1
|
Sharma S, Mittal N, Banik BK. Chemistry and Therapeutic Aspect of Triazole: Insight into the Structure-activity Relationship. Curr Pharm Des 2023; 29:2702-2720. [PMID: 37916492 DOI: 10.2174/0113816128271288231023045049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023]
Abstract
The triazole ring is a highly significant heterocycle that occurs naturally in many commodities and is a common feature in pharmaceuticals. Recently, heterocyclic compounds and their derivatives have been getting a lot of attention in medicinal chemistry because they have a lot of pharmacological and biological potential. For example, a lot of drugs have nitrogen-containing heterocyclic moieties. The triazole ring is often used as a bio-isostere of the oxadiazole nucleus. The oxygen atom in the oxadiazole nucleus is replaced by nitrogen in the triazole analogue. This article explores the pharmacological properties of the triazole moiety, including but not limited to antibacterial, analgesic, anticonvulsant, anthelmintic, anti-inflammatory, antitubercular, antimalarial, antioxidant, antiviral, and other properties. Additionally, we discuss the diverse multi- target pharmacological activities exhibited by triazole-based compounds. Based on a literature review, it is evident that triazole-based chemicals hold significant potential for various applications.
Collapse
Affiliation(s)
- Shikha Sharma
- Department of Pharmaceutical Science, Lords University, Alwar 301028, India
| | - Nitin Mittal
- Department of Pharmaceutical Science, Lords University, Alwar 301028, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Mensah JA, Johnson K, Reilly CA, Wilcox KS, Rower JE, Metcalf CS. Evaluating the efficacy of prototype antiseizure drugs using a preclinical pharmacokinetic approach. Epilepsia 2022; 63:2937-2948. [PMID: 36054499 PMCID: PMC9669179 DOI: 10.1111/epi.17402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Pharmacokinetics (PK) of a drug drive its exposure, efficacy, and tolerability. A thorough preclinical PK assessment of antiseizure medications (ASMs) is therefore essential to evaluate the clinical potential. We tested protection against evoked seizures of prototype ASMs in conjunction with analysis of plasma and brain PK as a proof-of-principle study to enhance our understanding of drug efficacy and duration of action using rodent seizure models. METHODS In vivo seizure protection assays were performed in adult male CF-1 mice and Sprague Dawley rats. Clobazam (CLB), N-desmethyl CLB (NCLB), carbamazepine (CBZ), CBZ-10,11-epoxide (CBZE), sodium valproate (VPA), and levetiracetam (LEV) concentrations were quantified in plasma and brain using liquid chromatography-tandem mass spectrometry. Mean concentrations of each analyte were calculated and used to determine PK parameters via noncompartmental analysis in Phoenix WinNonLin. RESULTS NCLB concentrations were approximately 10-fold greater than CLB in mice. The antiseizure profile of CLB was partially sustained by NCLB in mice. CLB concentrations were lower in rats than in mice. CBZE plasma exposures were approximately 70% of CBZ in both mice and rats, likely contributing to the antiseizure effect of CBZ. VPA showed a relatively short half-life in both mice and rats, which correlated with a sharp decline in efficacy. LEV had a prolonged brain and plasma half-life, associated with a prolonged duration of action in mice. SIGNIFICANCE The study demonstrates the utility of PK analyses for understanding the seizure protection time course in mice and rats. The data indicate that distinct PK profiles of ASMs between mice and rats likely drive differences in drug efficacy between rodent models.
Collapse
Affiliation(s)
- Jeffrey A. Mensah
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Kristina Johnson
- Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake, UT, USA
| | - Christopher A. Reilly
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
- Center for Human Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Karen S. Wilcox
- Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake, UT, USA
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Joseph E. Rower
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
- Center for Human Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Cameron S. Metcalf
- Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake, UT, USA
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Kumar S, Khokra SL, Yadav A. Triazole analogues as potential pharmacological agents: a brief review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:106. [PMID: 34056014 PMCID: PMC8148872 DOI: 10.1186/s43094-021-00241-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/03/2021] [Indexed: 02/01/2023] Open
Abstract
Background A large number of studies have recently reported that, because of their significant biological and pharmacological properties, heterocyclic compounds and their derivatives have attracted a strong interest in medicinal chemistry. The triazole nucleus is one of the most important heterocycles which has a feature of natural products as well as medicinal agents. Heterocyclic nitrogen is abundantly present in most medicinal compounds. The derivatization of triazole ring is based on the phenomenon of bio-isosteres in which substituted the oxygen atom of oxadiazole nucleus with nitrogen triazole analogue. Main text This review focuses on recent synthetic procedure of triazole moiety, which comprises of various pharmacological activities such as antimicrobial, anticonvulsant, anti-inflammatory, analgesic, antitubercular, anthelmintic, antioxidant, antimalarial, antiviral, etc.. Conclusion This review highlights the current status of triazole compounds as different multi-target pharmacological activities. From the literature survey, triazole is the most widely used compound in different potential activities.
Collapse
Affiliation(s)
- Sachin Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| | - Sukhbir Lal Khokra
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| | - Akash Yadav
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| |
Collapse
|
4
|
Song M, Yan R, Zhang Y, Guo D, Zhou N, Deng X. Design, synthesis, and anticonvulsant effects evaluation of nonimidazole histamine H 3 receptor antagonists/inverse agonists containing triazole moiety. J Enzyme Inhib Med Chem 2021; 35:1310-1321. [PMID: 32529860 PMCID: PMC7717691 DOI: 10.1080/14756366.2020.1774573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Histamine H3 receptors (H3R) antagonists/inverse agonists are becoming a promising therapeutic approach for epilepsy. In this article, novel nonimidazole H3R antagonists/inverse agonists have been designed and synthesised via hybriding the H3R pharmacophore (aliphatic amine with propyloxy chain) with the 1,2,4-triazole moiety as anticonvulsant drugs. The majority of antagonists/inverse agonists prepared here exerted moderate to robust activities in cAMP-response element (CRE) luciferase screening assay. 1-(3-(4-(3-Phenyl-4H-1,2,4-triazol-4-yl)phenoxy)propyl)piperidine (3l) and 1-(3-(4-(3-(4-chlorophenyl)-4H-1,2,4-triazol-4-yl)phenoxy)propyl)piperidine (3m) displayed the highest H3R antagonistic activities, with IC50 values of 7.81 and 5.92 nM, respectively. Meanwhile, the compounds with higher H3R antagonistic activities exhibited protection for mice in maximal electroshock seizure (MES)-induced convulsant model. Moreover, the protection of 3m against the MES induced seizures was fully abrogated when mice were co-treated with RAMH, a CNS-penetrant H3R agonist, which suggested that the potential therapeutic effect of 3m was through H3R. These results indicate that the attempt to find new anticonvulsant among H3R antagonists/inverse agonists is practicable.
Collapse
Affiliation(s)
- Mingxia Song
- Medical College, Jinggangshan University, Ji'an, China
| | - Rui Yan
- Medical College, Jinggangshan University, Ji'an, China
| | - Yanhui Zhang
- Medical College, Jinggangshan University, Ji'an, China
| | - Dongfu Guo
- Medical College, Jinggangshan University, Ji'an, China
| | - Naiming Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - XianQing Deng
- Medical College, Jinggangshan University, Ji'an, China
| |
Collapse
|
5
|
Xiao F, Yan R, Zhang Y, Wang S, Chen S, Zhou N, Deng X. Synthesis and antiseizure effect evaluation of nonimidazole histamine H 3 receptor antagonists containing the oxazole moiety. Arch Pharm (Weinheim) 2020; 354:e2000298. [PMID: 33325568 DOI: 10.1002/ardp.202000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 11/07/2022]
Abstract
The use of histamine H3 receptor (H3 R) antagonists is becoming a promising therapeutic approach for epilepsy. In this paper, a series of novel nonimidazole H3 R antagonists was synthesized and screened as antiepileptic drugs. All of these prepared antagonists displayed micromolar or submicromolar H3 R antagonistic activities in the cAMP response element luciferase screening assay. Compounds 5a (IC50 = 0.11 μM), 5b (IC50 = 0.56 μM), and 5f (IC50 = 0.78 μM) displayed the most potent H3 R antagonistic activities, with considerable potency when compared with pitolisant (IC50 = 0.51 μM). In the maximal electroshock (MES)-induced seizure model, compounds 5c, 5e, and 5g showed obvious protection for the electrostimulated mice, and the protection of 5g against the MES-induced seizures was fully abrogated when mice were cotreated with R-(α)-methyl-histamine, a central nervous system-penetrant H3 R agonist, suggesting that the potential therapeutic effect of 5g was observed to work through H3 R. These results indicate that the attempt to find a new antiepileptic drug among H3 R antagonists is practicable, but it is necessary to consider the log P of the molecules to ensure penetration of the blood-brain barrier.
Collapse
Affiliation(s)
- Feng Xiao
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China
| | - Rui Yan
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China
| | - Yanhui Zhang
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China
| | - Shiben Wang
- School of Pharmacy, Liaocheng University, LiaoCheng, Shandong, China
| | - Shilong Chen
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China
| | - Naiming Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xianqing Deng
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China
- Research Center of Chinese Medicinal Resources and Functional Molecules, Jinggangshan University, Ji'an, Jiangxi, China
| |
Collapse
|
6
|
Song MX, Huang Y, Wang S, Wang ZT, Deng XQ. Design, synthesis, and evaluation of anticonvulsant activities of benzoxazole derivatives containing the 1,2,4-triazolone moiety. Arch Pharm (Weinheim) 2019; 352:e1800313. [PMID: 31330092 DOI: 10.1002/ardp.201800313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/15/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
A novel series of benzoxazole derivatives containing 1,2,4-triazolone (5a-m) was designed. These compounds were synthesized in order to screen their anticonvulsant activities by the maximal electroshock seizure (MES) model and the subcutaneous pentylenetetrazole (sc-PTZ) seizure model in mice. The rotarod test was used to evaluate their neurotoxicities. Most of the compounds showed anti-MES activities at 100 and 300 mg/kg. Compound 5f, which showed potential anticonvulsant activity in the MES model with ED50 values of 22.0 mg/kg, was considered as the most promising one in this study. It exhibited greater safety than that of carbamazepine and valproate regarding neurotoxicity. The efficacy of compound 5f in inhibiting the tonic seizures and death induced by the convulsants 3-mercaptopropionic acid and BIC was also verified. In an enzyme-linked immunosorbent assay, compound 5f and the positive drug phenytoin significantly increased the γ-aminobutyric acid (GABA) level in the mouse brain. Further, pretreatment with an inhibitor of the GABA synthesizing enzyme dramatically raised the ED50 value of 5f in the MES model. These results confirmed that the compound 5f plays its anticonvulsive action via regulating the GABA function in the brain. Also, a docking study of the compound 5f in the benzodiazepine (BZD) binding site of the GABAA receptor confirmed possible binding of the compound 5f with BZD receptors.
Collapse
Affiliation(s)
- Ming-Xia Song
- Medical College, Jinggangshan University, Ji'an, China
| | - Yuping Huang
- Department of Biochemistry and Molecular Biology, Gannan Medical College, Ganzhou, China
| | - Shiben Wang
- School of Pharmacy, Liaocheng University, Liaocheng, China
| | - Zeng-Tao Wang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | | |
Collapse
|
7
|
Amin SA, Adhikari N, Gayen S, Jha T. Reliable structural information for rational design of benzoxazole type potential cholesteryl ester transfer protein (CETP) inhibitors through multiple validated modeling techniques. J Biomol Struct Dyn 2019; 37:4528-4541. [DOI: 10.1080/07391102.2018.1552895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sk. Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|