1
|
Hameed H, Hussain J, Cláudia Paiva-Santos A, Zaman M, Hamza A, Sajjad I, Asad F. Comprehensive insights on treatment modalities with conventional and herbal drugs for the treatment of duodenal ulcers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8211-8229. [PMID: 38837070 DOI: 10.1007/s00210-024-03178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Areas of the body accessible to gastric secretions, such as the stomach and duodenum, are most commonly damaged by circumscribed lesions of the upper gastrointestinal tract mucosa. Peptic ulcer disease is the term for this illness (PUD). About 80% of peptic ulcers are duodenal ulcers, with stomach ulcers accounting for the remaining 20%. Duodenal ulcers are linked to the two primary results about Helicobacter pylori infection and COX inhibitor users. Additional causes might include drinking, smoking, stress, and coffee consumption. The indications and symptoms of a duodenal ulcer depend on the patient's age and the lesion's location. For duodenal ulcers, proton pump inhibitors (PPIs) are the usual course of treatment. This comprehensive study included an in-depth literature search in the literature and methods section using electronic databases such as PubMed, ScienceDirect, and Google Scholar. The search method included publications published from the inception of the relevant database to the present. Inclusion criteria included studies investigating different treatment options for duodenal ulcer disease, including traditional pharmacotherapy and naturopathic treatments. Data mining includes information on treatment techniques, treatment outcomes, and possible synergies between conventional and herbal treatments. In addition, this review critically examines the available information on the effectiveness, safety, and possible side effects of different treatments. The inclusion of conventional and herbal treatments is intended to provide a comprehensive overview of the many treatment options available for duodenal ulcer disease. A more comprehensive and personalized treatment plan can be achieved by incorporating dietary changes, lifestyle modifications, and, if necessary, herbal therapies to complement other treatments normally.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Jahangir Hussain
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ali Hamza
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Irsa Sajjad
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Faria Asad
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Costa Drigo RTDS, Becker AC, Riesco MLG, Mascarenhas VHA, Nick JM. Wound-healing properties of Stryphnodendron adstringens (barbatimão) in skin and mucosa injuries: a scoping review protocol. JBI Evid Synth 2024; 22:1610-1616. [PMID: 38655623 DOI: 10.11124/jbies-23-00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
OBJECTIVE This review will map the literature on the types of research and methods used to investigate the wound-healing properties of Stryphnodendron adstringens ( barbatimão ) in skin and mucosa injuries. INTRODUCTION Barbatimão is a Brazilian native plant and its wound-healing properties have been described in literature since the colonial period. It is one of the 71 plants included in the Brazilian health system's national list of medicinal plants of interest. However, existing literature reviews on the subject are limited, not comprehensive, lack a search strategy, and lack peer review. INCLUSION CRITERIA This scoping review will include all types of published and unpublished sources that investigate the wound-healing properties of barbatimão to treat any type of skin or mucosa injury in humans, animals, or in vitro, in any context. METHODS A scoping review will be conducted following JBI methodology. The main databases to be searched will include Embase (EBSCOhost), CINAHL (EBSCOhost), Scopus, PubMed (EBSCOhost), ScienceDirect, Lilacs, SciELO, CUIDEN, MOSAICO, Web of Science, Epistemonikos, and Google Scholar. Unpublished studies will also be considered. Two independent reviewers will examine titles and abstracts and select and read full-text sources for possible inclusion. Subsequently, the reviewers will extract and synthesize the data, which will be presented as a map, diagram, or table, according to the review objectives. REVIEW REGISTRATION Open Science Framework osf.io/w57m4.
Collapse
Affiliation(s)
| | - Adriana Caroci Becker
- School of Nursing, University of São Paulo, São Paulo, Brazil
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Maria Luiza Gonzalez Riesco
- School of Nursing, University of São Paulo, São Paulo, Brazil
- The Brazilian Centre for Evidence-based Healthcare: A JBI Centre of Excellence, São Paulo, Brazil
| | | | - Jan M Nick
- LLUH Center for Evidence Synthesis: A JBI Affiliated Group, Loma Linda, CA, USA
- School of Nursing, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
3
|
Bruneau A, de Queiroz LP, Ringelberg JJ, Borges LM, Bortoluzzi RLDC, Brown GK, Cardoso DBOS, Clark RP, Conceição ADS, Cota MMT, Demeulenaere E, de Stefano RD, Ebinger JE, Ferm J, Fonseca-Cortés A, Gagnon E, Grether R, Guerra E, Haston E, Herendeen PS, Hernández HM, Hopkins HCF, Huamantupa-Chuquimaco I, Hughes CE, Ickert-Bond SM, Iganci J, Koenen EJM, Lewis GP, de Lima HC, de Lima AG, Luckow M, Marazzi B, Maslin BR, Morales M, Morim MP, Murphy DJ, O’Donnell SA, Oliveira FG, Oliveira ACDS, Rando JG, Ribeiro PG, Ribeiro CL, Santos FDS, Seigler DS, da Silva GS, Simon MF, Soares MVB, Terra V. Advances in Legume Systematics 14. Classification of Caesalpinioideae. Part 2: Higher-level classification. PHYTOKEYS 2024; 240:1-552. [PMID: 38912426 PMCID: PMC11188994 DOI: 10.3897/phytokeys.240.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/19/2023] [Indexed: 06/25/2024]
Abstract
Caesalpinioideae is the second largest subfamily of legumes (Leguminosae) with ca. 4680 species and 163 genera. It is an ecologically and economically important group formed of mostly woody perennials that range from large canopy emergent trees to functionally herbaceous geoxyles, lianas and shrubs, and which has a global distribution, occurring on every continent except Antarctica. Following the recent re-circumscription of 15 Caesalpinioideae genera as presented in Advances in Legume Systematics 14, Part 1, and using as a basis a phylogenomic analysis of 997 nuclear gene sequences for 420 species and all but five of the genera currently recognised in the subfamily, we present a new higher-level classification for the subfamily. The new classification of Caesalpinioideae comprises eleven tribes, all of which are either new, reinstated or re-circumscribed at this rank: Caesalpinieae Rchb. (27 genera / ca. 223 species), Campsiandreae LPWG (2 / 5-22), Cassieae Bronn (7 / 695), Ceratonieae Rchb. (4 / 6), Dimorphandreae Benth. (4 / 35), Erythrophleeae LPWG (2 /13), Gleditsieae Nakai (3 / 20), Mimoseae Bronn (100 / ca. 3510), Pterogyneae LPWG (1 / 1), Schizolobieae Nakai (8 / 42-43), Sclerolobieae Benth. & Hook. f. (5 / ca. 113). Although many of these lineages have been recognised and named in the past, either as tribes or informal generic groups, their circumscriptions have varied widely and changed over the past decades, such that all the tribes described here differ in generic membership from those previously recognised. Importantly, the approximately 3500 species and 100 genera of the former subfamily Mimosoideae are now placed in the reinstated, but newly circumscribed, tribe Mimoseae. Because of the large size and ecological importance of the tribe, we also provide a clade-based classification system for Mimoseae that includes 17 named lower-level clades. Fourteen of the 100 Mimoseae genera remain unplaced in these lower-level clades: eight are resolved in two grades and six are phylogenetically isolated monogeneric lineages. In addition to the new classification, we provide a key to genera, morphological descriptions and notes for all 163 genera, all tribes, and all named clades. The diversity of growth forms, foliage, flowers and fruits are illustrated for all genera, and for each genus we also provide a distribution map, based on quality-controlled herbarium specimen localities. A glossary for specialised terms used in legume morphology is provided. This new phylogenetically based classification of Caesalpinioideae provides a solid system for communication and a framework for downstream analyses of biogeography, trait evolution and diversification, as well as for taxonomic revision of still understudied genera.
Collapse
Affiliation(s)
- Anne Bruneau
- Institut de recherche en biologie végétale and Département de Sciences biologiques, Université de Montréal, 4101 Sherbrooke E., Montreal (QC) H1X 2B2, CanadaUniversité de MontréalMontrealCanada
| | - Luciano Paganucci de Queiroz
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Jens J. Ringelberg
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, UKUniversity of EdinburghEdinburghUnited Kingdom
| | - Leonardo M. Borges
- Universidade Federal de São Carlos, Departamento de Botânica, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, BrazilUniversidade Federal de São CarlosSão CarlosBrazil
| | - Roseli Lopes da Costa Bortoluzzi
- Programa de Pós-graduação em Produção Vegetal, Universidade do Estado de Santa Catarina, Centro de Ciências Agroveterinárias, Avenida Luiz de Camões 2090, 88520-000, Lages, Santa Catarina, BrazilUniversidade do Estado de Santa CatarinaSanta CatarinaBrazil
| | - Gillian K. Brown
- Queensland Herbarium and Biodiversity Science, Department of Environment and Science, Toowong, Queensland, 4066, AustraliaQueensland Herbarium and Biodiversity ScienceToowongAustralia
| | - Domingos B. O. S. Cardoso
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, BrazilInstituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
- Programa de Pós-Graduação em Biodiversidade e Evolução (PPGBioEvo), Instituto de Biologia, Universidade Federal de Bahia (UFBA), Rua Barão de Jeremoabo, s.n., Ondina, 40170-115, Salvador, BA, BrazilUniversidade Federal de BahiaSalvadorBrazil
| | - Ruth P. Clark
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UKRoyal Botanic GardensRichmondUnited Kingdom
| | - Adilva de Souza Conceição
- Programa de Pós-graduação em Diversidade Vegetal, Universidade do Estado da Bahia, Herbário HUNEB, Campus VIII, Rua do Gangorra 503, 48608-240, Paulo Afonso, Bahia, BrazilUniversidade do Estado da BahiaBahiaBrazil
| | - Matheus Martins Teixeira Cota
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Else Demeulenaere
- Center for Island Sustainability and Sea Grant, University of Guam, UOG Station, Mangilao, 96923, GuamUniversity of GuamMangilaoGuam
| | - Rodrigo Duno de Stefano
- Centro de Investigación Científica de Yucatán, A.C. (CICY), Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo; CP 97205, Mérida, Yucatán, MexicoCentro de Investigación Científica de Yucatán, A.C.MéridaMexico
| | - John E. Ebinger
- Eastern Illinois University, Charleston, IL 61920, USAEastern Illinois UniversityCharlestonUnited States of America
| | - Julia Ferm
- Department of Ecology, Environment and Plant Sciences, 10691, Stockholm University, Stockholm, SwedenStockholm UniversityStockholmSweden
| | - Andrés Fonseca-Cortés
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Edeline Gagnon
- Department of Integrative Biology, University of Guelph, 50 Stone Road, Guelph (ON) N1G 2W1, CanadaRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
- Chair of Phytopathology, Technical University Munich, 85354 Freising, GermanyUniversity of GuelphGuelphCanada
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UKTechnical University MunichFreisingGermany
| | - Rosaura Grether
- Departamento de Biología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo. Postal 55-535, 09340 Ciudad de México, MexicoUniversidad Autónoma Metropolitana-IztapalapaCiudad de MéxicoMexico
| | - Ethiéne Guerra
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves 9500, Bloco IV - Prédio 43433, Porto Alegre, RS, 91501-970, BrazilUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Elspeth Haston
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UKTechnical University MunichFreisingGermany
| | - Patrick S. Herendeen
- Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USAChicago Botanic GardenGlencoeUnited States of America
| | - Héctor M. Hernández
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 Ciudad de México, MexicoUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Helen C. F. Hopkins
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UKRoyal Botanic GardensRichmondUnited Kingdom
| | - Isau Huamantupa-Chuquimaco
- Herbario Alwyn Gentry (HAG), Universidad Nacional Amazónica de Madre de Dios (UNAMAD), AV. Jorge Chávez N°1160, Madre de Dios, PeruUniversidad Nacional Amazónica de Madre de DiosMadre de DiosPeru
| | - Colin E. Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
| | - Stefanie M. Ickert-Bond
- Department of Biology & Wildlife & Herbarium (ALA) at the University of Alaska Museum of the North, University of Alaska Fairbanks, P.O. Box 756960, Fairbanks AK 99775-6960, USAUniversity of Alaska FairbanksFairbanksUnited States of America
| | - João Iganci
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves 9500, Bloco IV - Prédio 43433, Porto Alegre, RS, 91501-970, BrazilUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós-Graduação em Fisiologia Vegetal, Universidade Federal de Pelotas, Instituto de Biologia, Campus Universitário Capão do Leão, Passeio André Dreyfus, Departamento de Botânica, Prédio 21, Pelotas, Rio Grande do Sul, 96010-900, BrazilUniversidade Federal de PelotasPelotasBrazil
| | - Erik J. M. Koenen
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Faculté des Sciences, Campus du Solbosch - CP 160/12, Avenue F.D. Roosevelt, 50, 1050 Bruxelles, BelgiumUniversité Libre de BruxellesBruxellesBelgium
| | - Gwilym P. Lewis
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UKRoyal Botanic GardensRichmondUnited Kingdom
| | - Haroldo Cavalcante de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, BrazilInstituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
- Instituto Nacional da Mata Atlântica / INMA-MCTI, Av. José Ruschi, 4, Centro, 29650-000, Santa Teresa, Espírito Santo, BrazilInstituto Nacional da Mata AtlânticaSanta TeresaBrazil
| | - Alexandre Gibau de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, BrazilInstituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SwedenUniversity of GothenburgGothenburgSweden
| | - Melissa Luckow
- School of Integrative Plant Science, Plant Biology Section, Cornell University, 215 Garden Avenue, Roberts Hall 260, Ithaca, NY 14853, USACornell UniversityIthacaUnited States of America
| | - Brigitte Marazzi
- Natural History Museum of Canton Ticino, Viale C. Cattaneo 4, 6900 Lugano, SwitzerlandNatural History Museum of Canton TicinoLuganoSwitzerland
| | - Bruce R. Maslin
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia, 6983, AustraliaWestern Australian HerbariumBentley Delivery CentreAustralia
- Singapore Herbarium, 1 Cluny Road, Singapore, SingaporeSingapore HerbariumSingaporeSingapore
| | - Matías Morales
- Instituto de Recursos Biológicos, CIRN–CNIA, INTA. N. Repetto & Los Reseros s.n., Hurlingham, Buenos Aires, ArgentinaInstituto de Recursos BiológicosBuenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, ArgentinaConsejo Nacional de Investigaciones Científicas y TécnicasCiudad Autónoma de Buenos AiresArgentina
| | - Marli Pires Morim
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, BrazilInstituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
| | - Daniel J. Murphy
- Royal Botanic Gardens Victoria, Melbourne, Victoria, 3004, AustraliaRoyal Botanic Gardens VictoriaVictoriaAustralia
| | - Shawn A. O’Donnell
- Geography and Environmental Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne, NE1 8ST, UKNorthumbria UniversityNewcastle upon TyneUnited Kingdom
| | - Filipe Gomes Oliveira
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Ana Carla da Silva Oliveira
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Juliana Gastaldello Rando
- Programa de Pós-graduação em Ciências Ambientais, Universidade Federal do Oeste da Bahia, Rua Professor José Seabra Lemos 316, 47800-021, Barreiras, Bahia, BrazilUniversidade Federal do Oeste da BahiaBarreirasBrazil
| | - Pétala Gomes Ribeiro
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Carolina Lima Ribeiro
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Felipe da Silva Santos
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s/n, Campus, Novo Horizonte. 44036-900, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - David S. Seigler
- Department of Plant Biology, University of Illinois, Urbana, IL 61801, USAUniversity of IllinoisUrbanaUnited States of America
| | - Guilherme Sousa da Silva
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 13083-876, São Paulo/SP, BrazilUniversidade Estadual de CampinasSão PauloBrazil
| | - Marcelo F. Simon
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Caixa Postal 02372, 70770-917, Brasília/DF, BrazilEmpresa Brasileira de Pesquisa AgropecuáriaBrasíliaBrazil
| | - Marcos Vinícius Batista Soares
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Botânica, Av. Bento Gonçalves 9500, Bloco IV - Prédio 43433, Porto Alegre, RS, 91501-970, BrazilUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Vanessa Terra
- Instituto de Biologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria/RS, BrazilUniversidade Federal de Santa MariaSanta MariaBrazil
| |
Collapse
|
4
|
Barbosa CR, Pantoja JC, Fernandes T, Chagas RA, Souza CG, Santos ARD, Alves JP, Vargas Junior FM. Ruminal modulator additive effect of Stryphnodendron rotundifolium bark in feedlot lambs. Trop Anim Health Prod 2024; 56:53. [PMID: 38261014 DOI: 10.1007/s11250-024-03903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
The study aimed to evaluate the inclusion effects of Stryphnodendron rotundifolium (barbatimão) extracts in substitution of the lasalocid sodium on the ingestive behaviour, intake, ruminal parameters, and digestibility of feedlot lambs. Twenty-four pantaneiro lambs were used, with an average age of 150 ± 4.59 days and an initial body weight of 21.2 ± 3.63 kg. The lambs were distributed in three treatments in an experimental design with randomized blocks. The treatments correspond to the additive supplements: LAS (0.019 g of lasalocid sodium/lamb/d); DGB (1.50 g of barbatimão dried ground bark/lamb/d); DHE (0.30 g of barbatimão dry hydroalcoholic extract/lamb/d). The DHE increased 59.74 min in the time spent for ingestion per day, resulting in an efficiency reduction of dry matter (DM) ingestion (127 g of DM/h of feed). There was a reduction of 1.8 mg/dL in the ammoniacal nitrogen concentration with extract supplementation compared to LAS. The DGB reduced total volatile fatty acids by 48.9% compared to the control treatment. The inclusion of barbatimão extracts (DGB and DHE) reduced 12.05% of ruminal butyrate content. The supplementation of barbatimão extracts replacing lasalocid sodium in the diet of feedlot lambs did not affect intake and caused small changes on ingestive behaviour.
Collapse
Affiliation(s)
- Cristiane R Barbosa
- Agrarian Sciences Department, Federal University of Grande Dourados, Dourados, 79804-970, Brazil
| | - Jéssica C Pantoja
- Agrarian Sciences Department, Federal University of Grande Dourados, Dourados, 79804-970, Brazil
| | - Tatiane Fernandes
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, 24061, USA
| | - Renata A Chagas
- Agrarian Sciences Department, Federal University of Grande Dourados, Dourados, 79804-970, Brazil
| | - Carla G Souza
- Agrarian Sciences Department, Federal University of Grande Dourados, Dourados, 79804-970, Brazil
| | - Aylpy R D Santos
- Agrarian Sciences Department, Federal University of Grande Dourados, Dourados, 79804-970, Brazil
| | - Joyce P Alves
- Agrarian Sciences Department, Federal University of Grande Dourados, Dourados, 79804-970, Brazil
| | - Fernando M Vargas Junior
- Agrarian Sciences Department, Federal University of Grande Dourados, Dourados, 79804-970, Brazil.
| |
Collapse
|
5
|
de Brito VP, de Souza Ribeiro MM, Viganó J, de Moraes MA, Veggi PC. Silk Fibroin Hydrogels Incorporated with the Antioxidant Extract of Stryphnodendron adstringens Bark. Polymers (Basel) 2022; 14:polym14224806. [PMID: 36432933 PMCID: PMC9698373 DOI: 10.3390/polym14224806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Barbatimão (Stryphnodendron adstringens) is a Brazilian medicinal plant known for its pharmacological properties, including healing activity related to its phenolic composition, which is chiefly given by tannins. In order to preserve its stability and bioactivity, barbatimão extracts can be incorporated into (bio-)polymeric matrixes, of which silk fibroin stands out due to its versatility and tunable properties. This work aimed to obtain barbatimão bark extract rich in phenolic compounds and evaluate its incorporation in fibroin hydrogels. From the extraction process, it was observed that the PG (propylene glycol) extract presented a higher global yield (X0) and phenolic compounds (TPC) than the ET (ethanol) extract. Furthermore, the antioxidant activity (ORAC and FRAP) was similar between both extracts. Regarding the hydrogels, morphological, chemical, thermal, and mechanical characterizations were performed to understand the influence of the barbatimão extract and the solvent on the fibroin hydrogel properties. As a result, the hydrogels containing the barbatimão PG extract (BT/PG hydrogels) showed the better physical-chemical and structural performance. Therefore, these hydrogels should be further investigated regarding their potential in medical and pharmaceutical applications, especially in wound healing.
Collapse
Affiliation(s)
- Vivian P. de Brito
- Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, SP, Brazil
| | - Maurício M. de Souza Ribeiro
- Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, SP, Brazil
| | - Juliane Viganó
- Nature Science Center, Federal University of São Carlos, Rod. Lauri Simões de Barros, Km. 12-SP 189, Buri 18290-000, SP, Brazil
| | - Mariana A. de Moraes
- Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, SP, Brazil
| | - Priscilla C. Veggi
- Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, SP, Brazil
- Correspondence: ; Tel.: +55-11-4044-0500 (ext. 3550)
| |
Collapse
|
6
|
Changes in antiparasitical activity of gold nanorods according to the chosen synthesis. Exp Parasitol 2022; 242:108367. [DOI: 10.1016/j.exppara.2022.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
|
7
|
Synergistic activity of Stryphnodendron adstringens and potassium sorbate against foodborne bacteria. Arch Microbiol 2022; 204:292. [PMID: 35503382 DOI: 10.1007/s00203-022-02904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/10/2021] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
Abstract
Stryphnodendron adstringens is a medicinal plant that has a broad spectrum of action, including antibacterial activity. The aim of the present study was to evaluate the effect of S. adstringens alone and in combination with potassium sorbate (PS) against foodborne bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined and, for most of the bacteria tested, the crude extract (CE), aqueous fraction (AQF), and ethyl-acetate fraction (EAF) of S. adstringens had a MIC and MBC ranging from 500 to ≥ 1000 µg/mL. The AQF and EAF showed greater activity against S. aureus strains (MIC = 125 to 250 µg/mL; MBC = 500 to 1000 µg/m). Quantitative cell viability was determined and was observed reductions ranging from 3.0 to 5.8 log10 CFU/ml.The combination of S. adstringens and PS against seven S. aureus isolates was determined by the checkerboard method at neutral and acid pH. In a neutral medium, the AQF + PS combination presented synergistic or additive interactions against six S. aureus strains. The combination of EAF + PS resulted in additive interactions against four bacterial isolates. In an acidic medium, the AQF + PS combination was synergistic or additive against all S. aureus, while EAF + PS presented the same effect against six S. aureus strains S. adstringens showed important antibacterial effects against foodborne S. aureus strains. Moreover, the combination of S. adstringens fractions and PS improved the antibacterial activity compared to the compounds utilized individually. The combined use of these compounds may be an alternative to reduce bacterial food contamination and improve food safety.
Collapse
|
8
|
de Souza de Aguiar P, Correa ÁP, Antunes FTT, de Barros Ferraz AF, Vencato SB, Amado GJV, Wiiland E, Corrêa DS, Grivicich I, de Souza AH. Benefits of Stryphnodendron adstringens when associated with hydrogel on wound healing in diabetic rats. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
The plant Stryphnodendron adstringens is a species of legume in the genus Stryphnodendron that is found in Brazil. It is also known as “barbatimão-verdadeiro” and it is popularly used in folk medicine due to its healing properties. Purpose: The aim of this study was to evaluate the healing activity of hydrogel, together with an S. adstringens hydroalcoholic extract, in diabetic and non-diabetic rats. Methods: The phytochemical analysis of the S. adstringens hydroalcoholic extract was evaluated through HPLC and its antioxidant activity was measured by the DPPH assay. The cytotoxicity, the scratch assay, and the fibroblast cell proliferation were also evaluated. Forty (40) Wistar rats were submitted to an excision for a full-thickness wound of 1.5 cm × 1.5 cm in their dorsum. The animals were treated twice a day over 16 days, with a rich layer of the corresponding treatment: Hydrogel; Hydrogel associated with 5% S. adstringens hydroalcoholic extract (H + SAHE); S. adstringens hydroalcoholic extract (SAHE); Collagenase with Chloramphenicol; or Carbopol. Morphological and histological analyses of the injury were performed. Results: The phytochemical analysis of SAHE indicated the presence of phenolic compounds, tannins, and flavonoids. The hydroalcoholic extract showed strong antioxidant activities (IC50 = 25.56 ± 1.04 μg/mL). H + SAHE induced the fibroblast proliferation (148 ± 6.9%) and it was not cytotoxic. The association with H + SAHE showed a more pronounced healing activity than did the other treatments in the non-diabetic animals and in the diabetic animals, hence, promoting angiogenesis and reepithelialization. Conclusion: Under these scenarios, this study has demonstrated effectiveness in the recovering wounds of diabetic rats.
Graphical abstract
Collapse
|
9
|
Iantas J, Savi DC, Schibelbein RDS, Noriler SA, Assad BM, Dilarri G, Ferreira H, Rohr J, Thorson JS, Shaaban KA, Glienke C. Endophytes of Brazilian Medicinal Plants With Activity Against Phytopathogens. Front Microbiol 2021; 12:714750. [PMID: 34539608 PMCID: PMC8442585 DOI: 10.3389/fmicb.2021.714750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Plant diseases caused by phytopathogens are responsible for significant crop losses worldwide. Resistance induction and biological control have been exploited in agriculture due to their enormous potential. In this study, we investigated the antimicrobial potential of endophytic fungi of leaves and petioles of medicinal plants Vochysia divergens and Stryphnodendron adstringens located in two regions of high diversity in Brazil, Pantanal, and Cerrado, respectively. We recovered 1,304 fungal isolates and based on the characteristics of the culture, were assigned to 159 phenotypes. One isolate was selected as representative of each phenotype and studied for antimicrobial activity against phytopathogens. Isolates with better biological activities were identified based on DNA sequences and phylogenetic analyzes. Among the 159 representative isolates, extracts from 12 endophytes that inhibited the mycelial growth (IG) of Colletotrichum abscissum (≥40%) were selected to expand the antimicrobial analysis. The minimum inhibitory concentrations (MIC) of the extracts were determined against citrus pathogens, C. abscissum, Phyllosticta citricarpa and Xanthomonas citri subsp. citri and the maize pathogen Fusarium graminearum. The highest activity against C. abscissum were from extracts of Pseudofusicoccum stromaticum CMRP4328 (IG: 83% and MIC: 40 μg/mL) and Diaporthe vochysiae CMRP4322 (IG: 75% and MIC: 1 μg/mL), both extracts also inhibited the development of post-bloom fruit drop symptoms in citrus flowers. The extracts were promising in inhibiting the mycelial growth of P. citricarpa and reducing the production of pycnidia in citrus leaves. Among the isolates that showed activity, the genus Diaporthe was the most common, including the new species D. cerradensis described in this study. In addition, high performance liquid chromatography, UV detection, and mass spectrometry and thin layer chromatography analyzes of extracts produced by endophytes that showed high activity, indicated D. vochysiae CMRP4322 and P. stromaticum CMRP4328 as promising strains that produce new bioactive natural products. We report here the capacity of endophytic fungi of medicinal plants to produce secondary metabolites with biological activities against phytopathogenic fungi and bacteria. The description of the new species D. cerradensis, reinforces the ability of medicinal plants found in Brazil to host a diverse group of fungi with biotechnological potential.
Collapse
Affiliation(s)
- Jucélia Iantas
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Daiani Cristina Savi
- Department of Biomedicine, Centro Universitário Católica de Santa Catarina, Joinville, Brazil
- Postgraduate Program of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Renata da Silva Schibelbein
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Sandriele Aparecida Noriler
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | - Guilherme Dilarri
- Department of General and Applied Biology, Biosciences Institute, State University of São Paulo, Rio Claro, Brazil
| | - Henrique Ferreira
- Department of General and Applied Biology, Biosciences Institute, State University of São Paulo, Rio Claro, Brazil
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Jon S. Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Khaled A. Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Chirlei Glienke
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program of Genetics, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
10
|
Gomes PW, Pamplona TC, Navegantes-Lima KC, Quadros LB, Oliveira AL, Santos SM, e Silva CY, Silva MJ, Souza JN, Quirós-Guerrero LM, Boutin JA, Monteiro MC, da Silva MN. Chemical composition and antibacterial action of Stryphnodendron pulcherrimum bark extract, “barbatimão” species: Evaluation of its use as a topical agent. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
11
|
Moraes RM, Cerdeira AL, Lourenço MV. Using Micropropagation to Develop Medicinal Plants into Crops. Molecules 2021; 26:1752. [PMID: 33800970 PMCID: PMC8003982 DOI: 10.3390/molecules26061752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Medicinal plants are still the major source of therapies for several illnesses and only part of the herbal products originates from cultivated biomass. Wild harvests represent the major supply for therapies, and such practices threaten species diversity as well as the quality and safety of the final products. This work intends to show the relevance of developing medicinal plants into crops and the use of micropropagation as technique to mass produce high-demand biomass, thus solving the supply issues of therapeutic natural substances. Herein, the review includes examples of in vitro procedures and their role in the crop development of pharmaceuticals, phytomedicinals, and functional foods. Additionally, it describes the production of high-yielding genotypes, uniform clones from highly heterozygous plants, and the identification of elite phenotypes using bioassays as a selection tool. Finally, we explore the significance of micropropagation techniques for the following: a) pharmaceutical crops for production of small therapeutic molecules (STM), b) phytomedicinal crops for production of standardized therapeutic natural products, and c) the micropropagation of plants for the production of large therapeutic molecules (LTM) including fructooligosaccharides classified as prebiotic and functional food crops.
Collapse
Affiliation(s)
- Rita M. Moraes
- Santa Martha Agro Ltd.a, Rodovia Prefeito Antonio Duarte Nogueira, Km 317, Contorno Sul, Ribeirão Preto, SP 14.032-800, Brazil;
- Fundação Fernando E. Lee, Av. Atlântica 900, Balneário, Guarujá, SP 114420-070, Brazil
| | - Antonio Luiz Cerdeira
- Embrapa Meio Ambiente, Rodovia SP-340, Km 127,5, Tanquinho Velho, Jaguariúna, SP 13918-110, Brazil;
| | - Miriam V. Lourenço
- Santa Martha Agro Ltd.a, Rodovia Prefeito Antonio Duarte Nogueira, Km 317, Contorno Sul, Ribeirão Preto, SP 14.032-800, Brazil;
| |
Collapse
|
12
|
RÓs ADS, Santos CHMD, Dourado DM, Silva-Neto MSD, Caldeira I, Furtado LDO. CAN Stryphnodendron adstringens EXTRACT IMPROVE THE RESULTS OF FISTULOTOMY FOLLOWED BY PRIMARY SPHINCTEROPLASTY IN THE TREATMENT OF TRANSSPHINCTERIC FISTULAE? ACTA ACUST UNITED AC 2020; 33:e1540. [PMID: 33331435 PMCID: PMC7747490 DOI: 10.1590/0102-672020200003e1540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/09/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND There is still a need for progress in the treatment of transsphincteric anal fistulae and the use of herbal medicines seems promising. AIM To evaluate the efficacy of Stryphnodendron adstringens associated with fistulotomy and primary sphincteroplasty in the treatment of transsphincteric fistulae in rats. METHODS Thirty Wistar rats were used, which were submitted to transsphincteric fistulas with steel wire 0; after 30 days a treatment was performed according to the group. Group A (n=10) was submitted to fistulotomy; group B (n=10), fistulotomy followed by primary sphincteroplasty with "U" stitch with polyglactin 911 4-0; group C(n=10) , similar to group B, but with the interposition between the muscular stumps of hemostatic sponge soaked in Stryphnodendron adstringens extract. Euthanasia was performed after 14 days, resecting a segment of the anal canal for histological analysis, which aimed to evaluate the closure of the fistula, the area of separation of the muscle cables, the inflammatory process and the degree of fibrosis. RESULTS No animal had a remaining fistulous tract. About the spacing between the muscle cables, an average of 106.3 µm2 was observed in group A, 82.8 µm2 in group B and 51.8 µm2 in group C (p<0.05). There was no difference between the groups regarding the inflammatory process and, in relation to fibrosis, in group A there was a mean of 0.6, in group B 0.7 and in group C 0.2 (p<0.05). CONCLUSIONS Stryphnodendron adstringens extract was able to allow less spacing between muscle cables in rats submitted to fistulotomy followed by primary sphincteroplasty, in addition to providing less local fibrosis.
Collapse
Affiliation(s)
- Adriana de Souza RÓs
- Colon and Rectum Department, Universitary Hospital Maria Aparecida Pedrossian, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Carlos Henrique Marques Dos Santos
- Colon and Rectum Department, Universitary Hospital Maria Aparecida Pedrossian, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil.,Anhanguera-Uniderp University, Campo Grande, MS, Brazil
| | | | - Moisés Soares da Silva-Neto
- Colon and Rectum Department, Universitary Hospital Maria Aparecida Pedrossian, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Isabela Caldeira
- Colon and Rectum Department, Universitary Hospital Maria Aparecida Pedrossian, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | |
Collapse
|
13
|
Simas Pereira Junior LC, Coriolano de Oliveira E, Valle Rorig TD, Pinto de Araújo PI, Sanchez EF, Garrett R, Palazzo de Mello JC, Fuly AL. The plant Stryphnodendron adstringens (Mart.) Coville as a neutralizing source against some toxic activities of Bothrops jararacussu snake venom. Toxicon 2020; 186:182-190. [PMID: 32822735 DOI: 10.1016/j.toxicon.2020.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Snakebites produce several toxic effects in victims, such as hemorrhage, tissue necrosis, hemostatic, renal, or cardiotoxic alterations, inflammation, and death. To counteract these symptoms, antivenom is the official treatment. Although such therapy prevents death, it does not efficiently neutralize necrosis or other local effects, leading to amputation or morbidities of the affected limb. Therefore, the search for better and more efficient therapies deserves attention; further, plants have been used to ameliorate a number of diseases and medical conditions, including snakebites, for many years. Thus, the aim of this work was to evaluate the antivenom effect of the crude extract, fractions (aqueous and diethyl acetate), and subfractions derived from the aqueous fraction (P1, P2, P3, and P4) of the plant Stryphnodendron adstringens against in vitro (coagulation and proteolytic) and in vivo (edema, hemorrhage, and myotoxic) activities caused by Bothrops jararacussu venom. Overall, all extracts inhibited the toxic effect of B. jararacussu venom, but with different potencies, regardless of whether plant samples were incubated together with venom or injected before or after venom injection into animals; the crude extract and aqueous fraction were found to be the most effective. Indeed, phytochemical and mass spectrometry analysis of S. adstringens samples revealed the presence of flavonols, tannins, and saponins. In conclusion, the plant S. adstringens may represent a promising natural source of molecules to treat the toxic effects associated with envenomation by B. jararacussu snakebites.
Collapse
Affiliation(s)
- Luiz Carlos Simas Pereira Junior
- Department of Molecular and Cellular Biology, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, RJ, Brazil
| | - Eduardo Coriolano de Oliveira
- Department of Molecular and Cellular Biology, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, RJ, Brazil
| | - Taísa Dalla Valle Rorig
- Laboratory of Pharmaceutical Biology, Palafito, State University of Maringá, Maringá, 87020-900, PR, Brazil
| | - Paula Ivens Pinto de Araújo
- Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-598, RJ, Brazil
| | - Eladio Flores Sanchez
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, 30510-010, MG, Brazil
| | - Rafael Garrett
- Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-598, RJ, Brazil
| | | | - André Lopes Fuly
- Department of Molecular and Cellular Biology, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, RJ, Brazil.
| |
Collapse
|
14
|
Gonçalves AR, Barateli LO, de Souza UJB, Pereira AMS, Bertoni BW, Telles MPDC. Development and characterization of microsatellite markers in Stryphnodendron adstringens (Leguminosae). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2095-2101. [PMID: 33088053 PMCID: PMC7548263 DOI: 10.1007/s12298-020-00876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/03/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
In this study, we report the development and characterization of 15 new microsatellite markers for Stryphnodendron adstringens (Leguminosae) in order to support future analyses of genetic diversity in populations of this species. In screening with 48 individuals from three different populations of S. adstringens, we tested the amplification of 20 microsatellite loci, of which five are not useful for population genetic studies due to the lack of polymorphisms or amplification failures. For the final set of 15 loci, the number of alleles ranged from 2 to 15, with a total of 116 alleles. The expected heterozygosity ranged from 0.1219 to 0.8965, with an average of 0.6694 per locus. The combined probability of genetic identity (PI = 8.12 × 10-15) and paternity exclusion (Q = 0.99999) estimations showed that the loci may be useful to discriminate between individuals of S. adstringens. Initial cross-amplification tests were satisfactory in three species of the genus Stryphnodendron: S. rotundifolium, S. coriaceum and S. polyphyllum. This new set of markers will be a useful tool for population genetic studies, contributing to the knowledge about the evolutionary history of S. adstringens and, additionally, correlated species.
Collapse
Affiliation(s)
- Ariany Rosa Gonçalves
- Programa de Pós-graduação em Genética e Melhoramento de Plantas, Escola de Agronomia, Universidade Federal de Goiás, Goiânia, Goiás Brazil
- Laboratório de Genética e Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás Brazil
| | - Luciana Oliveira Barateli
- Programa de Pós-graduação em Genética e Melhoramento de Plantas, Escola de Agronomia, Universidade Federal de Goiás, Goiânia, Goiás Brazil
- Laboratório de Genética e Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás Brazil
| | - Ueric José Borges de Souza
- Programa de Pós-graduação em Genética e Melhoramento de Plantas, Escola de Agronomia, Universidade Federal de Goiás, Goiânia, Goiás Brazil
- Laboratório de Genética e Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás Brazil
| | | | - Bianca Waléria Bertoni
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo Brazil
| | - Mariana Pires de Campos Telles
- Laboratório de Genética e Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás Brazil
- Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás Brazil
| |
Collapse
|
15
|
Barbosa JMG, Fernandes Rodrigues MK, David LC, E Silva TC, Fortuna Lima DA, Pereira NZ, D'Alessandro EB, de Oliveira AE, Jorge da Cunha PH, Fioravanti MCS, Antoniosi Filho NR. A volatolomic approach using cerumen as biofluid to diagnose bovine intoxication by Stryphnodendron rotundifolium. Biomed Chromatogr 2020; 34:e4935. [PMID: 32598079 DOI: 10.1002/bmc.4935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023]
Abstract
An innovative volatolomic approach employs the detection of biomarkers present in cerumen (earwax) to identify cattle intoxication by Stryphnodendron rotundifolium Mart., Fabaceae (popularly known as barbatimão). S. rotundifolium is a poisonous plant with the toxic compound undefined and widely distributed throughout the Brazilian territory. Cerumen samples from cattle of two local Brazilian breeds ('Curraleiro Pé-Duro' and 'Pantaneiro') were collected during an experimental intoxication protocol and analyzed using headspace (HS)/GC-MS followed by multivariate analysis (genetic algorithm for a partial least squares, cluster analysis, and classification and regression trees). A total of 106 volatile organic metabolites were identified in the cerumen samples of bovines. The intoxication by S. rotundifolium influenced the cerumen volatolomic profile of the bovines throughout the intoxication protocol. In this way, it was possible to detect biomarkers for cattle intoxication. Among the biomarkers, 2-octyldecanol and 9-tetradecen-1-ol were able to discriminate all samples between intoxicated and nonintoxicated bovines. The cattle intoxication diagnosis by S. rotundifolium was accomplished by applying the cerumen analysis using HS/GC-MS, in an easy, accurate, and noninvasive way. Thus, the proposed bioanalytical chromatography protocol is a useful tool in veterinary applications to determine this kind of intoxication.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | | | - Lurian C David
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Taynara C E Silva
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Danielly A Fortuna Lima
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Naiara Z Pereira
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Emmanuel B D'Alessandro
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Anselmo E de Oliveira
- Laboratory of Theoretical and Computational Chemistry (LQTC), Institute of Chemistry, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Paulo H Jorge da Cunha
- Veterinary and Zootechnical School (EVZ), Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | | | - Nelson R Antoniosi Filho
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| |
Collapse
|
16
|
Pellenz NL, Barbisan F, Azzolin VF, Santos Marques LP, Mastella MH, Teixeira CF, Ribeiro EE, da Cruz IBM. Healing activity of Stryphnodendron adstringens (Mart.), a Brazilian tannin-rich species: A review of the literature and a case series. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.wndm.2019.100163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
de Giffoni de Carvalho JT, da Silva Baldivia D, Leite DF, de Araújo LCA, de Toledo Espindola PP, Antunes KA, Rocha PS, de Picoli Souza K, dos Santos EL. Medicinal Plants from Brazilian Cerrado: Antioxidant and Anticancer Potential and Protection against Chemotherapy Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3685264. [PMID: 31534620 PMCID: PMC6732650 DOI: 10.1155/2019/3685264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/16/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
The use of natural antioxidants in cancer therapy has increased: first, due to the potential of natural antioxidants to kill tumour cells and second, because of their capacity to protect healthy cells from the damage caused by chemotherapy. This review article discusses the antioxidant properties of extracts obtained from medicinal plants from the Brazilian Cerrado and the cell death profile induced by each of these extracts in malignant cells. Next, we describe the capacity of other medicinal plants from the Cerrado to protect against chemotherapy-induced cell toxicity. Finally, we focus on recent insights into the cell death profile induced by extracts from Cerrado plants and perspectives for future therapeutic approaches.
Collapse
Affiliation(s)
| | - Débora da Silva Baldivia
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Daniel Ferreira Leite
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Laura Costa Alves de Araújo
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | | | - Katia Avila Antunes
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Paola Santos Rocha
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| |
Collapse
|