1
|
Wu Z, Chen S, Wang Y, Li F, Xu H, Li M, Zeng Y, Wu Z, Gao Y. Current perspectives and trend of computer-aided drug design: a review and bibliometric analysis. Int J Surg 2024; 110:3848-3878. [PMID: 38502850 PMCID: PMC11175770 DOI: 10.1097/js9.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
AIM Computer-aided drug design (CADD) is a drug design technique for computing ligand-receptor interactions and is involved in various stages of drug development. To better grasp the frontiers and hotspots of CADD, we conducted a review analysis through bibliometrics. METHODS A systematic review of studies published between 2000 and 20 July 2023 was conducted following the PRISMA guidelines. Literature on CADD was selected from the Web of Science Core Collection. General information, publications, output trends, countries/regions, institutions, journals, keywords, and influential authors were visually analyzed using software such as Excel, VOSviewer, RStudio, and CiteSpace. RESULTS A total of 2031 publications were included. These publications primarily originated from 99 countries or regions led by the U.S. and China. Among the contributors, MacKerell AD had the highest number of articles and the greatest influence. The Journal of Medicinal Chemistry was the most cited journal, whereas the Journal of Chemical Information and Modeling had the highest number of publications. CONCLUSIONS Influential authors in the field were identified. Current research shows active collaboration between countries, institutions, and companies. CADD technologies such as homology modeling, pharmacophore modeling, quantitative conformational relationships, molecular docking, molecular dynamics simulation, binding free energy prediction, and high-throughput virtual screening can effectively improve the efficiency of new drug discovery. Artificial intelligence-assisted drug design and screening based on CADD represent key topics that will influence future development. Furthermore, this paper will be helpful in better understanding the frontiers and hotspots of CADD.
Collapse
Affiliation(s)
- Zhenhui Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Shupeng Chen
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
| | - Yihao Wang
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Fangyang Li
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Huanhua Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine
| | - Maoxing Li
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Yingjian Zeng
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
| | - Zhenfeng Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine
| | - Yue Gao
- School of Pharmacy, Jiangxi University of Chinese Medicine
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Bae WY, Lee DU, Yu HS, Lee NK, Paik HD. Fermentation of Inula britannica using Lactobacillus plantarum SY12 increases of epigallocatechin gallate and attenuates toxicity. Food Chem 2023; 429:136844. [PMID: 37454617 DOI: 10.1016/j.foodchem.2023.136844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
This study aimed to increase epigallocatechin gallate (EGCG) levels and attenuate the toxicity in Inulabritannica by fermentation using Lactobacillus plantarum SY12. The optimal medium was composed of 10 g of I. britannica, 4 g of xylose, 5 g of soytone, and 5 g of beef extract. The predicted value of EGCG was 237.327 μg/mL. To investigate damage in HepG2 cell lines by I. britannica extracts (IE) or fermented I. britannica extracts (FIE), cell viability, mitochondria membrane potential, the expression of apoptosis and autophagy genes, and chemical composition were measured. FIE increased cell viability, regulation of the gene expression (decreased p53, p62, p-ERK 1/2, and p-p38; increased CDK2 and CDK4) compared with IE. These results were explained by an increase in 1,3-dicaffeoylquinic acid and a decrease in 1-O-caffeoylquinic acid, 1-O-acetylbritannilactone, and ergolide in FIE. In conclusion, these results indicated that fermentation can mitigate the toxicity in I. britannica.
Collapse
Affiliation(s)
- Won-Young Bae
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Do-Un Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyung-Seok Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
3
|
Lingxia Z, Hong W, Man G, Xinzhou W, Lili W, Zhimin W, Liping D, Erping X. Rabdosichuanin C inhibits productions of pro-inflammatory mediators regulated by NF-κB signaling in LPS-stimulated RAW264.7 cells. J Cell Biochem 2023; 124:1667-1684. [PMID: 37850620 DOI: 10.1002/jcb.30474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/14/2023] [Accepted: 08/26/2023] [Indexed: 10/19/2023]
Abstract
Chronic pharyngitis (CP) is an inflammatory disease of the pharyngeal mucosa and its lymphatic tissues that is difficult to treat clinically. However, research on the exact therapeutic agents and molecular mechanisms of CP is still unclear. In this study, we investigated Rabdosichuanin C (RC) to attenuate lipopolysaccharide (LPS)-induced inflammatory damage in RAW264.7 cells by a combination of targeted virtual screening and in vitro activity assay and further clarified its molecular mechanism of action centering on the IκB/nuclear factor kappa B (NF-κB) pathway. Molecular docking and pharmacophore simulation methods were used to screen compounds with IκB inhibitory effects. Expression of genes and proteins related to the IκB/NF-κB signaling pathway by RC in LPS-induced inflammatory injury model of RAW264.7 cells was detected by PCR, enzyme-linked immunosorbent assay, and Western blot. The docking of RC with IκB protein showed good binding energy, and pharmacophore simulations further confirmed the active effect of RC in inhibiting IκB protein. RC intervention in LPS-induced RAW264.7 cells significantly reduced the expression levels of inflammatory factors tumor necrosis factor-α, interleukins-6, iNOS, and CD-86 at the messenger RNA and protein levels, downregulated IκB, p65 protein phosphorylation levels, and significantly inhibited IκB/NF-κB signaling pathway activation. Virtual screening provided us with an effective method to rapidly identify compounds RC that target inhibit the action of IκB, and the activity results showed that RC inhibits NF-κB signaling pathway activation. It is suggested that RC may play a role in the treatment of CP by inhibiting the IκB/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhang Lingxia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wu Hong
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gong Man
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wang Xinzhou
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wang Lili
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wang Zhimin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dai Liping
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xu Erping
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Yarmohammadi E, Khanjani M, Khamverdi Z, Savari M, Taherkhani A. Herbal Metabolites as Potential Carbonic Anhydrase Inhibitors: Promising Compounds for Cancer and Metabolic Disorders. J Obes Metab Syndr 2023; 32:247-258. [PMID: 37726113 PMCID: PMC10583767 DOI: 10.7570/jomes23029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/30/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Background Human carbonic anhydrases (CAs) play a role in various pathological mechanisms by controlling intracellular and extracellular pH balance. Irregular expression and function of CAs have been associated with multiple human diseases, such as obesity, cancer, glaucoma, and epilepsy. In this work, we identify herbal compounds that are potential inhibitors of CA VI. Methods We used the AutoDock tool to evaluate binding affinity between the CA VI active site and 79 metabolites derived from flavonoids, anthraquinones, or cinnamic acids. Compounds ranked at the top were chosen for molecular dynamics (MD) simulations. Interactions between the best CA VI inhibitors and residues within the CA VI active site were examined before and after MD analysis. Additionally, the effects of the most potent CA VI inhibitor on cell viability were ascertained in vitro through the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results Kaempferol 3-rutinoside-4-glucoside, orientin, kaempferol 3-rutinoside-7-sophoroside, cynarin, and chlorogenic acid were estimated to establish binding with the CA VI catalytic domain at the picomolar scale. The range of root mean square deviations for CA VI complexes with kaempferol 3-rutinoside-4-glucoside, aloe-emodin 8-glucoside, and cynarin was 1.37 to 2.05, 1.25 to 1.85, and 1.07 to 1.54 Å, respectively. The MTT assay results demonstrated that cynarin had a substantial effect on HCT-116 cell viability. Conclusion This study identified several herbal compounds that could be potential drug candidates for inhibiting CA VI.
Collapse
Affiliation(s)
- Ebrahim Yarmohammadi
- Department of Restorative Dentistry, School of Dentistry, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Khanjani
- Department of Restorative Dentistry, School of Dentistry, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Khamverdi
- Department of Restorative Dentistry, School of Dentistry, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Savari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Bayat Z, Tarokhian A, Taherkhani A. Cinnamic acids as promising bioactive compounds for cancer therapy by targeting MAPK3: a computational simulation study. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:621-630. [PMID: 37223879 DOI: 10.1515/jcim-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVES Mitogen-activated protein kinase-3 (MAPK3) is the upstream regulator in the MAPK cascade and is involved in many critical signaling pathways and biological processes, such as cell proliferation, survival, and apoptosis. MAPK3 overexpression is linked to onset, development, metastasis, and drug resistance in several human cancers. Thus, identifying novel and effective MAPK3 inhibitors is highly demanded. Herein, we aimed to discover organic compounds from cinnamic acid derivatives as potential MAPK3 inhibitors. METHODS The binding affinity of 20 cinnamic acids to the MAPK3 active site was tested using the AutoDock 4.0 software. Top-ranked cinnamic acids were ranked based on the ΔG binding values between the ligands and the receptor's active site. Interaction modes between top-ranked cinnamic acids and MAPK3 catalytic site were indicated using the Discovery Studio Visualizer tool. Molecular dynamics (MD) simulation was carried out to study the stability of the docked pose for the most potent MAPK3 inhibitor in this study. RESULTS Cynarin, chlorogenic acid, rosmarinic acid, caffeic acid 3-glucoside, and cinnamyl caffeate exhibited a salient binding affinity to the MAPK3 active site with the criteria of ΔG binding <-10 k cal/mol. Further, the inhibition constant value for cynarin was calculated at the picomolar concentration. The docked pose of cynarin within the MAPK3 catalytic domain was stable in 100 ns simulation. CONCLUSIONS Cynarin, chlorogenic acid, rosmarinic acid, caffeic acid 3-glucoside, and cinnamyl caffeate might be helpful in cancer therapy by inhibiting MAPK3.
Collapse
Affiliation(s)
- Zeynab Bayat
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aida Tarokhian
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Picón DF, Skouta R. Unveiling the Therapeutic Potential of Squalene Synthase: Deciphering Its Biochemical Mechanism, Disease Implications, and Intriguing Ties to Ferroptosis. Cancers (Basel) 2023; 15:3731. [PMID: 37509391 PMCID: PMC10378455 DOI: 10.3390/cancers15143731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Squalene synthase (SQS) has emerged as a promising therapeutic target for various diseases, including cancers, owing to its pivotal role in the mevalonate pathway and the antioxidant properties of squalene. Primarily, SQS orchestrates the head-to-head condensation reaction, catalyzing the fusion of two farnesyl pyrophosphate molecules, leading to the formation of squalene, which has been depicted as a highly effective oxygen-scavenging agent in in vitro studies. Recent studies have depicted this isoprenoid as a protective layer against ferroptosis due to its potential regulation of lipid peroxidation, as well as its protection against oxidative damage. Therefore, beyond its fundamental function, recent investigations have unveiled additional roles for SQS as a regulator of lipid peroxidation and programmed cell death pathways, such as ferroptosis-a type of cell death characterized by elevated levels of lipid peroxide, one of the forms of reactive oxygen species (ROS), and intracellular iron concentration. Notably, thorough explorations have shed light on the distinctive features that set SQS apart from other members within the isoprenoid synthase superfamily. Its unique biochemical structure, intricately intertwined with its reaction mechanism, has garnered significant attention. Moreover, considerable evidence substantiates the significance of SQS in various disease contexts, and its intriguing association with ferroptosis and lipid peroxidation. The objective of this report is to analyze the existing literature comprehensively, corroborating these findings, and provide an up-to-date perspective on the current understanding of SQS as a prospective therapeutic target, as well as its intricate relationship with ferroptosis. This review aims to consolidate the knowledge surrounding SQS, thereby contributing to the broader comprehension of its potential implications in disease management and therapeutic interventions.
Collapse
Affiliation(s)
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Patel P, Selvaraju V, Babu JR, Wang X, Geetha T. Novel Differentially Methylated Regions Identified by Genome-Wide DNA Methylation Analyses Contribute to Racial Disparities in Childhood Obesity. Genes (Basel) 2023; 14:genes14051098. [PMID: 37239458 DOI: 10.3390/genes14051098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The magnitude of the childhood obesity epidemic and its effects on public health has accelerated the pursuit of practical preventative measures. Epigenetics is one subject that holds a lot of promise, despite being relatively new. The study of potentially heritable variations in gene expression that do not require modifications to the underlying DNA sequence is known as epigenetics. Here, we used Illumina MethylationEPIC BeadChip Array to identify differentially methylated regions in DNA isolated from saliva between normal weight (NW) and overweight/obese (OW/OB) children and between European American (EA) and African American (AA) children. A total of 3133 target IDs (associated with 2313 genes) were differentially methylated (p < 0.05) between NW and OW/OB children. In OW/OB children, 792 target IDs were hypermethylated and 2341 were hypomethylated compared to NW. Similarly, in the racial groups EA and AA, a total of 1239 target IDs corresponding to 739 genes were significantly differentially methylated in which 643 target IDs were hypermethylated and 596 were hypomethylated in the AA compared to EA participants. Along with this, the study identified novel genes that could contribute to the epigenetic regulation of childhood obesity.
Collapse
Affiliation(s)
- Priyadarshni Patel
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Chakrobarty S, Garai S, Ghosh A, Mukerjee N, Das D. Bioactive plantaricins as potent anti-cancer drug candidates: double docking, molecular dynamics simulation and in vitro cytotoxicity analysis. J Biomol Struct Dyn 2023; 41:13605-13615. [PMID: 36775653 DOI: 10.1080/07391102.2023.2177732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
The medical community is desperate for a reliable source of medications to alleviate the severity of conventional cancer treatments and prevent secondary microbial infections in oncological patients. In this regard, plantaricins from lactic acid bacteria were explored as prospective drug candidates against known anti-cancer drug targets. Three plantaricins, JLA-9, GZ1-27 and BN, have a binding affinity of -8.8, -8.6 and -7.2 kcal/mol, respectively, with squalene synthase (SQS), a key molecule in lung cancer metastasis. All three plantaricins displayed analogous binding patterns as SQS inhibitors and generated hydrogen and hydrophobic interactions with ARG 47, ARG 188, PHE24, LEU183 and PRO292. Structural stability of docked complexes was validated using molecular dynamics simulation derived parameters such as RMSD, RMSF and radius of gyration. Based on MD simulation results, conformational changes and stabilities of docked SQS/plantaricin complexes with respect to the time frame were evaluated using machine learning (logistic regression algorithm). Double docking with SQS/matrix metalloproteinase MMP1 and PCA analysis revealed the potential of plantaricin JLA-9 as a multi-substrate inhibitor. Further, plantaricin JLA-9 induced a significant cytotoxic response against the lung carcinoma cell line (A549) in a dose and time dependent manner with inhibition concentration (IC50) of 0.082 µg/ml after 48 h. However, plantaricin JLA-9 did not induce cytotoxicity in normal lung cells (L-132), as the IC50 value was not obtained even at a higher dose of 0.8 µg/ml. In silico pharmacokinetic (ADMET) profile implies that plantaricin JLA-9 could be developed as new age anti-cancer therapeutic with a preference for parenteral administration.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Swarnava Garai
- Department of Bioengineering, NIT Agartala, Agartala, India
| | - Arabinda Ghosh
- Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Barasat, Kolkata, India
| | - Deeplina Das
- Department of Bioengineering, NIT Agartala, Agartala, India
| |
Collapse
|
9
|
Fu Q, Liu X, Li Y, Wang P, Wu T, Xiao H, Zhao Y, Liao Q, Song Z. Discovery of New Inhibitors of eEF2K from Traditional Chinese Medicine Based on In Silico Screening and In Vitro Experimental Validation. Molecules 2022; 27:molecules27154886. [PMID: 35956836 PMCID: PMC9369671 DOI: 10.3390/molecules27154886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is a highly conserved α kinase and is increasingly considered as an attractive therapeutic target for cancer as well as other diseases. However, so far, no selective and potent inhibitors of eEF2K have been identified. In this study, pharmacophore screening, homology modeling, and molecular docking methods were adopted to screen novel inhibitor hits of eEF2K from the traditional Chinese medicine database (TCMD), and then cytotoxicity assay and western blotting were performed to verify the validity of the screen. Resultantly, after two steps of screening, a total of 1077 chemicals were obtained as inhibitor hits for eEF2K from all 23,034 compounds in TCMD. Then, to verify the validity, the top 10 purchasable chemicals were further analyzed. Afterward, Oleuropein and Rhoifolin, two reported antitumor chemicals, were found to have low cytotoxicity but potent inhibitory effects on eEF2K activity. Finally, molecular dynamics simulation, pharmacokinetic and toxicological analyses were conducted to evaluate the property and potential of Oleuropein and Rhoifolin to be drugs. Together, by integrating in silico screening and in vitro biochemical studies, Oleuropein and Rhoifolin were revealed as novel eEF2K inhibitors, which will shed new lights for eEF2K-targeting drug development and anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ziyi Song
- Correspondence: ; Tel.: +86-771-3235635
| |
Collapse
|
10
|
Kim DB, Unenkhuu B, Kim GJ, Kim SW, Kim HS. Cynarin attenuates LPS-induced endothelial inflammation via upregulation of the negative regulator MKP-3. Anim Cells Syst (Seoul) 2022; 26:119-128. [PMID: 35784390 PMCID: PMC9246029 DOI: 10.1080/19768354.2022.2077438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Clinical observations have revealed that non-resolving low-grade inflammation is linked to the pathogenesis of chronic inflammatory diseases, for example arthritis, atherosclerosis, Alzheimer’s disease, diabetes, and chronic kidney disease. Interestingly, low levels of circulating lipopolysaccharides (LPS) derived from the outer membrane of gram-negative bacteria appear to be one of the primary causes of persistent low-grade inflammation. The inner surface of the blood vessels is lined with endothelial cells; therefore, even low levels of circulating LPS can directly activate these cells and elicit specific cellular responses, such as an increase in the expression levels of cell adhesion molecules and proinflammatory mediators. In endothelial cells, LPS exposure results in an inflammatory response through activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases. Cynarin, a phytochemical found in artichokes, has several pharmacological properties against endothelial inflammation. In the present study, we discovered that cynarin suppressed the LPS-induced increase in the expression levels of vascular cell adhesion molecule-1 and proinflammatory mediators such as monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), and interleukin-1β in EA.hy926 cells. Further, cynarin inhibited the activation of p38 and NF-κB pathways by inducing the negative regulator mitogen-activated protein kinase phosphatase 3 (MKP-3) in LPS-stimulated EA.hy926 cells. In conclusion, cynarin alleviates inflammation by upregulating MKP-3, a negative regulator of p38 and NF-κB, and it may be a therapeutic option for treating endothelial inflammation-related diseases.
Collapse
Affiliation(s)
- Da Bin Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Banzragchgarav Unenkhuu
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Grace Jisoo Kim
- Yongsan International School of Seoul, Seoul, Republic of Korea
| | - Seung-Woo Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
11
|
Noor F, Tahir ul Qamar M, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network Pharmacology Approach for Medicinal Plants: Review and Assessment. Pharmaceuticals (Basel) 2022; 15:572. [PMID: 35631398 PMCID: PMC9143318 DOI: 10.3390/ph15050572] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Natural products have played a critical role in medicine due to their ability to bind and modulate cellular targets involved in disease. Medicinal plants hold a variety of bioactive scaffolds for the treatment of multiple disorders. The less adverse effects, affordability, and easy accessibility highlight their potential in traditional remedies. Identifying pharmacological targets from active ingredients of medicinal plants has become a hot topic for biomedical research to generate innovative therapies. By developing an unprecedented opportunity for the systematic investigation of traditional medicines, network pharmacology is evolving as a systematic paradigm and becoming a frontier research field of drug discovery and development. The advancement of network pharmacology has opened up new avenues for understanding the complex bioactive components found in various medicinal plants. This study is attributed to a comprehensive summary of network pharmacology based on current research, highlighting various active ingredients, related techniques/tools/databases, and drug discovery and development applications. Moreover, this study would serve as a protocol for discovering novel compounds to explore the full range of biological potential of traditionally used plants. We have attempted to cover this vast topic in the review form. We hope it will serve as a significant pioneer for researchers working with medicinal plants by employing network pharmacology approaches.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| |
Collapse
|
12
|
Recent Molecular Mechanisms and Beneficial Effects of Phytochemicals and Plant-Based Whole Foods in Reducing LDL-C and Preventing Cardiovascular Disease. Antioxidants (Basel) 2021; 10:antiox10050784. [PMID: 34063371 PMCID: PMC8157003 DOI: 10.3390/antiox10050784] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism leads to the development of hyperlipidemia, a common cause of multiple chronic disorders, including cardiovascular disease (CVD), obesity, diabetes, and cerebrovascular disease. Low-density lipoprotein cholesterol (LDL-C) currently remains the primary target for treatment of hyperlipidemia. Despite the advancement of treatment and prevention of hyperlipidemia, medications used to manage hyperlipidemia are limited to allopathic drugs, which present certain limitations and adverse effects. Increasing evidence indicates that utilization of phytochemicals and plant-based whole foods is an alternative and promising strategy to prevent hyperlipidemia and CVD. The current review focuses on phytochemicals and their pharmacological mode of actions for the regulation of LDL-C and prevention of CVD. The important molecular mechanisms illustrated in detail in this review include elevation of reverse cholesterol transport, inhibition of intestinal cholesterol absorption, acceleration of cholesterol excretion in the liver, and reduction of cholesterol synthesis. Moreover, the beneficial effects of plant-based whole foods, such as fresh fruits, vegetables, dried nuts, flax seeds, whole grains, peas, beans, vegan diets, and dietary fibers in LDL-C reduction and cardiovascular health are summarized. This review concludes that phytochemicals and plant-based whole foods can reduce LDL-C levels and lower the risk for CVD.
Collapse
|
13
|
Geranii Herba as a Potential Inhibitor of SARS-CoV-2 Main 3CL pro, Spike RBD, and Regulation of Unfolded Protein Response: An In Silico Approach. Antibiotics (Basel) 2020; 9:antibiotics9120863. [PMID: 33287311 PMCID: PMC7761775 DOI: 10.3390/antibiotics9120863] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Since the first patient identified with SARS-CoV-2 symptoms in December 2019, the trend of a spreading coronavirus disease 2019 (COVID-19) infection has remained to date. As for now, there is an urgent need to develop novel drugs or vaccines for the SARS-CoV-2 virus. Methods: Polyphenolic compounds have potential as drug candidates for various diseases, including viral infections. In this study, polyphenolic compounds contained in Geranii Herba were chosen for an in silico approach. The SARS-CoV-2 receptor-binding domain (RBD), 3CLpro (Replicase polyprotein 1ab), and the cell surface receptor glucose-regulated protein 78 (GRP78) were chosen as target proteins. Results: Based on the molecular docking analysis, ellagic acid, gallic acid, geraniin, kaempferitrin, kaempferol, and quercetin showed significant binding interactions with the target proteins. Besides, the molecular dynamic simulation studies support Geranii Herba’s inhibition efficiency on the SARS-CoV-2 RBD. We assume that the active compounds in Geranii Herba might inhibit SARS-CoV-2 cell entry through the ACE2 receptor and inhibit the proteolytic process. Besides, these compounds may help to regulate the cell signaling under the unfolded protein response in endoplasmic reticulum stress through the binding with GRP78 and avoid the SARS-CoV-2 interaction. Conclusions: Hence, the compounds present in Geranii Herba could be used as possible drug candidates for the prevention/treatment of SARS-CoV-2 infection.
Collapse
|
14
|
A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput Biol Chem 2020; 90:107402. [PMID: 33338839 DOI: 10.1016/j.compbiolchem.2020.107402] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) has been used for more than 2000 years in China. TCM has received wide attention recently due to its unique charm. At the same time, its main obstacles have attracted wide attention, including vagueness of drug composition and treatment mechanism. With the development of virtual screening technology, more and more Chinese medicine compounds have been studied to discover the potential active components and mechanisms of action. Molecular docking is a computer technology based on structural design. Network pharmacology establishes powerful and comprehensive databases to understand the relationship between TCM and disease network. In this review, emergent uses and applications of two techniques and further superiorities of the two techniques when embarked to boil down into a tidy system were illustrated. A combination of the two provides a theoretical basis and technical support for the construction of modern TCM based on the compatibility of components and accelerates the realization of two basic elements as well, including the clearness of the pharmacodynamic substances and explanation of the effect of TCM.
Collapse
|
15
|
Tariq A, Mateen RM, Afzal MS, Saleem M. Paromomycin: A potential dual targeted drug effectively inhibits both spike (S1) and main protease of COVID-19. Int J Infect Dis 2020; 98:166-175. [PMID: 32579907 PMCID: PMC7306207 DOI: 10.1016/j.ijid.2020.06.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES With the increasing number of people suffering from coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is a dire need to look for effective remedies against this pandemic. Drug repurposing seems to be the solution for the current situation. METHODS In a quest to find a potential drug against this virus, 15 antimalarial drugs (including chloroquine) and 2413 US Food and Drug Administration-approved drugs were investigated for activity against both the protease and spike proteins of SARS-CoV-2 using an in silico approach. Molecular docking analysis followed by molecular dynamics simulation was performed to estimate the binding and stability of the complexes. RESULTS This study identified a single drug - paromomycin - with activity against two targets of SARS-CoV-2, i.e., spike protein (S1) and protease domain. Paromomycin was found to have strong binding affinity for both targets of coronavirus. The results also showed that no antimalarial drug exhibited effective binding for either S1 or protease. CONCLUSIONS This study found that paromomycin may be an effective dual targeting drug against coronavirus, as it binds not only to the protease domain of the virion, but also to the spike domain, with high stability. Furthermore, none of the antimalarial drugs showed strong binding affinity for either protease or the receptor binding domain (RBD).
Collapse
Affiliation(s)
- Asma Tariq
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.
| | - Rana Muhammad Mateen
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan.
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan.
| | - Mahjabeen Saleem
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
16
|
Sherwood WB, Kothalawala DM, Kadalayil L, Ewart S, Zhang H, Karmaus W, Arshad SH, Holloway JW, Rezwan FI. Epigenome-Wide Association Study Reveals Duration of Breastfeeding Is Associated with Epigenetic Differences in Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3569. [PMID: 32443666 PMCID: PMC7277240 DOI: 10.3390/ijerph17103569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/21/2022]
Abstract
Several small studies have shown associations between breastfeeding and genome-wide DNA methylation (DNAm). We performed a comprehensive Epigenome-Wide Association Study (EWAS) to identify associations between breastfeeding and DNAm patterns in childhood. We analysed DNAm data from the Isle of Wight Birth Cohort at birth, 10, 18 and 26 years. The feeding method was categorized as breastfeeding duration >3 months and >6 months, and exclusive breastfeeding duration >3 months. EWASs using robust linear regression were performed to identify differentially methylated positions (DMPs) in breastfed and non-breastfed children at age 10 (false discovery rate of 5%). Differentially methylated regions (DMRs) were identified using comb-p. The persistence of significant associations was evaluated in neonates and individuals at 18 and 26 years. Two DMPs, in genes SNX25 and LINC00840, were significantly associated with breastfeeding duration >6 months at 10 years and was replicated for >3 months of exclusive breastfeeding. Additionally, a significant DMR spanning the gene FDFT1 was identified in 10-year-old children who were exposed to a breastfeeding duration >3 months. None of these signals persisted to 18 or 26 years. This study lends further support for a suggestive role of DNAm in the known benefits of breastfeeding on a child's future health.
Collapse
Affiliation(s)
- William B. Sherwood
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (W.B.S.); (D.M.K.); (L.K.); (F.I.R.)
| | - Dilini M. Kothalawala
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (W.B.S.); (D.M.K.); (L.K.); (F.I.R.)
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK;
| | - Latha Kadalayil
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (W.B.S.); (D.M.K.); (L.K.); (F.I.R.)
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN 38152, USA; (H.Z.); (W.K.)
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN 38152, USA; (H.Z.); (W.K.)
| | - S. Hasan Arshad
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK;
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Isle of Wight PO30 5TG UK
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (W.B.S.); (D.M.K.); (L.K.); (F.I.R.)
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK;
| | - Faisal I. Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (W.B.S.); (D.M.K.); (L.K.); (F.I.R.)
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| |
Collapse
|
17
|
Ji X, Shi S, Liu B, Shan M, Tang D, Zhang W, Zhang Y, Zhang L, Zhang H, Lu C, Wang Y. Bioactive compounds from herbal medicines to manage dyslipidemia. Biomed Pharmacother 2019; 118:109338. [DOI: 10.1016/j.biopha.2019.109338] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
|
18
|
|