štíbr M, Ondrák L, Ondrák Fialová K, Vlk M, Šefc L, Bruchertseifer F, Morgenstern A. In vitro and in vivo study of 221Fr and 213Bi progeny release from the 225Ac-labelled TiO 2 nanoparticles. Nucl Med Biol 2024; 140-141:108973. [PMID: 39579560 DOI: 10.1016/j.nucmedbio.2024.108973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Targeted alpha therapy (TAT) is an effective option for cancer treatment. To maximize its efficacy and minimize side effects, carriers must deliver radionuclides to target tissues. Most of the nuclides used in TAT decay via the alpha cascade, producing several radioactive daughter nuclei with sufficient energy to escape from the original carrier. Therefore, studying these daughter atoms is crucial in the search for new carriers. Nanoparticles have potential as carriers due to their structure, which can prevent the escape of daughter atoms and reduce radiation exposure to non-target tissues. This work focuses on determining the released activity of 221Fr and 213Bi resulting from the decay of 225Ac labelled TiO2 nanoparticles. RESULTS Labelling of TiO2 nanoparticles has shown high sorption rates of 225Ac and its progeny, 221Fr and 213Bi, with over 92 % of activities sorbed on the nanoparticle surface for all measured radionuclides. However, in the quasi-dynamic in vitro system, the released activity of 221Fr and 213Bi is strongly dependent on the nanoparticles concentration, ranging from 15 % for a concentration of 1 mg/mL to approximately 50 % for a nanoparticle concentration of 10 μg/mL in saline solution. The released activities of 213Bi were lower, with a maximum value of around 20 % for concentrations of 0.05, 0.025, and 0.01 mg/mL. The leakage of 225Ac and its progeny was tested in various biological matrices. Minimal released activity was measured in saline at around 10 % after 48 h, while the maximum activity was measured in blood serum and plasma at 20 %. The amount of 225Ac released into the media was minimal (<3 %). The in vitro results were confirmed in a healthy mouse model. The difference in %ID/g was clearly visible immediately after dissection and again after 6 h when 213Bi reached equilibrium with 225Ac. CONCLUSION The study verified the potential release of 225Ac progeny from the labelled TiO2 nanoparticles. Experiments were performed to determine the dependence of released activity on nanoparticle concentration and the biological environment. The results demonstrated the high stability of the prepared 225Ac@TiO2 NPs and the potential release of progeny over time. In vivo studies confirmed our hypothesis. The data obtained suggest that the daughter atoms can escape from the original carrier and follow their own biological pathways in the organism.
Collapse
Affiliation(s)
- Michal Sakmár
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic; Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 5, 12808 Prague, Czech Republic
| | - Ján Kozempel
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic.
| | - Jan Kučka
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Heyrovského náměstí 1888-2, 16000 Prague 6, Czech Republic
| | - Tereza Janská
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic
| | - Matěj Štíbr
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic
| | - Lukáš Ondrák
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic
| | - Kateřina Ondrák Fialová
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic
| | - Martin Vlk
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic
| | - Luděk Šefc
- Charles University in Prague, 1(st) Faculty of Medicine, Center for Advanced Preclinical Imaging (CAPI), Salmovská 3, 12000 Prague 2, Czech Republic
| | | | | |
Collapse
|
5
|
McNeil BL, Ramogida CF. From cyclotrons to chromatography and beyond: a guide to the production and purification of theranostic radiometals. Chem Soc Rev 2024; 53:10409-10449. [PMID: 39360601 DOI: 10.1039/d4cs00802b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Recent clinical success with metal-based radiopharmaceuticals has sparked an interest in the potential of these drugs for personalized medicine. Although often overlooked, the success and global impact of nuclear medicine is contingent upon the purity and availability of medical isotopes, commonly referred to as radiometals. For nuclear medicine to reach its true potential and change patient lives, novel production and purification techniques that increase inventory of radiometals are desperately needed. This tutorial review serves as a resource for those both new and experienced in nuclear medicine by providing a detailed explanation of the foundations for the production and purification of radiometals, stemming from nuclear physics, analytical chemistry, and so many other fields, all in one document. The fundamental science behind targetry, particle accelerators, nuclear reactors, nuclear reactions, and radiochemical separation are presented in the context of the field. Finally, a summary of the latest breakthroughs and a critical discussion of the threats and future potential of the most utilized radiometals is also included. With greater understanding of the fundamentals, fellow scientists will be able to better interpret the literature, identify knowledge gaps or problems and ultimately invent new production and purification pathways to increase the global availability of medical isotopes.
Collapse
Affiliation(s)
- Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| |
Collapse
|
6
|
Winter RC, Amghar M, Wacker AS, Bakos G, Taş H, Roscher M, Kelly JM, Benešová-Schäfer M. Future Treatment Strategies for Cancer Patients Combining Targeted Alpha Therapy with Pillars of Cancer Treatment: External Beam Radiation Therapy, Checkpoint Inhibition Immunotherapy, Cytostatic Chemotherapy, and Brachytherapy. Pharmaceuticals (Basel) 2024; 17:1031. [PMID: 39204136 PMCID: PMC11359268 DOI: 10.3390/ph17081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is one of the most complex and challenging human diseases, with rising incidences and cancer-related deaths despite improved diagnosis and personalized treatment options. Targeted alpha therapy (TαT) offers an exciting strategy emerging for cancer treatment which has proven effective even in patients with advanced metastatic disease that has become resistant to other treatments. Yet, in many cases, more sophisticated strategies are needed to stall disease progression and overcome resistance to TαT. The combination of two or more therapies which have historically been used as stand-alone treatments is an approach that has been pursued in recent years. This review aims to provide an overview on TαT and the four main pillars of therapeutic strategies in cancer management, namely external beam radiation therapy (EBRT), immunotherapy with checkpoint inhibitors (ICI), cytostatic chemotherapy (CCT), and brachytherapy (BT), and to discuss their potential use in combination with TαT. A brief description of each therapy is followed by a review of known biological aspects and state-of-the-art treatment practices. The emphasis, however, is given to the motivation for combination with TαT as well as the pre-clinical and clinical studies conducted to date.
Collapse
Affiliation(s)
- Ruth Christine Winter
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Mariam Amghar
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Anja S. Wacker
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; (A.S.W.); (J.M.K.)
| | - Gábor Bakos
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Harun Taş
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Mareike Roscher
- Service Unit for Radiopharmaceuticals and Preclinical Studies, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - James M. Kelly
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; (A.S.W.); (J.M.K.)
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| |
Collapse
|
7
|
Katsuragawa M, Yagishita A, Takeda S, Minami T, Ohnuki K, Fujii H, Takahashi T. CdTe XG-Cam: A new high-resolution x-ray and gamma-ray camera for studies of the pharmacokinetics of radiopharmaceuticals in small animals. Med Phys 2024; 51:5308-5320. [PMID: 38762908 DOI: 10.1002/mp.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND The recent emergence of targeted radionuclide therapy has increased the demand for imagers capable of visualizing pharmacokinetics in developing radiopharmaceuticals in the preclinical phase. Some radionuclides emit hard x-rays and gamma-rays below 100 keV, in which energy range the performance of conventional NaI scintillators is poor. Multipinhole collimators are also used for small animal imaging with a good spatial resolution but have a limited field of view (FOV). PURPOSE In this study, a new imager with high sensitivity over a wide FOV in the low-energy band ( < $<$ 100 keV) was developed for the pharmacokinetic study. METHODS We developed an x-ray and gamma-ray camera for high-resolution spectroscopy, named "CdTe XG-Cam," equipped with a cadmium telluride semiconductor detector and a parallel-hole collimator using a metal 3D printer. To evaluate the camera-system performance, phantom measurements with single and dual nuclides (99 m Tc $^{\rm 99m}{\rm Tc}$ ,111 In $^{111}{\rm In}$ , and125 I ) $^{125}{\rm I)}$ were performed. The performance for in vivo imaging was evaluated using tumor-bearing mice to which a nuclide (99 m Tc $^{\rm 99m}{\rm Tc}$ or125 I ) $^{125}{\rm I)}$ administered. RESULTS We simultaneously obtained information on111 In $^{111}{\rm In}$ and125 I $^{125}{\rm I}$ , which emit emission lines in the low-energy band with peak energies close to each other (23-26 keV for111 In $^{111}{\rm In}$ and 27-31 keV for125 I ) $^{125}{\rm I)}$ , and applied an analytical method based on spectral model fitting to determine the individual radioactivities accurately. In the small animal imaging, the distributions of the nuclide in tumors were accurately quantified and time-activity curves in tumors are obtained. CONCLUSIONS The demonstrated capability of our system to perform in vivo imaging suggests that the camera can be used for applications of pharmacokinetics research.
Collapse
Affiliation(s)
- Miho Katsuragawa
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
| | - Atsushi Yagishita
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
- iMAGINE-X Inc., Shibuya-ku, Tokyo, Japan
| | - Shin'ichiro Takeda
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
- iMAGINE-X Inc., Shibuya-ku, Tokyo, Japan
| | - Takahiro Minami
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazunobu Ohnuki
- Division of Functional Imaging, The National Cancer Center Japan, Kashiwa, Chiba, Japan
| | - Hirofumi Fujii
- Division of Functional Imaging, The National Cancer Center Japan, Kashiwa, Chiba, Japan
| | - Tadayuki Takahashi
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
8
|
Tranel J, Palm S, Feng FY, St. James S, Hope TA. Technical note: Errors introduced when using Dose Voxel Kernels for estimating absorbed dose from radiopharmaceutical therapies involving alpha emitters. Med Phys 2024; 51:5764-5772. [PMID: 38314904 PMCID: PMC11298574 DOI: 10.1002/mp.16970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND In radiopharmaceutical therapies (RPT) involving beta emitters, absorbed dose (Dabs) calculations often employ the use of dose voxel kernels (DVK). Such methods are faster and easier to implement than Monte Carlo (MC) simulations. Using DVK methods implies a non-stochastic distribution of particles. This is a valid assumption for betas where thousands to tens of thousands of particles traversing the cell nucleus are required to achieve cell kill. However, alpha particles have linear energy transfers (LET) that are ∼500 times higher than LETs of betas. This results in a significant probability of killing a cell from even a single traversal through its nucleus. Consequently, the activity used for therapy involving alphas is very low, and the use of DVKs for estimating Dabs will generate results that may be erroneous. PURPOSE This work aims at illustrating how use of DVKs affect the resulting Dabs in small tumors when irradiated with clinically relevant amounts of beta- and alpha-emitters. The results are compared with those from using a Monte Carlo method where the energy deposition from individual tracks is simulated. METHODS To illustrate the issues associated with DVK for alpha radiopharmaceutical therapies at the microscale, a tumor cluster model was used to compare beta (177Lu) and alphas (211At, 225Ac, and 227Th) irradiations. We used 103 beta particles and 20 alpha particles per cell, which is within the range of the required number of particle traversals through its nucleus to sterilize a cell. Results from using both methods were presented with Dabs histograms, dose volume histograms, and Dabs error maps. RESULTS For beta-emitter (177Lu) irradiating the modeled tumor cluster, resulting Dabs was similar for both DVK and MC methods. For all alpha emitters, the use of DVK led to an overestimation of Dabs when compared to results generated using a MC approach. CONCLUSIONS Our results demonstrate that the use of DVK methods for alpha emitters can lead to an overestimation in the calculated Dabs. The use of DVKs for therapies involving alpha emitters may therefore not be appropriate when only referring to the mean Dabs metric.
Collapse
Affiliation(s)
- Jonathan Tranel
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Stig Palm
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Felix Y. Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Sara St. James
- Department of Radiation Oncology, University of Utah, Salt Lake City, Utah, USA
| | - Thomas A. Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Koniar H, Wharton L, Ingham A, Rodríguez-Rodríguez C, Kunz P, Radchenko V, Yang H, Rahmim A, Uribe C, Schaffer P. In vivoquantitative SPECT imaging of actinium-226: feasibility and proof-of-concept. Phys Med Biol 2024; 69:155003. [PMID: 38925140 DOI: 10.1088/1361-6560/ad5c37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Objective.225Ac radiopharmaceuticals have tremendous potential for targeted alpha therapy, however,225Ac (t1/2= 9.9 d) lacks direct gamma emissions forin vivoimaging.226Ac (t1/2= 29.4 h) is a promising element-equivalent matched diagnostic radionuclide for preclinical evaluation of225Ac radiopharmaceuticals.226Ac has two gamma emissions (158 keV and 230 keV) suitable for SPECT imaging. This work is the first feasibility study forin vivoquantitative226Ac SPECT imaging and validation of activity estimation.Approach.226Ac was produced at TRIUMF (Vancouver, Canada) with its Isotope Separator and Accelerator (ISAC) facility. [226Ac]Ac3+was radiolabelled with the bioconjugate crown-TATE developed for therapeutic targeting of neuroendocrine tumours. Mice with AR42J tumour xenografts were injected with either 2 MBq of [226Ac]Ac-crown-TATE or 4 MBq of free [226Ac]Ac3+activity and were scanned at 1, 2.5, 5, and 24 h post injection in a preclinical microSPECT/CT. Quantitative SPECT images were reconstructed from the 158 keV and 230 keV photopeaks with attenuation, background, and scatter corrections. Image-based226Ac activity measurements were assessed from volumes of interest within tumours and organs of interest. Imaging data was compared withex vivobiodistribution measured via gamma counter.Main results. We present, to the best of our knowledge, the first everin vivoquantitative SPECT images of226Ac activity distributions. Time-activity curves derived from SPECT images quantify thein vivobiodistribution of [226Ac]Ac-crown-TATE and free [226Ac]Ac3+activity. Image-based activity measurements in the tumours and organs of interest corresponded well withex vivobiodistribution measurements.Significance. Here in, we established the feasibility ofin vivo226Ac quantitative SPECT imaging for accurate measurement of actinium biodistribution in a preclinical model. This imaging method could facilitate more efficient development of novel actinium labelled compounds by providing accurate quantitativein vivopharmacokinetic information essential for estimating toxicities, dosimetry, and therapeutic potency.
Collapse
Affiliation(s)
- Helena Koniar
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Luke Wharton
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Aidan Ingham
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Cristina Rodríguez-Rodríguez
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Peter Kunz
- Accelerator Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Arman Rahmim
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
- Department of Radiology, University of British Columbia, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Integrative Oncology, BC Cancer Research Centre, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Carlos Uribe
- Department of Radiology, University of British Columbia, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Integrative Oncology, BC Cancer Research Centre, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
- Department of Functional Imaging, BC Cancer, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Radiology, University of British Columbia, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| |
Collapse
|
10
|
Ndlovu H, Mokoala KMG, Lawal I, Emmett L, Sathekge MM. Prostate-specific Membrane Antigen: Alpha-labeled Radiopharmaceuticals. PET Clin 2024; 19:371-388. [PMID: 38658230 DOI: 10.1016/j.cpet.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Novel prostate-specific membrane antigen (PSMA) ligands labeled with α-emitting radionuclides are sparking a growing interest in prostate cancer treatment. These targeted alpha therapies (TATs) have attractive physical properties that deem them effective in progressive metastatic castrate-resistant prostate cancer (mCRPC). Among the PSMA TAT radiopharmaceuticals, [225Ac]Ac-PSMA has been used extensively on a compassionate basis and is currently undergoing phase I trials. Notably, TAT has the potential to improve quality of life and has favorable antitumor activity and outcomes in multiple scenarios other than in mCRPC. In addition, resistance mechanisms to TAT may be amenable to combination therapies.
Collapse
Affiliation(s)
- Honest Ndlovu
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Kgomotso M G Mokoala
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Ismaheel Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Louise Emmett
- Theranostics and Nuclear Medicine, St Vincent's Hospital Sydney, Australia
| | - Mike M Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa.
| |
Collapse
|
11
|
Ree SM, Greenwood H, Young JD, Roberts R, Livens FR, Heath SL, Sosabowski JK. Selection of radionuclide(s) for targeted alpha therapy based on their nuclear decay properties. Nucl Med Commun 2024; 45:465-473. [PMID: 38465420 DOI: 10.1097/mnm.0000000000001832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Targeted alpha therapy (TAT) is a promising form of oncology treatment utilising alpha-emitting radionuclides that can specifically accumulate at disease sites. The high energy and high linear energy transfer associated with alpha emissions causes localised damage at target sites whilst minimising that to surrounding healthy tissue. The lack of appropriate radionuclides has inhibited research in TAT. The identification of appropriate radionuclides should be primarily a function of the radionuclide's nuclear decay properties, and not their biochemistry or economic factors since these last two factors can change; however, the nuclear decay properties are fixed to that nuclide. This study has defined and applied a criterion based on nuclear decay properties useful for TAT. This down-selection exercise concluded that the most appropriate radionuclides are: 149 Tb, 211 At/ 211 Po, 212 Pb/ 212 Bi/ 212 Po, 213 Bi/ 213 Po, 224 Ra, 225 Ra/ 225 Ac/ 221 Fr, 226 Ac/ 226 Th, 227 Th/ 223 Ra/ 219 Rn, 229 U, 230 U/ 226 Th, and 253 Fm, the majority of which have previously been considered for TAT. 229 U and 253 Fm have been newly identified and could become new radionuclides of interest for TAT, depending on their decay chain progeny.
Collapse
Affiliation(s)
- Samantha M Ree
- National Nuclear Laboratory, Springfields, Salwick, Preston, Lancashire
| | - Howard Greenwood
- National Nuclear Laboratory, Springfields, Salwick, Preston, Lancashire
| | - Jennifer D Young
- School of Biomedical Engineering and Imaging Sciences, King's College London, London
| | - Rachel Roberts
- National Nuclear Laboratory, Springfields, Salwick, Preston, Lancashire
| | | | - Scott L Heath
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester and
| | - Jane K Sosabowski
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London
| |
Collapse
|
12
|
Kleynhans J, Ebenhan T, Cleeren F, Sathekge MM. Can current preclinical strategies for radiopharmaceutical development meet the needs of targeted alpha therapy? Eur J Nucl Med Mol Imaging 2024; 51:1965-1980. [PMID: 38676735 PMCID: PMC11139742 DOI: 10.1007/s00259-024-06719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Preclinical studies are essential for effectively evaluating TAT radiopharmaceuticals. Given the current suboptimal supply chain of these radionuclides, animal studies must be refined to produce the most translatable TAT agents with the greatest clinical potential. Vector design is pivotal, emphasizing harmonious physical and biological characteristics among the vector, target, and radionuclide. The scarcity of alpha-emitting radionuclides remains a significant consideration. Actinium-225 and lead-212 appear as the most readily available radionuclides at this stage. Available animal models for researchers encompass xenografts, allografts, and PDX (patient-derived xenograft) models. Emerging strategies for imaging alpha-emitters are also briefly explored. Ultimately, preclinical research must address two critical aspects: (1) offering valuable insights into balancing safety and efficacy, and (2) providing guidance on the optimal dosing of the TAT agent.
Collapse
Affiliation(s)
- Janke Kleynhans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Thomas Ebenhan
- Department of Nuclear Medicine, University of Pretoria, and Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| | - Frederik Cleeren
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Mike Machaba Sathekge
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, 0001, South Africa.
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, 0001, South Africa.
| |
Collapse
|
13
|
Ramonaheng K, Qebetu M, Ndlovu H, Swanepoel C, Smith L, Mdanda S, Mdlophane A, Sathekge M. Activity quantification and dosimetry in radiopharmaceutical therapy with reference to 177Lutetium. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1355912. [PMID: 39355215 PMCID: PMC11440950 DOI: 10.3389/fnume.2024.1355912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 10/03/2024]
Abstract
Radiopharmaceutical therapy has been widely adopted owing primarily to the development of novel radiopharmaceuticals. To fully utilize the potential of these RPTs in the era of precision medicine, therapy must be optimized to the patient's tumor characteristics. The vastly disparate dosimetry methodologies need to be harmonized as the first step towards this. Multiple factors play a crucial role in the shift from empirical activity administration to patient-specific dosimetry-based administrations from RPT. Factors such as variable responses seen in patients with presumably similar clinical characteristics underscore the need to standardize and validate dosimetry calculations. These efforts combined with ongoing initiatives to streamline the dosimetry process facilitate the implementation of radiomolecular precision oncology. However, various challenges hinder the widespread adoption of personalized dosimetry-based activity administration, particularly when compared to the more convenient and resource-efficient approach of empiric activity administration. This review outlines the fundamental principles, procedures, and methodologies related to image activity quantification and dosimetry with a specific focus on 177Lutetium-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Keamogetswe Ramonaheng
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Milani Qebetu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Cecile Swanepoel
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Liani Smith
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Mdlophane
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mike Sathekge
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
14
|
Sakmár M, Kozempel J, Kučka J, Janská T, Štíbr M, Vlk M, Šefc L. Biodistribution study of 211Pb progeny released from intravenously applied 223Ra labelled TiO 2 nanoparticles in a mouse model. Nucl Med Biol 2024; 130-131:108890. [PMID: 38402673 DOI: 10.1016/j.nucmedbio.2024.108890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Targeted alpha therapy is one of the most powerful therapeutical modalities available in nuclear medicine. It's therapeutic potency is based on the nuclides that emit one or several alpha particles providing strong and highly localized therapeutic effects. However, some of these radionuclides, like e.g.223Ra or 225Ac decay in cascades, where the radioactive progeny originating from the consecutive alpha-decays may leave the original vector and cause unwanted irradiation of non-target organs. This progeny, even if partially retained in target tissues by internalization processes, typically do not follow the fate of originally targeted radiopharmaceutical and potentially spread over body following their own biodistribution. In this study we aimed to estimate 211Pb/211Bi progeny fate from the 223Ra surface-labelled TiO2 nanoparticles in vitro and the fate of 211Pb in vivo in a mice model. RESULTS In vitro stability studies have shown significant differences between the release of the mother 223Ra and its progeny (211Pb, 211Bi) in all the biological matrices that have been tested. The lowest released activities were measured in saline, resulting in less than 5 % of released activity for all nuclides. Contrary to that, the highest released activity of 223Ra of up to 10 % within 48 h was observed in 5 % solution of albumin. The released activity of its progeny; the 211Pb and 211Bi was in the range of 20-40 % in this test medium. Significantly higher released activities of 211Pb and 211Bi compared to 223Ra by at least 10 % was observed in each biological medium, except saline, where no significant differences were observed. The in vivo biodistribution studies results in a mice model, show similar pattern, where it was found that even after accumulation of nanoparticles in target tissues, approximately 10 % of 211Pb is continuously released into the blood stream within 24 h, followed by its natural accumulation in kidneys. CONCLUSION This study confirms our assumption that the progeny formed in a chain alpha decay of a certain nuclide, in this case the 223Ra, can be released from its original vector, leave the target tissue, relocate and could be deposited in non-target organs. We did not observe complete progeny wash-out from its original target tissues in our model. This indicates strong dependence of the progeny hot atom fate after its release from the original radiopharmaceutical preparation on multiple factors, like their internalization and retention in cells, cell membranes, extracellular matrices, protein binding, etc. We hypothesize, that also the primary tumour or metastasis size, their metabolic activity may significantly influence progeny fate in vivo, directly impacting the dose delivered to non-target tissues and organs. Therefore a bottom-up approach should be followed and detailed pre-/clinical studies on the release and biodistribution of radioactive progeny originating from the chain alpha emitters should be preferably performed.
Collapse
Affiliation(s)
- Michal Sakmár
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic
| | - Ján Kozempel
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic.
| | - Jan Kučka
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Heyrovského náměstí 1888-2, 16000 Prague 6, Czech Republic
| | - Tereza Janská
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic
| | - Matěj Štíbr
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic
| | - Martin Vlk
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic
| | - Luděk Šefc
- Charles University in Prague, 1st Faculty of Medicine, Centre of Advanced Preclinical Imaging (CAPI), Salmovská 3, 12000 Prague 2, Czech Republic
| |
Collapse
|
15
|
Trencsényi G, Csikos C, Képes Z. Targeted Radium Alpha Therapy in the Era of Nanomedicine: In Vivo Results. Int J Mol Sci 2024; 25:664. [PMID: 38203834 PMCID: PMC10779852 DOI: 10.3390/ijms25010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes-Radium-223 and Radium-224 (223/224Ra)-in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of 223/224Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of 223/224Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with 223/224Ra-doped nanoparticles and related advances in targeted alpha radiotherapy.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| | - Csaba Csikos
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| |
Collapse
|
16
|
Sedlack AJH, Meyer C, Mench A, Winters C, Barbon D, Obrzut S, Mallak N. Essentials of Theranostics: A Guide for Physicians and Medical Physicists. Radiographics 2024; 44:e230097. [PMID: 38060426 DOI: 10.1148/rg.230097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Radiopharmaceutical therapies (RPTs) are gaining increased interest with the recent emergence of novel safe and effective theranostic agents, improving outcomes for thousands of patients. The term theranostics refers to the use of diagnostic and therapeutic agents that share the same molecular target; a major step toward precision medicine, especially for oncologic applications. The authors dissect the fundamentals of theranostics in nuclear medicine. First, they explain the radioactive decay schemes and the characteristics of emitted electromagnetic radiation used for imaging, as well as particles used for therapeutic purposes, followed by the interaction of the different types of radiation with tissue. These concepts directly apply to clinical RPTs and play a major role in the efficacy and toxicity profile of different radiopharmaceutical agents. Personalized dosimetry is a powerful tool that can help estimate patient-specific absorbed doses, in tumors as well as normal organs. Dosimetry in RPT is an area of active investigation, as most of what we know about the relationship between delivered dose and tissue damage is extrapolated from external-beam radiation therapy; more research is needed to understand this relationship as it pertains to RPTs. Tumor heterogeneity is increasingly recognized as an important prognostic factor. Novel molecular imaging agents, often in combination with fluorine 18-fluorodeoxyglucose, are crucial for assessment of target expression in the tumor and potential hypermetabolic disease that may lack the molecular target expression. ©RSNA, 2023 Test Your Knowledge questions are available in the supplemental material.
Collapse
Affiliation(s)
- Andrew J H Sedlack
- From the Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, Ill (A.J.H.S.); and Department of Diagnostic Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L340, Portland, OR 97239-3098 (C.M., A.M., C.W., D.B., S.O., N.M.)
| | - Catherine Meyer
- From the Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, Ill (A.J.H.S.); and Department of Diagnostic Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L340, Portland, OR 97239-3098 (C.M., A.M., C.W., D.B., S.O., N.M.)
| | - Anna Mench
- From the Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, Ill (A.J.H.S.); and Department of Diagnostic Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L340, Portland, OR 97239-3098 (C.M., A.M., C.W., D.B., S.O., N.M.)
| | - Celeste Winters
- From the Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, Ill (A.J.H.S.); and Department of Diagnostic Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L340, Portland, OR 97239-3098 (C.M., A.M., C.W., D.B., S.O., N.M.)
| | - Dennis Barbon
- From the Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, Ill (A.J.H.S.); and Department of Diagnostic Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L340, Portland, OR 97239-3098 (C.M., A.M., C.W., D.B., S.O., N.M.)
| | - Sebastian Obrzut
- From the Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, Ill (A.J.H.S.); and Department of Diagnostic Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L340, Portland, OR 97239-3098 (C.M., A.M., C.W., D.B., S.O., N.M.)
| | - Nadine Mallak
- From the Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, Ill (A.J.H.S.); and Department of Diagnostic Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L340, Portland, OR 97239-3098 (C.M., A.M., C.W., D.B., S.O., N.M.)
| |
Collapse
|
17
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
18
|
Chakravarty R, Lan X, Chakraborty S, Cai W. Astatine-211 for PSMA-targeted α-radiation therapy of micrometastatic prostate cancer: a sustainable approach towards precision oncology. Eur J Nucl Med Mol Imaging 2023; 50:1844-1847. [PMID: 36862207 PMCID: PMC10200747 DOI: 10.1007/s00259-023-06178-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
19
|
Lankoff A, Czerwińska M, Kruszewski M. Nanoparticle-Based Radioconjugates for Targeted Imaging and Therapy of Prostate Cancer. Molecules 2023; 28:molecules28104122. [PMID: 37241862 DOI: 10.3390/molecules28104122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Prostate cancer is the second most frequent malignancy in men worldwide and the fifth leading cause of death by cancer. Although most patients initially benefit from therapy, many of them will progress to metastatic castration-resistant prostate cancer, which still remains incurable. The significant mortality and morbidity rate associated with the progression of the disease results mainly from a lack of specific and sensitive prostate cancer screening systems, identification of the disease at mature stages, and failure of anticancer therapy. To overcome the limitations of conventional imaging and therapeutic strategies for prostate cancer, various types of nanoparticles have been designed and synthesized to selectively target prostate cancer cells without causing toxic side effects to healthy organs. The purpose of this review is to briefly discuss the selection criteria of suitable nanoparticles, ligands, radionuclides, and radiolabelling strategies for the development of nanoparticle-based radioconjugates for targeted imaging and therapy of prostate cancer and to evaluate progress in the field, focusing attention on their design, specificity, and potential for detection and/or therapy.
Collapse
Affiliation(s)
- Anna Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 15, 25-406 Kielce, Poland
| | - Malwina Czerwińska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska, 02-776 Warsaw, Poland
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
20
|
Bidkar AP, Wang S, Bobba KN, Chan E, Bidlingmaier S, Egusa EA, Peter R, Ali U, Meher N, Wadhwa A, Dhrona S, Dasari C, Beckford-Vera D, Su Y, Tang R, Zhang L, He J, Wilson DM, Aggarwal R, VanBrocklin HF, Seo Y, Chou J, Liu B, Flavell RR. Treatment of Prostate Cancer with CD46-targeted 225Ac Alpha Particle Radioimmunotherapy. Clin Cancer Res 2023; 29:1916-1928. [PMID: 36917693 PMCID: PMC10183825 DOI: 10.1158/1078-0432.ccr-22-3291] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
PURPOSE Radiopharmaceutical therapy is changing the standard of care in prostate cancer and other malignancies. We previously reported high CD46 expression in prostate cancer and developed an antibody-drug conjugate and immunoPET agent based on the YS5 antibody, which targets a tumor-selective CD46 epitope. Here, we present the preparation, preclinical efficacy, and toxicity evaluation of [225Ac]DOTA-YS5, a radioimmunotherapy agent based on the YS5 antibody. EXPERIMENTAL DESIGN [225Ac]DOTA-YS5 was developed, and its therapeutic efficiency was tested on cell-derived (22Rv1, DU145), and patient-derived (LTL-545, LTL484) prostate cancer xenograft models. Biodistribution studies were carried out on 22Rv1 tumor xenograft models to confirm the targeting efficacy. Toxicity analysis of the [225Ac]DOTA-YS5 was carried out on nu/nu mice to study short-term (acute) and long-term (chronic) toxicity. RESULTS Biodistribution study shows that [225Ac]DOTA-YS5 agent delivers high levels of radiation to the tumor tissue (11.64% ± 1.37%ID/g, 28.58% ± 10.88%ID/g, 29.35% ± 7.76%ID/g, and 31.78% ± 5.89%ID/g at 24, 96, 168, and 408 hours, respectively), compared with the healthy organs. [225Ac]DOTA-YS5 suppressed tumor size and prolonged survival in cell line-derived and patient-derived xenograft models. Toxicity analysis revealed that the 0.5 μCi activity levels showed toxicity to the kidneys, likely due to redistribution of daughter isotope 213Bi. CONCLUSIONS [225Ac]DOTA-YS5 suppressed the growth of cell-derived and patient-derived xenografts, including prostate-specific membrane antigen-positive and prostate-specific membrane antigen-deficient models. Overall, this preclinical study confirms that [225Ac]DOTA-YS5 is a highly effective treatment and suggests feasibility for clinical translation of CD46-targeted radioligand therapy in prostate cancer.
Collapse
Affiliation(s)
- Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Sinan Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Emily Chan
- Department of Pathology, University of California, San Francisco, California
| | - Scott Bidlingmaier
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Emily A. Egusa
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Robin Peter
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- Department of Nuclear Engineering, University of California, Berkeley, California
| | - Umama Ali
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Suchi Dhrona
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Chandrashekhar Dasari
- Department of Surgery, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Denis Beckford-Vera
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Yang Su
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Ryan Tang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Li Zhang
- Department of Medicine and the Department of Epidemiology and Biostatistics, University of California, Berkeley, California
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Rahul Aggarwal
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Jonathan Chou
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California
| |
Collapse
|
21
|
Rubira L, Deshayes E, Santoro L, Kotzki PO, Fersing C. 225Ac-Labeled Somatostatin Analogs in the Management of Neuroendocrine Tumors: From Radiochemistry to Clinic. Pharmaceutics 2023; 15:1051. [PMID: 37111537 PMCID: PMC10146019 DOI: 10.3390/pharmaceutics15041051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The widespread use of peptide receptor radionuclide therapy (PRRT) represents a major therapeutic breakthrough in nuclear medicine, particularly since the introduction of 177Lu-radiolabeled somatostatin analogs. These radiopharmaceuticals have especially improved progression-free survival and quality of life in patients with inoperable metastatic gastroenteropancreatic neuroendocrine tumors expressing somatostatin receptors. In the case of aggressive or resistant disease, the use of somatostatin derivatives radiolabeled with an alpha-emitter could provide a promising alternative. Among the currently available alpha-emitting radioelements, actinium-225 has emerged as the most suitable candidate, especially regarding its physical and radiochemical properties. Nevertheless, preclinical and clinical studies on these radiopharmaceuticals are still few and heterogeneous, despite the growing momentum for their future use on a larger scale. In this context, this report provides a comprehensive and extensive overview of the development of 225Ac-labeled somatostatin analogs; particular emphasis is placed on the challenges associated with the production of 225Ac, its physical and radiochemical properties, as well as the place of 225Ac-DOTATOC and 225Ac-DOTATATE in the management of patients with advanced metastatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Lore Santoro
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Pierre Olivier Kotzki
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
22
|
Monte Carlo simulation study to explore optimum conditions for Astatine-211 SPECT. Radiol Phys Technol 2023; 16:102-108. [PMID: 36719548 DOI: 10.1007/s12194-023-00702-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023]
Abstract
211At is a promising nuclide for targeted radioisotope therapy. Direct imaging of this nuclide is important for in vivo evaluation of its distribution. We investigated suitable conditions for single-photon emission computed tomography (SPECT) imaging of 211At and assessed their feasibility using a homemade Monte Carlo simulation code, MCEP-SPECT. Radioactivity concentrations of 5, 10, or 20 kBq/mL were distributed in six spheres in a National Electrical Manufactures Association (NEMA) body phantom with a background of 1 kBq/mL. The energy window, projection number, and acquisition time were 71-88 keV, 60, and 60 s, respectively, per projection. A medium-energy collimator and three low-energy collimators were tested. SPECT images were reconstructed using the ordered subset expectation maximization (OSEM) method with attenuation correction (Chang method) and scatter correction (triple-energy-windows method). Image quality was evaluated using the contrast-to-noise ratio (CNR) for detectability and the contrast recovery coefficient (CRC) for quantitavity. The low-energy, high-sensitivity collimator exhibited the best detectability among the four types of collimators, with a maximum CNR value of 43. In contrast, the low-energy, high-resolution collimator exhibited excellent quantitavity, with a maximum CRC value of 102%. Scatter correction improved the image quality. In particular, the CRC value almost doubled after scatter correction. The detection of spheres smaller than 20 mm in diameter was difficult. In summary, low-energy collimators were suitable for the SPECT imaging of 211At. In addition, scatter correction was extremely effective in improving the image quality. The feasibility of 211At SPECT was demonstrated for lesions larger than 20 mm.
Collapse
|
23
|
Saatchi K, Bénard F, Hundal N, Grimes J, Shcherbinin S, Pourghiasian M, Brooks DE, Celler A, Häfeli UO. Preclinical PET Imaging and Toxicity Study of a 68Ga-Functionalized Polymeric Cardiac Blood Pool Agent. Pharmaceutics 2023; 15:pharmaceutics15030767. [PMID: 36986628 PMCID: PMC10052923 DOI: 10.3390/pharmaceutics15030767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Cardiac blood pool imaging is currently performed almost exclusively with 99mTc-based compounds and SPECT/CT imaging. Using a generator-based PET radioisotope has a few advantages, including not needing nuclear reactors to produce it, obtaining better resolution in humans, and potentially reducing the radiation dose to the patient. When the shortlived radioisotope 68Ga is used, it can be applied repeatedly on the same day—for example, for the detection of bleeding. Our objective was to prepare and evaluate a long-circulating polymer functionalized with gallium for its biodistribution, toxicity, and dosimetric properties. A 500 kDa hyperbranched polyglycerol was conjugated to the chelator NOTA and radiolabeled rapidly at room temperature with 68Ga. It was then injected intravenously into a rat, and gated imaging allowed us to easily observe wall motion and cardiac contractility, confirming the suitability of this radiopharmaceutical for cardiac blood pool imaging. Internal radiation dose calculations showed that the radiation doses that patients would receive from the PET agent would be 2.5× lower than those from the 99mTc agent. A complete 14-day toxicology study in rats concluded that there were no gross pathology findings, changes in body or organ weights, or histopathological events. This radioactive-metal-functionalized polymer might be a suitable non-toxic agent to advance for clinical application.
Collapse
Affiliation(s)
- Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence: (K.S.); (U.O.H.)
| | - François Bénard
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | | | - Joshua Grimes
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Sergey Shcherbinin
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | | | - Donald E. Brooks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Anna Celler
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence: (K.S.); (U.O.H.)
| |
Collapse
|
24
|
Sakmár M, Ondrák L, Fialová K, Vlk M, Kozempel J, Bruchertseifer F, Morgenstern A. In vitro studies of 223Ra- and 225Ac-labelled α-zirconium phosphate as potential carrier for alpha targeted therapy. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AbstractIn this study suitability of α-ZrP nanoparticles as a 223Ra and 225Ac carriers for TAT was investigated. The yields of radiolabelling were higher than 98% in both cases. Subsequently, in vitro stability studies were carried out in various biological matrices during 48 h period. Measurements of released radioactivity showed the highest stability in saline. Released activity of 223Ra, 225Ac and their daughter radionuclides was around 0.5%. On the other hand, the lowest stability was shown in plasma and serum. Released activity for 223Ra, 225Ac and their progeny atoms was from 15 to 32%.
Collapse
|
25
|
Kozempel J, Sakmár M, Janská T, Vlk M. Study of 213Bi and 211Pb Recoils Release from 223Ra Labelled TiO 2 Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 16:343. [PMID: 36614682 PMCID: PMC9821810 DOI: 10.3390/ma16010343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticles of various materials were proposed as carriers of nuclides in targeted alpha particle therapy to at least partially eliminate the nuclear recoil effect causing the unwanted release of radioactive progeny originating in nuclear decay series of so-called in vivo generators. Here, we report on the study of 211Pb and 211Bi recoils release from the 223Ra surface-labelled TiO2 nanoparticles in the concentration range of 0.01-1 mg/mL using two phase separation methods different in their kinetics in order to test the ability of progeny resorption. We have found significant differences between the centrifugation and the dialysis used for labelled NPs separation as well as that the release of 211Pb and 211Bi from the nanoparticles also depends on the NPs dispersion concentration. These findings support our previously proposed recoils-retaining mechanism of the progeny by their resorption on the NPs surface. At the 24 h time-point, the highest overall released progeny fractions were observed using centrifugation (4.0% and 13.5% for 211Pb and 211Bi, respectively) at 0.01 mg/mL TiO2 concentration. The lowest overall released fractions at the 24 h time-point (1.5% and 2.5% for 211Pb and 211Bi respectively) were observed using dialysis at 1 mg/mL TiO2 concentration. Our findings also indicate that the in vitro stability tests of such radionuclide systems designed to retain recoil-progeny may end up with biased results and particular care needs to be given to in vitro stability test experimental setup to mimic in vivo dynamic conditions. On the other hand, controlled and well-defined progeny release may enhance the alpha-emitter radiation therapy of some tumours.
Collapse
|
26
|
Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front Med (Lausanne) 2022; 9:1020188. [PMID: 36619636 PMCID: PMC9812962 DOI: 10.3389/fmed.2022.1020188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted alpha therapy is an oncological treatment, where cytotoxic doses of alpha radiation are locally delivered to tumor cells, while the surrounding healthy tissue is minimally affected. This therapeutic strategy relies on radiopharmaceuticals made of medically relevant radionuclides chelated by ligands, and conjugated to targeting vectors, which promote the drug accumulation in tumor sites. This review discusses the state-of-the-art in the development of radiopharmaceuticals for targeted alpha therapy, breaking down their key structural components, such as radioisotope, targeting vector, and delivery formulation, and analyzing their pros and cons. Moreover, we discuss current drawbacks that are holding back targeted alpha therapy in the clinic, and identify ongoing strategies in field to overcome those issues, including radioisotope encapsulation in nanoformulations to prevent the release of the daughters. Lastly, we critically discuss potential opportunities the field holds, which may contribute to targeted alpha therapy becoming a gold standard treatment in oncology in the future.
Collapse
Affiliation(s)
- Roger M. Pallares
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States
| | - Rebecca J. Abergel
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States,Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Rebecca J. Abergel,
| |
Collapse
|
27
|
Caravaca J, Huh Y, Gullberg GT, Seo Y. Compton and proximity imaging of 225Ac in vivo with a CZT gamma camera: a proof of principle with simulations. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:904-915. [PMID: 36338821 PMCID: PMC9632644 DOI: 10.1109/trpms.2022.3166116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In vivo imaging of 225Ac is a major challenge in the development of targeted alpha therapy radiopharmaceuticals due to the extremely low injected doses. In this paper, we present the design of a multi-modality gamma camera that integrates both proximity and Compton imaging in order to achieve the demanding sensitivities required to image 225Ac with good image quality. We consider a dual-head camera, each of the heads consisting of two planar cadmium zinc telluride detectors acting as scatterer and absorber for Compton imaging, and with the scatterer practically in contact with the subject to allow for proximity imaging. We optimize the detector's design and characterize the detector's performance using Monte Carlo simulations. We show that Compton imaging can resolve features of up to 1.5 mm for hot rod phantoms with an activity of 1 μCi, and can reconstruct 3D images of a mouse injected with 0.5 μCi after a 15 minutes exposure and with a single bed position, for both 221Fr and 213Bi. Proximity imaging is able to resolve two 1 mm-radius sources of less than 0.1 μCi separated by 1 cm and at 1 mm from the detector, as well as it can provide planar images of 221Fr and 213Bi biodistributions of the mouse phantom in 5 minutes.
Collapse
Affiliation(s)
- Javier Caravaca
- Department of Radiology and Biomedical Imaging of the University of California San Francisco in San Francisco (CA) USA
| | - Yoonsuk Huh
- Department of Radiology and Biomedical Imaging of the University of California San Francisco in San Francisco (CA) USA
| | - Grant T Gullberg
- Department of Radiology and Biomedical Imaging of the University of California San Francisco in San Francisco (CA) USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging of the University of California San Francisco in San Francisco (CA) USA
| |
Collapse
|
28
|
Castillo Seoane D, De Saint-Hubert M, Ahenkorah S, Saldarriaga Vargas C, Ooms M, Struelens L, Koole M. Gamma counting protocols for the accurate quantification of 225Ac and 213Bi without the need for a secular equilibrium between parent and gamma-emitting daughter. EJNMMI Radiopharm Chem 2022; 7:28. [PMID: 36274098 PMCID: PMC9588853 DOI: 10.1186/s41181-022-00174-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Quantification of actinium-225 through gamma counter measurements, when there is no secular equilibrium between actinium-225 and its gamma emitting daughters bismuth-213 and/or francium-221, can provide valuable information regarding the possible relocation of recoiled daughters such that related radiotoxicity effects can be evaluated. This study proposes a multiple time-point protocol using the bismuth-213 photopeak with measurements before secular equilibrium between actinium-225 and bismuth-213, and a single time-point protocol using both the francium-221 and bismuth-213 photopeak while assuming secular equilibrium between actinium-225 and francium-221 but not between bismuth-213 and actinium-225. RESULTS Good agreement (i.e. 3% accuracy) was obtained when relying on a multiple time-points measurement of bismuth-213 to quantify both actinium-225 and excess of bismuth-213. Following scatter correction, actinium-225 can be accurately quantified using the francium-221 in a single time-point measurement within 3% of accuracy. The analysis performed on the stability data of [225Ac]Ac-DEPA and [225Ac]Ac-DOTA complexes, before secular equilibrium between bismuth-213 and actinium-225 was formed, revealed considerable amounts of unbound bismuth-213 (i.e. more than 90%) after 24 h of the radiolabeling most likely due to the recoiled daughter effect. CONCLUSION Both protocols were able to accurately estimate 225Ac-activities provided the francium-221 energy window was corrected for the down scatter of the higher-energy gamma-emissions by bismuth-213. This could prove beneficial to study the recoiled daughter effect and redistribution of free bismuth-213 by monitoring the accumulation or clearance of bismuth-213 in different tissues during biodistribution studies or in patient samples during clinical studies. On the other hand, the single gamma counter measurement protocol, although required a 30 min waiting time, is more time and cost efficient and therefore more appropriate for standardized quality control procedures of 225Ac-labeled radiopharmaceuticals.
Collapse
Affiliation(s)
- Dayana Castillo Seoane
- Unit of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven (KUL), Louvain, Belgium.
- Research Unit in Dosimetric Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.
| | - Marijke De Saint-Hubert
- Research Unit in Dosimetric Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Stephen Ahenkorah
- NURA Research Group, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
- Unit of Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven (KUL), Louvain, Belgium
| | - Clarita Saldarriaga Vargas
- Research Unit in Dosimetric Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Medical Imaging, Laboratory for In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Maarten Ooms
- NURA Research Group, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Lara Struelens
- Research Unit in Dosimetric Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Michel Koole
- Unit of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven (KUL), Louvain, Belgium
| |
Collapse
|
29
|
Ling SW, de Blois E, Hooijman E, van der Veldt A, Brabander T. Advances in 177Lu-PSMA and 225Ac-PSMA Radionuclide Therapy for Metastatic Castration-Resistant Prostate Cancer. Pharmaceutics 2022; 14:2166. [PMID: 36297601 PMCID: PMC9607057 DOI: 10.3390/pharmaceutics14102166] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 08/26/2023] Open
Abstract
For patients with metastatic castration-resistant prostate cancer (mCRPC), the survival benefit of classic treatment options with chemotherapy and drugs targeting androgen signaling is limited. Therefore, beta and alpha radionuclide therapy (RNT) have emerged as novel treatment options for patients with mCRPC. Radioligands target the prostate-specific membrane antigen (PSMA) epitopes, which are upregulated up to a thousand times more in prostate cancer cells compared to the cells in normal tissues. For this reason, PSMA is an excellent target for both imaging and therapy. Over the past years, many studies have investigated the treatment effects of lutetium-177 labeled PSMA (177Lu-PSMA) and actinium-225 labeled PSMA (225Ac-PSMA) RNT in patients with mCRPC. While promising results have been achieved, this field is still in development. In this review, we have summarized and discussed the clinical data of 177Lu-PSMA and 225Ac-PSMA RNT in patients with mCRPC.
Collapse
Affiliation(s)
- Sui Wai Ling
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Eline Hooijman
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Astrid van der Veldt
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
30
|
Kleynhans J, Duatti A. The determination of the radiochemical purity of Actinium-225 radiopharmaceuticals: a conundrum. EJNMMI Radiopharm Chem 2022; 7:23. [PMID: 36068452 PMCID: PMC9448838 DOI: 10.1186/s41181-022-00175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Janke Kleynhans
- Division of Nuclear Medicine, Stellenbosch University, 7505, Cape Town, South Africa
| | - Adriano Duatti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
31
|
Ondrák L, Sommer M, Štěpán V, Davídková M, Vlk M, Kundrát P, Kozempel J. EXPERIMENTAL IN VITRO DOSIMETRY OF 223RA AND 177LU. RADIATION PROTECTION DOSIMETRY 2022; 198:508-513. [PMID: 36005976 DOI: 10.1093/rpd/ncac090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/24/2021] [Indexed: 06/15/2023]
Abstract
Targeted alpha therapy with radionuclides undergoing multiple alpha-particle decays is a promising method of nuclear medicine. To study the effectiveness of alpha versus beta emitters, survival of DU145 prostate cancer cells exposed to 223Ra or 177Lu was assessed. Per decay, the cells were much more sensitive to the alpha than beta emitter. However, per unit dose the sensitivities would be comparable, contrary to the well-known evidence, if the decay energy were deposited within the sample completely and homogeneously. Measurements by Timepix detectors showed about three times higher counts of alpha particles above than below the sample. After the first alpha decay of 223Ra to 219Rn, this gas likely moves upwards and its subsequent three alpha decays occur in the upper part of the sample. Correct estimation of absorbed dose is a critical issue when analysing in vitro data and when translating their results to clinical applications.
Collapse
Affiliation(s)
- Lukáš Ondrák
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | - Marek Sommer
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00, Prague 8, Czech Republic
- Department of Dosimetry and Application of Ionizing Radiation, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | - Václav Štěpán
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00, Prague 8, Czech Republic
| | - Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00, Prague 8, Czech Republic
| | - Martin Vlk
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | - Pavel Kundrát
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00, Prague 8, Czech Republic
| | - Ján Kozempel
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| |
Collapse
|
32
|
Tronchin S, Forster JC, Hickson K, Bezak E. Dosimetry in targeted alpha therapy. A systematic review: current findings and what is needed. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5fe0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
Abstract
Abstract
Objective. A systematic review of dosimetry in Targeted Alpha Therapy (TAT) has been performed, identifying the common issues. Approach. The systematic review was performed in accordance with the PRISMA guidelines, and the literature was searched using the Scopus and PubMed databases. Main results. From the systematic review, three key points should be considered when performing dosimetry in TAT. (1) Biodistribution/Biokinetics: the accuracy of the biodistribution data is a limit to accurate dosimetry in TAT. The biodistribution of alpha-emitting radionuclides throughout the body is difficult to image directly, with surrogate radionuclide imaging, blood/faecal sampling, and animal studies able to provide information. (2) Daughter radionuclides: the decay energy of the alpha-emissions is sufficient to break the bond to the targeting vector, resulting in a release of free daughter radionuclides in the body. Accounting for daughter radionuclide migration is essential. (3) Small-scale dosimetry and microdosimetry: due to the short path length and heterogeneous distribution of alpha-emitters at the target site, small-scale/microdosimetry are important to account for the non-uniform dose distribution in a target region, organ or cell and for assessing the biological effect of alpha-particle radiation. Significance. TAT is a form of cancer treatment capable of delivering a highly localised dose to the tumour environment while sparing the surrounding healthy tissue. Dosimetry is an important part of treatment planning and follow up. Being able to accurately predict the radiation dose to the target region and healthy organs could guide the optimal prescribed activity. Detailed dosimetry models accounting for the three points mentioned above will help give confidence in and guide the clinical application of alpha-emitting radionuclides in targeted cancer therapy.
Collapse
|
33
|
Pijeira MSO, Viltres H, Kozempel J, Sakmár M, Vlk M, İlem-Özdemir D, Ekinci M, Srinivasan S, Rajabzadeh AR, Ricci-Junior E, Alencar LMR, Al Qahtani M, Santos-Oliveira R. Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology. EJNMMI Radiopharm Chem 2022; 7:8. [PMID: 35467307 PMCID: PMC9038981 DOI: 10.1186/s41181-022-00161-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent advances in nanotechnology have offered new hope for cancer detection, prevention, and treatment. Nanomedicine, a term for the application of nanotechnology in medical and health fields, uses nanoparticles for several applications such as imaging, diagnostic, targeted cancer therapy, drug and gene delivery, tissue engineering, and theranostics. RESULTS Here, we overview the current state-of-the-art of radiolabeled nanoparticles for molecular imaging and radionuclide therapy. Nanostructured radiopharmaceuticals of technetium-99m, copper-64, lutetium-177, and radium-223 are discussed within the scope of this review article. CONCLUSION Nanoradiopharmaceuticals may lead to better development of theranostics inspired by ingenious delivery and imaging systems. Cancer nano-theranostics have the potential to lead the way to more specific and individualized cancer treatment.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rua Helio de Almeida, 75, Ilha Do Fundão, Rio de Janeiro, RJ, 21941906, Brazil
| | - Herlys Viltres
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Jan Kozempel
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Michal Sakmár
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Martin Vlk
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Derya İlem-Özdemir
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, 35040, Bornova, Izmir, Turkey
| | - Meliha Ekinci
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, 35040, Bornova, Izmir, Turkey
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Eduardo Ricci-Junior
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21940000, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís, Maranhão, 65080-805, Brazil
| | - Mohammed Al Qahtani
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rua Helio de Almeida, 75, Ilha Do Fundão, Rio de Janeiro, RJ, 21941906, Brazil.
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, State University of Rio de Janeiro, Rio de Janeiro, 23070200, Brazil.
| |
Collapse
|
34
|
Miller C, Rousseau J, Ramogida CF, Celler A, Rahmim A, Uribe CF. Implications of physics, chemistry and biology for dosimetry calculations using theranostic pairs. Theranostics 2022; 12:232-259. [PMID: 34987643 PMCID: PMC8690938 DOI: 10.7150/thno.62851] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Theranostics is an emerging paradigm that combines imaging and therapy in order to personalize patient treatment. In nuclear medicine, this is achieved by using radiopharmaceuticals that target identical molecular targets for both imaging (using emitted gamma rays) and radiopharmaceutical therapy (using emitted beta, alpha or Auger-electron particles) for the treatment of various diseases, such as cancer. If the therapeutic radiopharmaceutical cannot be imaged quantitatively, a “theranostic pair” imaging surrogate can be used to predict the absorbed radiation doses from the therapeutic radiopharmaceutical. However, theranostic dosimetry assumes that the pharmacokinetics and biodistributions of both radiopharmaceuticals in the pair are identical or very similar, an assumption that still requires further validation for many theranostic pairs. In this review, we consider both same-element and different-element theranostic pairs and attempt to determine if factors exist which may cause inaccurate dose extrapolations in theranostic dosimetry, either intrinsic (e.g. chemical differences) or extrinsic (e.g. injecting different amounts of each radiopharmaceutical) to the radiopharmaceuticals. We discuss the basis behind theranostic dosimetry and present common theranostic pairs and their therapeutic applications in oncology. We investigate general factors that could create alterations in the behavior of the radiopharmaceuticals or the quantitative accuracy of imaging them. Finally, we attempt to determine if there is evidence showing some specific pairs as suitable for theranostic dosimetry. We show that there are a variety of intrinsic and extrinsic factors which can significantly alter the behavior among pairs of radiopharmaceuticals, even if they belong to the same chemical element. More research is needed to determine the impact of these factors on theranostic dosimetry estimates and on patient outcomes, and how to correctly account for them.
Collapse
|
35
|
Radiobiology of Targeted Alpha Therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Zaheer J, Yu AR, Kim H, Kang HJ, Kang MK, Lee JJ, Kim JS. Diacerein, an inhibitor of IL-1β downstream mediated apoptosis, improves radioimmunotherapy in a mouse model of Burkitt's lymphoma. Am J Cancer Res 2021; 11:6147-6159. [PMID: 35018248 PMCID: PMC8727812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023] Open
Abstract
Lymphoma has the characteristics of a solid tumor. Penetration of monoclonal antibodies is limited in solid tumors during radioimmunotherapy (RIT). Here, we first investigated the use of diacerein (DIA) as a combination drug to improve the penetration and therapeutic efficacy of 131I-rituximab (RTX) using the Burkitt's lymphoma mouse model. We selected DIA through computational drug repurposing and focused on rheumatoid arthritis (RA) drug interaction genes to minimize side effects. Then, the cytotoxicity of DIA was assessed in vitro using three different lymphoma cell lines. DIA-induced apoptosis was confirmed by Western blotting. After confirming apoptosis, we confirmed the enhanced uptake of 131I-RTX in Burkitt's lymphoma mouse model using SPECT/CT. Autoradiography of 131I-RTX confirmed the therapeutic effect of DIA. Finally, the tumor size and survival rate were assessed to measure the enhanced therapeutic efficacy when DIA was used. In addition, we assessed the dose-dependency of DIA in terms of the accumulation of 131I-RTX in tumor tissue, the tumor size, and the survival rate. The in vitro cytotoxicity was 10.9%. We showed that DIA induced apoptosis which was related to downstream IL-1β signaling by Western blotting. We found increased Annexin V positive apoptosis after DIA administration. Immuno SPECT/CT images demonstrated a higher uptake of 131I-RTX in tumors in the DIA-administered group than that in the PBS-alone group. However, there were no statistical differences of dose-dependency between 20 mg/kg and 40 mg/kg of DIA. Tumor growth was significantly inhibited in the group treated with the combination of DIA plus 131I-RTX at 7 days after injection. Our suggested combination of DIA and 131I-RTX strategies could enhance the efficacy of 131I-RTX treatment.
Collapse
Affiliation(s)
- Javeria Zaheer
- Division of RI Application, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST)Seoul 01812, Republic of Korea
| | - A Ram Yu
- Laboratory Animal Center, Osong Medical Innovation FoundationOsong, Chungbuk 28160, Republic of Korea
| | - Hyeongi Kim
- Division of RI Application, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Hyun Ji Kang
- Division of RI Application, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST)Seoul 01812, Republic of Korea
| | - Min Kyoung Kang
- Laboratory Animal Center, Osong Medical Innovation FoundationOsong, Chungbuk 28160, Republic of Korea
| | - Jae Jun Lee
- Laboratory Animal Center, Osong Medical Innovation FoundationOsong, Chungbuk 28160, Republic of Korea
| | - Jin Su Kim
- Division of RI Application, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST)Seoul 01812, Republic of Korea
| |
Collapse
|
37
|
Hanaoka H, Ohshima Y, Suzuki H, Sasaki I, Watabe T, Ooe K, Watanabe S, Ishioka NS. Enhancing the Therapeutic Effect of 2- 211At-astato-α-methyl-L-phenylalanine with Probenecid Loading. Cancers (Basel) 2021; 13:cancers13215514. [PMID: 34771676 PMCID: PMC8583516 DOI: 10.3390/cancers13215514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary To enhance the therapeutic effect of 2-211At-astato-α-methyl-L-phenylalanine (2-211At-AAMP), a radiopharmaceutical for targeted alpha therapy, we evaluated the effect of probenecid loading on its biodistribution and therapeutic effect in mice. Probenecid preloading significantly delayed the clearance of 2-211At-AAMP from the blood, increasing its accumulation in tumors. Consequently, the therapeutic effect of 2-211At-AAMP markedly improved. These results indicate that 2-211At-AAMP with probenecid loading is useful for the treatment of various types of cancers. Abstract L-type amino acid transporter 1 (LAT1) might be a useful target for tumor therapy since it is highly expressed in various types of cancers. We previously developed an astatine-211 (211At)-labeled amino acid derivative, 2-211At-astato-α-methyl-L-phenylalanine (2-211At-AAMP), and demonstrated its therapeutic potential for LAT1-positive cancers. However, the therapeutic effect of 2-211At-AAMP was insufficient, probably due to its low tumor retention. The preloading of probenecid, an organic anion transporter inhibitor, can delay the clearance of some amino acid tracers from the blood and consequently increase their accumulation in tumors. In this study, we evaluated the effect of probenecid preloading on the biodistribution and therapeutic effect of 2-211At-AAMP in mice. In biodistribution studies, the blood radioactivity of 2-211At-AAMP significantly increased with probenecid preloading. Consequently, the accumulation of 2-211At-AAMP in tumors was significantly higher with probenecid than without probenecid loading. In a therapeutic study, tumor growth was suppressed by 2-211At-AAMP with probenecid, and the tumor volume was significantly lower in the treatment group than in the untreated control group from day 2 to day 30 (end of the follow-up period) after treatment. These results indicate that probenecid loading could improve the therapeutic effect of 2-211At-AAMP by increasing its accumulation in tumors.
Collapse
Affiliation(s)
- Hirofumi Hanaoka
- Faculty of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Osaka, Japan
- Department of Radiotheranostics, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan
- Correspondence: ; Tel.: +81-72-804-2452
| | - Yasuhiro Ohshima
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1292, Gunma, Japan; (Y.O.); (I.S.); (S.W.); (N.S.I.)
| | - Hiroyuki Suzuki
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Chiba, Japan;
| | - Ichiro Sasaki
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1292, Gunma, Japan; (Y.O.); (I.S.); (S.W.); (N.S.I.)
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, 1-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (T.W.); (K.O.)
| | - Kazuhiro Ooe
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, 1-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (T.W.); (K.O.)
| | - Shigeki Watanabe
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1292, Gunma, Japan; (Y.O.); (I.S.); (S.W.); (N.S.I.)
| | - Noriko S. Ishioka
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1292, Gunma, Japan; (Y.O.); (I.S.); (S.W.); (N.S.I.)
| |
Collapse
|
38
|
Kleynhans J, Sathekge M, Ebenhan T. Obstacles and Recommendations for Clinical Translation of Nanoparticle System-Based Targeted Alpha-Particle Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4784. [PMID: 34500873 PMCID: PMC8432563 DOI: 10.3390/ma14174784] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
The rationale for application of nanotechnology in targeted alpha therapy (TAT) is sound. However, the translational strategy requires attention. Formulation of TAT in nanoparticulate drug delivery systems has the potential to resolve many of the issues currently experienced. As α-particle emitters are more cytotoxic compared to beta-minus-emitting agents, the results of poor biodistribution are more dangerous. Formulation in nanotechnology is also suggested to be the ideal solution for containing the recoil daughters emitted by actinium-225, radium-223, and thorium-227. Nanoparticle-based TAT is likely to increase stability, enhance radiation dosimetry profiles, and increase therapeutic efficacy. Unfortunately, nanoparticles have their own unique barriers towards clinical translation. A major obstacle is accumulation in critical organs such as the spleen, liver, and lungs. Furthermore, inflammation, necrosis, reactive oxidative species, and apoptosis are key mechanisms through which nanoparticle-mediated toxicity takes place. It is important at this stage of the technology's readiness level that focus is shifted to clinical translation. The relative scarcity of α-particle emitters also contributes to slow-moving research in the field of TAT nanotechnology. This review describes approaches and solutions which may overcome obstacles impeding nanoparticle-based TAT and enhance clinical translation. In addition, an in-depth discussion of relevant issues and a view on technical and regulatory barriers are presented.
Collapse
Affiliation(s)
- Janke Kleynhans
- Division of Nuclear Medicine, Tygerberg Hospital, Stellenbosch University, Cape Town 8000, South Africa;
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Nuclear Medicine Research Infrastructure NPC, Pretoria 0001, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure NPC, Pretoria 0001, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
39
|
Farzipour S, Shaghaghi Z, Abbasi S, Albooyeh H, Alvandi M. Recent Achievements about Targeted Alpha Therapy-Based Targeting Vectors and Chelating Agents. Anticancer Agents Med Chem 2021; 22:1496-1510. [PMID: 34315393 DOI: 10.2174/1871520621666210727120308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
One of the most rapidly growing options in the management of cancer therapy is Targeted Alpha Therapy (TAT) through which lethal α-emitting radionuclides conjugated to tumor-targeting vectors selectively deliver high amount of radiation to cancer cells.225Ac, 212Bi, 211At, 213Bi, and 223Ra have been investigated by plenty of clinical trials and preclinical researches for the treatment of smaller tumor burdens, micro-metastatic disease, and post-surgery residual disease. In order to send maximum radiation to tumor cells while minimizing toxicity in normal cells, a high affinity of targeting vectors to cancer tissue is essential. Besides that, the stable and specific complex between chelating agent and α-emitters was found as a crucial parameter. The present review was planned to highlight recent achievements about TAT-based targeting vectors and chelating agents and provide further insight for future researches.
Collapse
Affiliation(s)
- Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Shaghaghi
- Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sahar Abbasi
- Department of Radiology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajar Albooyeh
- Department of Nuclear Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Alvandi
- Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
40
|
Trujillo-Nolasco M, Morales-Avila E, Cruz-Nova P, Katti KV, Ocampo-García B. Nanoradiopharmaceuticals Based on Alpha Emitters: Recent Developments for Medical Applications. Pharmaceutics 2021; 13:1123. [PMID: 34452084 PMCID: PMC8398190 DOI: 10.3390/pharmaceutics13081123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
The application of nanotechnology in nuclear medicine offers attractive therapeutic opportunities for the treatment of various diseases, including cancer. Indeed, nanoparticles-conjugated targeted alpha-particle therapy (TAT) would be ideal for localized cell killing due to high linear energy transfer and short ranges of alpha emitters. New approaches in radiolabeling are necessary because chemical radiolabeling techniques are rendered sub-optimal due to the presence of recoil energy generated by alpha decay, which causes chemical bonds to break. This review attempts to cover, in a concise fashion, various aspects of physics, radiobiology, and production of alpha emitters, as well as highlight the main problems they present, with possible new approaches to mitigate those problems. Special emphasis is placed on the strategies proposed for managing recoil energy. We will also provide an account of the recent studies in vitro and in vivo preclinical investigations of α-particle therapy delivered by various nanosystems from different materials, including inorganic nanoparticles, liposomes, and polymersomes, and some carbon-based systems are also summarized.
Collapse
Affiliation(s)
- Maydelid Trujillo-Nolasco
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca 50120, Mexico;
| | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca 50120, Mexico;
| | - Pedro Cruz-Nova
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
| | - Kattesh V. Katti
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65212, USA;
| | - Blanca Ocampo-García
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
| |
Collapse
|
41
|
Thakral P, Simecek J, Marx S, Kumari J, Pant V, Sen IB. In-House Preparation and Quality Control of Ac-225 Prostate-Specific Membrane Antigen-617 for the Targeted Alpha Therapy of Castration-Resistant Prostate Carcinoma. Indian J Nucl Med 2021; 36:114-119. [PMID: 34385780 PMCID: PMC8320836 DOI: 10.4103/ijnm.ijnm_200_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose: Ac-225 labeled with prostate-specific membrane antigen (PSMA-617), a transmembrane glycoprotein which is highly expressed in prostate carcinoma cells, is presently being considered a promising agent of targeted alpha therapy for the treatment of patients suffering from metastatic castration-resistant prostate cancer. In the present study, we report an optimized protocol for the preparation of therapeutic dose of Ac-225 PSMA-617 with high yield and radiochemical purity (RCP). Methods: Ac-225 PSMA-617 was prepared by adding the peptidic precursor-PSMA-617 (molar ratios, Ac-225: PSMA-617 = 30:1) in 1 ml ascorbate buffer to Ac-225 and heating the reaction mixture at 90°C for 25 min to obtain the radiopeptide with high RCP and yield. The radiolabeled peptide was administered in patients who met the eligibility criteria and posttherapy assessment was done. Results: Ten batches of Ac-225 PSMA-617 were prepared following this protocol. The radiopeptide was obtained with an adequate yield of 85%–87% and RCP of 97%–99%. Conclusion: The current protocol allows single-step, successful, routine inhouse radiolabeling of Ac-225 with PSMA-617 with high yield and RCP.
Collapse
Affiliation(s)
- Parul Thakral
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, Haryana, India
| | - Jakub Simecek
- Research and Development, Isotope Technologies Garching GmbH, Bavaria, Germany
| | - Sebastian Marx
- Research and Development, Isotope Technologies Garching GmbH, Bavaria, Germany
| | - Jyotsna Kumari
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, Haryana, India
| | - Vineet Pant
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, Haryana, India
| | - Ishita Barat Sen
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, Haryana, India
| |
Collapse
|
42
|
Mease RC, Kang C, Kumar V, Ray S, Minn IL, Brummet M, Gabrielson K, Feng Y, Park A, Kiess A, Sgouros G, Vaidyanathan G, Zalutsky M, Pomper MG. An improved 211At-labeled agent for PSMA-targeted alpha therapy. J Nucl Med 2021; 63:259-267. [PMID: 34088772 DOI: 10.2967/jnumed.121.262098] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
α-Particle emitters targeting the prostate-specific membrane antigen (PSMA) proved effective in treating patients with prostate cancer who were unresponsive to the corresponding β-particle therapy. Astatine-211 is an α-emitter that may engender less toxicity than other α-emitting agents. We synthesized a new 211At-labeled radiotracer targeting PSMA that resulted from the search for a pharmacokinetically optimized agent. Methods: A small series of 125I-labeled compounds were synthesized from their tin precursors to evaluate the effect of location of radiohalogen within the molecule and the presence of lutetium in the chelate on biodistribution. On that basis, 211At-VK-02-90-Lu was selected and evaluated in cell uptake and internalization studies, biodistribution and PSMA+ PC3 PIP tumor growth control in experimental flank and metastatic (PC3-ML-Luc) models. A long-term (13-month) toxicity study was performed for 211At-VK-02-90-Lu, including tissue chemistries and histopathology. Results: The radiochemical yield of 211At-VK-02-90-Lu was 17.8 ± 8.2%. Lead compound 211At-VK-02-90-Lu demonstrated total uptake within PSMA+ PC3 PIP cells of 13.4 ± 0.5% of the input dose after 4 h of incubation with little uptake in control cells. In SCID mice, 211At-VK-02-90-Lu provided 30.6 ± 4.8 percentage of injected dose per gram (%ID/g) of uptake in PSMA+ PC3 PIP tumor at 1 h post-injection that decreased to 9.46 ± 0.96 %ID/g by 24 h. Tumor-to-salivary gland and tumor-to-kidney ratios were 129 ± 99 at 4 h and 130 ± 113 at 24 h, respectively. De-astatination was not significant (stomach 0.34 ± 0.20%ID/g at 4 h). Dose-dependent survival was demonstrated at higher doses (>1.48 MBq) in both flank and metastatic models. There was little off-target toxicity as demonstrated by hematopoietic stability, unchanged tissue chemistries, weight gain rather than loss throughout treatment, and favorable histopathology. Conclusion: Compound 211At-VK-02-90-Lu or close analogs may provide limited and acceptable toxicity while retaining efficacy in management of prostate cancer.
Collapse
Affiliation(s)
| | | | - Vivek Kumar
- Johns Hopkins Medical Institutions, United States
| | | | | | - Mary Brummet
- Johns Hopkins Medical Institutions, United States
| | | | | | - Andrew Park
- Johns Hopkins Medical Institutions, United States
| | | | | | | | | | | |
Collapse
|
43
|
Stenberg VY, Juzeniene A, Bruland ØS, Larsen RH. In situ Generated <sup>212</sup>Pb-PSMA Ligand in a <sup>224</sup>Ra-Solution for Dual Targeting of Prostate Cancer Sclerotic Stroma and PSMA-positive Cells. Curr Radiopharm 2021; 13:130-141. [PMID: 32389119 PMCID: PMC7527546 DOI: 10.2174/1874471013666200511000532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 12/31/2022]
Abstract
Background: New treatments combating bone and extraskeletal metastases are needed for patients with metastatic castration-resistant prostate cancer. The majority of metastases overexpress prostate-specific membrane antigen (PSMA), making it an ideal candidate for targeted radionuclide therapy. Objective: The aim of this study was to test a novel liquid 224Ra/212Pb-generator for the rapid preparation of a dual-alpha targeting solution. Here, PSMA-targeting ligands are labelled with 212Pb in the 224Ra-solution in transient equilibrium with daughter nuclides. Thus, natural bone-seeking 224Ra targeting sclerotic bone metastases and 212Pb-chelated PSMA ligands targeting PSMA-expressing tumour cells are obtained. Methods: Two PSMA-targeting ligands, the p-SCN-Bn-TCMC-PSMA ligand (NG001), specifically developed for chelating 212Pb, and the most clinically used DOTA-based PSMA-617 were labelled with 212Pb. Radiolabelling and targeting potential were investigated in situ, in vitro (PSMA-positive C4-2 human prostate cancer cells) and in vivo (athymic mice bearing C4-2 xenografts). Results: NG001 was rapidly labelled with 212Pb (radiochemical purity >94% at concentrations of ≥15 µg/ml) using the liquid 224Ra/212Pb-generator. The high radiochemical purity and stability of [212Pb]Pb-NG001 were demonstrated over 48 hours in the presence of ascorbic acid and albumin. Similar binding abilities of the 212Pb-labelled ligands were observed in C4-2 cells. The PSMA ligands displayed comparable tumour uptake after 2 hours, but NG001 showed a 3.5-fold lower kidney uptake than PSMA-617. Radium-224 was not chelated and, hence, showed high uptake in bones. Conclusion: A fast method for the labelling of PSMA ligands with 212Pb in the 224Ra/212Pb-solution was developed. Thus, further in vivo studies with dual tumour targeting by alpha-particles are warranted.
Collapse
Affiliation(s)
- Vilde Y Stenberg
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Nucligen AS, Oslo, Norway,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Øyvind S Bruland
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway,Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
44
|
Hooijman EL, Chalashkan Y, Ling SW, Kahyargil FF, Segbers M, Bruchertseifer F, Morgenstern A, Seimbille Y, Koolen SLW, Brabander T, de Blois E. Development of [ 225Ac]Ac-PSMA-I&T for Targeted Alpha Therapy According to GMP Guidelines for Treatment of mCRPC. Pharmaceutics 2021; 13:pharmaceutics13050715. [PMID: 34068206 PMCID: PMC8153125 DOI: 10.3390/pharmaceutics13050715] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, promising results of the antitumor effects were observed in patients with metastatic castration-resistant prostate cancer treated with 177Lu-labeled PSMA-ligands. Radionuclide therapy efficacy may even be improved by using the alpha emitter Ac-225. Higher efficacy is claimed due to high linear energy transfer specifically towards PSMA positive cells, causing more double-strand breaks. This study aims to manufacture [225Ac]Ac-PSMA-I&T according to good manufacturing practice guidelines for the translation of [225Ac]Ac-PSMA-I&T into a clinical phase 1 dose escalation study. Quencher addition during labeling was investigated. Quality control of [225Ac]Ac-PSMA-I&T was based on measurement of Fr-221 (218 keV), in equilibrium with Ac-225 in approximately six half-lives of Fr-221 (T½ = 4.8 min). Radio-(i)TLC methods were utilized for identification of the different radiochemical forms, gamma counter for concentration determination, and HPGe-detector for the detection of the radiochemical yield. Radiochemical purity was determined by HPLC. The final patient dose was prepared and diluted with an optimized concentration of quenchers as during labeling, with an activity of 8–12 MBq (±5%), pH > 5.5, 100 ± 20 μg/dose, PSMA-I&T, radiochemical yield >95%, radiochemical purity >90% (up to 3 h), endotoxin levels of <5 EU/mL, osmolarity of 2100 mOsmol, and is produced according to current guidelines. The start of the phase I dose escalation study is planned in the near future.
Collapse
Affiliation(s)
- Eline L. Hooijman
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
- Erasmus Medical Centre, Department of Pharmacy, 3015 CN Rotterdam, The Netherlands
| | - Yozlem Chalashkan
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
| | - Sui Wai Ling
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
| | - Figen F. Kahyargil
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
- Erasmus Medical Centre, Department of Pharmacy, 3015 CN Rotterdam, The Netherlands
| | - Marcel Segbers
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
| | - Frank Bruchertseifer
- Joint Research Centre, European Commission, 76344 Karlsruhe, Germany; (F.B.); (A.M.)
| | - Alfred Morgenstern
- Joint Research Centre, European Commission, 76344 Karlsruhe, Germany; (F.B.); (A.M.)
| | - Yann Seimbille
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
- Division of Life Sciences, TRIUMF, Vancouver, BC V6T 2A3, Canada
| | - Stijn L. W. Koolen
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
- Erasmus Medical Centre, Department of Pharmacy, 3015 CN Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN Rotterdam, The Netherlands
| | - Tessa Brabander
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
| | - Erik de Blois
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
- Correspondence: ; Tel.: +31-107035317
| |
Collapse
|
45
|
Roy J, Jagoda EM, Basuli F, Vasalatiy O, Phelps TE, Wong K, Ton AT, Hagemann UB, Cuthbertson AS, Cole PE, Hassan R, Choyke PL, Lin FI. In Vitro and In Vivo Comparison of 3,2-HOPO Versus Deferoxamine-Based Chelation of Zirconium-89 to the Antimesothelin Antibody Anetumab. Cancer Biother Radiopharm 2021; 36:316-325. [PMID: 34014767 PMCID: PMC8161658 DOI: 10.1089/cbr.2020.4492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction: [227Th]Th-3,2-HOPO-MSLN-mAb, a mesothelin (MSLN)-targeted thorium-227 therapeutic conjugate, is currently in phase I clinical trial; however, direct PET imaging using this conjugate is technically challenging. Thus, using the same MSLN antibody, we synthesized 3,2-HOPO and deferoxamine (DFO)-based zirconium-89 antibody conjugates, [89Zr]Zr-3,2-HOPO-MSLN-mAb and [89Zr]Zr-DFO-MSLN-mAb, respectively, and compared them in vitro and in vivo. Methods: [89Zr]Zr-3,2-HOPO-MSLN-mAb and [89Zr]Zr-DFO-MSLN-mAb were evaluated in vitro to determine binding affinity and immunoreactivity in HT29-MSLN and PDX (NCI-Meso16, NCI-Meso21) cells. For both the zirconium-89 conjugates, in vivo studies (biodistribution/imaging) were performed at days 1, 3, and 6, from which tissue uptake was determined. Results: Both the conjugates demonstrated a low nanomolar binding affinity for MSLN and >95% immunoreactivity. In all the three tumor types, biodistribution of [89Zr]Zr-DFO-MSLN-mAb resulted in higher tumor uptake(15.88-28-33%ID/g) at all time points compared with [89Zr]Zr-3,2-HOPO-MSLN-mAb(7–13.07%ID/g). [89Zr]Zr-3,2-HOPO-MSLN-mAb femur uptake was always higher than [89Zr]Zr-DFO-MSLN-mAb, and imaging results concurred with the biodistribution studies. Conclusions: Even though the conjugates exhibited a high binding affinity for MSLN, [89Zr]Zr-DFO-MSLN-mAb showed a higher tumor and lower femur uptake than [89Zr]Zr-3,2-HOPO-MSLN-mAb. Nevertheless, [89Zr]Zr-3,2-HOPO-MSLN-mAb could be used to study organ distribution and lesion uptake with the caveat of detecting MSLN-positive bone lesions. Clinical trial (NCT03507452).
Collapse
Affiliation(s)
- Jyoti Roy
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elaine M Jagoda
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Olga Vasalatiy
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Tim E Phelps
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karen Wong
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita T Ton
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | - Raffit Hassan
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank I Lin
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
46
|
Reissig F, Bauer D, Zarschler K, Novy Z, Bendova K, Ludik MC, Kopka K, Pietzsch HJ, Petrik M, Mamat C. Towards Targeted Alpha Therapy with Actinium-225: Chelators for Mild Condition Radiolabeling and Targeting PSMA-A Proof of Concept Study. Cancers (Basel) 2021; 13:1974. [PMID: 33923965 PMCID: PMC8073976 DOI: 10.3390/cancers13081974] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Currently, targeted alpha therapy is one of the most investigated topics in radiopharmaceutical cancer management. Especially, the alpha emitter 225Ac has excellent nuclear properties and is gaining increasing popularity for the treatment of various tumor entities. We herein report on the synthesis of two universal 225Ac-chelators for mild condition radiolabeling and binding to conjugate molecules of pharmacological interest via the copper-mediated click chemistry. A convenient radiolabeling procedure was investigated as well as the complex stability proved for both chelators and two PSMA (prostate-specific membrane antigen)-targeting model radioconjugates. Studies regarding affinity and cell survival were performed on LNCaP cells followed by biodistribution studies, which were performed using LNCaP tumor-bearing mice. High efficiency radiolabeling for all conjugates was demonstrated. Cell binding studies revealed a fourfold lower cell affinity for the PSMA radioconjugate with one targeting motif compared to the radioconjugate owing two targeting motifs. Additionally, these differences were verified by in vitro cell survival evaluation and biodistribution studies, both showing a higher cell killing efficiency for the same dose, a higher tumor uptake (15%ID/g) and a rapid whole body clearance after 24 h. The synthesized chelators will overcome obstacles of lacking stability and worse labeling needs regarding 225Ac complexation using the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid) chelator. Moreover, the universal functionalization expands the coverage of these chelators in combination with any sensitive bio(macro)molecule, thus improving treatment of any addressable tumor target.
Collapse
Affiliation(s)
- Falco Reissig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (F.R.); (D.B.); (M.-C.L.); (K.K.); (H.-J.P.)
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - David Bauer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (F.R.); (D.B.); (M.-C.L.); (K.K.); (H.-J.P.)
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (F.R.); (D.B.); (M.-C.L.); (K.K.); (H.-J.P.)
| | - Zbynek Novy
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, 779 00 Olomouc, Czech Republic; (Z.N.); (K.B.); (M.P.)
| | - Katerina Bendova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, 779 00 Olomouc, Czech Republic; (Z.N.); (K.B.); (M.P.)
| | - Marie-Charlotte Ludik
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (F.R.); (D.B.); (M.-C.L.); (K.K.); (H.-J.P.)
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (F.R.); (D.B.); (M.-C.L.); (K.K.); (H.-J.P.)
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (F.R.); (D.B.); (M.-C.L.); (K.K.); (H.-J.P.)
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, 779 00 Olomouc, Czech Republic; (Z.N.); (K.B.); (M.P.)
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (F.R.); (D.B.); (M.-C.L.); (K.K.); (H.-J.P.)
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
47
|
White JM, Escorcia FE, Viola NT. Perspectives on metals-based radioimmunotherapy (RIT): moving forward. Theranostics 2021; 11:6293-6314. [PMID: 33995659 PMCID: PMC8120204 DOI: 10.7150/thno.57177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Radioimmunotherapy (RIT) is FDA-approved for the clinical management of liquid malignancies, however, its use for solid malignancies remains a challenge. The putative benefit of RIT lies in selective targeting of antigens expressed on the tumor surface using monoclonal antibodies, to systemically deliver cytotoxic radionuclides. The past several decades yielded dramatic improvements in the quality, quantity, recent commercial availability of alpha-, beta- and Auger Electron-emitting therapeutic radiometals. Investigators have created new or improved existing bifunctional chelators. These bifunctional chelators bind radiometals and can be coupled to antigen-specific antibodies. In this review, we discuss approaches to develop radiometal-based RITs, including the selection of radiometals, chelators and antibody platforms (i.e. full-length, F(ab')2, Fab, minibodies, diabodies, scFv-Fc and nanobodies). We cite examples of the performance of RIT in the clinic, describe challenges to its implementation, and offer insights to address gaps toward translation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- Chelating Agents/administration & dosage
- Chelating Agents/metabolism
- Click Chemistry
- Clinical Trials as Topic
- Dose Fractionation, Radiation
- Drug Delivery Systems
- Forecasting
- Humans
- Immunoglobulin Fab Fragments/administration & dosage
- Immunoglobulin Fab Fragments/therapeutic use
- Lymphoma, Non-Hodgkin/radiotherapy
- Mice
- Molecular Targeted Therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasms, Experimental/diagnostic imaging
- Neoplasms, Experimental/radiotherapy
- Organ Specificity
- Precision Medicine
- Radiation Tolerance
- Radioimmunotherapy/methods
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/therapeutic use
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Single-Chain Antibodies/administration & dosage
- Single-Chain Antibodies/therapeutic use
- Single-Domain Antibodies/administration & dosage
- Single-Domain Antibodies/therapeutic use
- Yttrium Radioisotopes/administration & dosage
- Yttrium Radioisotopes/therapeutic use
Collapse
Affiliation(s)
- Jordan M. White
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| | - Freddy E. Escorcia
- Molecular Imaging Branch, Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20814
| | - Nerissa T. Viola
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| |
Collapse
|
48
|
Juzeniene A, Stenberg VY, Bruland ØS, Larsen RH. Preclinical and Clinical Status of PSMA-Targeted Alpha Therapy for Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:779. [PMID: 33668474 PMCID: PMC7918517 DOI: 10.3390/cancers13040779] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Bone, lymph node, and visceral metastases are frequent in castrate-resistant prostate cancer patients. Since such patients have only a few months' survival benefit from standard therapies, there is an urgent need for new personalized therapies. The prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer and is a molecular target for imaging diagnostics and targeted radionuclide therapy (theragnostics). PSMA-targeted α therapies (PSMA-TAT) may deliver potent and local radiation more selectively to cancer cells than PSMA-targeted β- therapies. In this review, we summarize both the recent preclinical and clinical advances made in the development of PSMA-TAT, as well as the availability of therapeutic α-emitting radionuclides, the development of small molecules and antibodies targeting PSMA. Lastly, we discuss the potentials, limitations, and future perspectives of PSMA-TAT.
Collapse
Affiliation(s)
- Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway;
| | - Vilde Yuli Stenberg
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway;
- Nucligen, Ullernchausséen 64, 0379 Oslo, Norway;
- Institute for Clinical Medicine, University of Oslo, Box 1171 Blindern, 0318 Oslo, Norway;
| | - Øyvind Sverre Bruland
- Institute for Clinical Medicine, University of Oslo, Box 1171 Blindern, 0318 Oslo, Norway;
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | |
Collapse
|
49
|
Rajan V, Pandey BN. Cytoproliferative effect of low dose alpha radiation in human lung cancer cells is associated with connexin 43, caveolin-1, and survivin pathway. Int J Radiat Biol 2021; 97:356-366. [PMID: 33416428 DOI: 10.1080/09553002.2021.1864044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE High LET including alpha radiation-based approaches have been proved as a promising mode for cancer therapy owing to their biophysical and radiobiological advantages compared to photon beams. Studies pertaining to effect of α-radiation on cancer cells are limited to cytotoxic high doses. MATERIALS AND METHODS In this study, human lung adenocarcinoma (A549) cells were α-irradiated using 241Am α-irradiator and effects of low dose of alpha radiation on these cells was studied under in vitro and in vivo conditions. RESULTS Clonogenic and other assays showed increased cellular proliferation at lower doses (1.36 and 6.8 cGy) but killing at higher doses (13.6-54.4 cGy). Further studies at low dose of alpha (1.36 cGy) showed increased TGF-β1 in the conditioned medium (CM) at early time point (24 h) but CM replacement did not affect the clonogenic survival. In these cells, increased phosphorylation of connexin 43 was correlated with decrease in gap-junction communication observed by dye transfer co-culture experiment. A decrease in caveolin-1 but increase in survivin expression was observed in low dose α-irradiated cells. An increase in cyclinD1 and decrease in Bcl-2, the target proteins of survivin, was observed in these cells. Low dose α-irradiated cancer cells transplanted in SCID mice showed significantly higher tumor volume, which was accompanied with an increased fraction of mitotic and PCNA/Ki67 positive cells in these tumor tissues. CONCLUSIONS Taken together, our results suggest an increase in proliferation and tumor volume at in vitro and in vivo levels, respectively, when A549 cells were irradiated with low dose of α-radiation. These findings may be relevant for a better understanding of radiobiological processes during high LET-based cancer radiotherapy.
Collapse
Affiliation(s)
- Vasumathy Rajan
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Badri Narain Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
50
|
Grieve ML, Paterson BM. The Evolving Coordination Chemistry of Radiometals for Targeted Alpha Therapy. Aust J Chem 2021. [DOI: 10.1071/ch21184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|