1
|
Wang B, Wang J, Liu C, Li C, Meng T, Chen J, Liu Q, He W, Liu Z, Zhou Y. Ferroptosis: Latest evidence and perspectives on plant-derived natural active compounds mitigating doxorubicin-induced cardiotoxicity. J Appl Toxicol 2024. [PMID: 39030835 DOI: 10.1002/jat.4670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/22/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy drug widely used in clinical settings, acting as a first-line treatment for various malignant tumors. However, its use is greatly limited by the cardiotoxicity it induces, including doxorubicin-induced cardiomyopathy (DIC). The mechanisms behind DIC are not fully understood, but its potential biological mechanisms are thought to include oxidative stress, inflammation, energy metabolism disorders, mitochondrial damage, autophagy, apoptosis, and ferroptosis. Recent studies have shown that cardiac injury induced by DOX is closely related to ferroptosis. Due to their high efficacy, availability, and low side effects, natural medicine treatments hold strong clinical potential. Currently, natural medicines have been shown to mitigate DOX-induced ferroptosis and ease DIC through various functions such as antioxidation, iron ion homeostasis correction, lipid metabolism regulation, and mitochondrial function improvement. Therefore, this review summarizes the mechanisms of ferroptosis in DIC and the regulation by natural plant products, with the expectation of providing a reference for future research and development of inhibitors targeting ferroptosis in DIC. This review explores the mechanisms of ferroptosis in doxorubicin-induced cardiomyopathy (DIC) and summarizes how natural plant products can alleviate DIC by inhibiting ferroptosis through reducing oxidative stress, correcting iron ion homeostasis, regulating lipid metabolism, and improving mitochondrial function.
Collapse
Affiliation(s)
- Boyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiameng Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wang He
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiping Liu
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yabin Zhou
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Tahmasebi A, Jamali B, Atabaki V, Sarker SD, Nahar L, Min HJ, Lee CW. A comprehensive review of the botany, ethnopharmacology, phytochemistry, and pharmacological activities of two Iranian Rydingia species (Lamiaceae). Fitoterapia 2024; 176:106026. [PMID: 38768794 DOI: 10.1016/j.fitote.2024.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Rydingia michauxii and R. persica, respectively, known as Kase Gol and Goldar in Persian, belong to the family Lamiaceae and they are well known herbal medicine in Iran for the treatment of various diseases, particularly diabetes. This review aims to appraise the phytochemistry, ethnopharmacology, and pharmacological activities of Rydingia species growing in Iran and assess their potential in clinical applications. Besides, it critically evaluates existing literature and looks into the perspective for further research and utilization. All available scientific literature was consulted using the database searches involving Google Scholar, PubMed, and Web of Science applying the keyword Rydingia and its Syn; Otostegia. Only the search results that are associated with the Iranian species R. michauxii and R. persica are included in this review. α-pinene, carvacrol, caryophyllene oxide, diisooctyl phthalate, dillapiole, eugenol, hexadecanoic acid, and pentacosane are the major constituents of the essential oils of the Rydingia species. Additionally, these species produce bioactive flavonoids, phenolic acids, steroids, and terpenoids. Extracts and active compounds from Rydingia species have been reported to possess various pharmacological activities including antidiabetic, anti-inflammatory, antimalarial, antimicrobial, antioxidant, cytotoxic, and lipid-lowering properties. Based on the information available to date on the Iranian Rydingia species, it will be worth subjecting these species to further developmental work involving preclinical and clinical trials.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran; Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran; Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea.
| | - Babak Jamali
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Vahideh Atabaki
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - Hye Jung Min
- Department of Cosmetic Science, Gwangju Women's University, Gwangju 62396, Republic of Korea.
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
3
|
Qiu X, Feng Y. Echinacoside activates Nrf2/PPARγ signaling pathway to modulate mitochondrial fusion-fission balance to ameliorate ox-LDL-induced dysfunction of coronary artery endothelial cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03233-1. [PMID: 38916831 DOI: 10.1007/s00210-024-03233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024]
Abstract
As a cardiovascular disease, coronary heart disease (CHD) is characterized by poor prognosis and increasing morbidity and mortality rates. Echinacoside (ECH) can protect against multiple cardiovascular diseases due to its antioxidant and anti-inflammatory properties. However, the role of ECH in CHD remains unclear. In ECH-treated human coronary artery endothelial cells (HCAECs), cell viability, NO production, endothelial nitric oxide synthase (eNOS) expression, and angiogenesis ability were detected using cell counting kit-8 (CCK-8) assay, diaminofluorescein-FM diacetate (DAF-FM DA) staining, western blot, and tube formation assay, respectively. The activities of oxidative stress markers were detected using dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay and corresponding assay kits. Cell apoptosis was detected utilizing flow cytometry and caspase3 assay. Western blot was used to detect the expressions of Nrf2/PPARγ signaling pathway- and mitochondrial dynamics-related proteins. Mitochondrial membrane potential and mitochondrial fusion and fission were detected using JC-1 staining and immunofluorescence (IF) assay. In this study, ECH was found to revive the viability, ameliorate the endothelial dysfunction, suppress oxidative stress, and inhibit the apoptosis in ox-LDL-induced HCAECs via activating Nrf2/PPARγ signaling pathway, which were all abolished following the treatment of Nrf2 inhibitor ML385. It was also identified that ECH regulated mitochondrial fusion-fission balance in ox-LDL-induced HCAECs through the activation of Nrf2/PPARγ signaling pathway. In summary, ECH activated Nrf2/PPARγ signaling pathway to regulate mitochondrial fusion-fission balance, thereby improving ox-LDL-induced dysfunction of HCAECs.
Collapse
Affiliation(s)
- Xiandi Qiu
- Department of Cardiovascular Medicine, The Ninth People's Hospital of Chongqing, Chongqing, China
| | - Yuxing Feng
- Department of Neurology, The Ninth People's Hospital of Chongqing, No. 69 Jialing Village, Beibei District, Chongqing, 400700, China.
| |
Collapse
|
4
|
Hu D, Cheng C, Bian Z, Xu Y. The role of echinacoside-based cross-linker nanoparticles in the treatment of osteoporosis. PeerJ 2024; 12:e17229. [PMID: 38618561 PMCID: PMC11011595 DOI: 10.7717/peerj.17229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Background Current drugs for treating osteoporosis may lead to toxic side effects. Echinacoside (ECH) is a natural small molecule drug. This study examined and compared the therapeutic effects of cross-linker (CL)-ECH and ECH-free nanoparticles on osteoporosis. Methods Echinocandin-based CL-ECH nanoparticles were prepared, and the nanoparticle size and drug loading were optimized and characterized by adjusting the ratio. The antioxidant effect of CL-ECH nanoparticles on bone marrow-derived macrophages (BMDMs) was analyzed using flow cytometry, immunofluorescence staining and quantitative real-time polymerase chain reaction (qRT-PCR). Bone marrow stromal cells (BMSCs)-based detection of bone-producing effects was conducted using alkaline phosphatase (ALP), Alizarin Red S (ARS) and qRT-PCR. TRAP, phalloidin staining, and qRT-PCR was performed to detect osteogenesis-inhibiting effect on BMDMs. CL-ECH nanoparticles were applied to treat an ovariectomized (OVX) mouse model at low doses. Results Compared to ECH, CL-ECH nanoparticles suppressed oxidative stress in BMDMs by promoting NRF-2 nuclear translocation, which inhibited the production of both reactive oxygen species (ROS) and osteoclast production through downregulating NF-κB expression, with limited effect on the osteogenesis of BMSCs. In vivo studies showed that low-dose CL-ECH nanoparticles markedly improved bone trabecular loss compared to ECH administration in the treatment of osteoporosis. Conclusions The current discoveries provided a solid theoretical foundation for the development of a new generation of anti-bone resorption drugs and antiosteoporosis drugs.
Collapse
Affiliation(s)
- Dandan Hu
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunan Cheng
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Zhen Bian
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yubo Xu
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Wang G, Lu W, Shen WB, Karbowski M, Kaushal S, Yang P. Small Molecule Activators of Mitochondrial Fusion Prevent Congenital Heart Defects Induced by Maternal Diabetes. JACC Basic Transl Sci 2024; 9:303-318. [PMID: 38559623 PMCID: PMC10978414 DOI: 10.1016/j.jacbts.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 04/04/2024]
Abstract
Most congenital heart defect (CHD) cases are attributed to nongenetic factors; however, the mechanisms underlying nongenetic factor-induced CHDs are elusive. Maternal diabetes is one of the nongenetic factors, and this study aimed to determine whether impaired mitochondrial fusion contributes to maternal diabetes-induced CHDs and if mitochondrial fusion activators, teriflunomide and echinacoside, could reduce CHD incidence in diabetic pregnancy. We demonstrated maternal diabetes-activated FoxO3a increases miR-140 and miR-195, which in turn represses Mfn1 and Mfn2, leading to mitochondrial fusion defects and CHDs. Two mitochondrial fusion activators are effective in preventing CHDs in diabetic pregnancy.
Collapse
Affiliation(s)
- Guanglei Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenhui Lu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mariusz Karbowski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sunjay Kaushal
- Division of Cardiac Surgery, Department of Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Haddish K, Yun JW. Echinacoside stimulates myogenesis and ATP-dependent thermogenesis in the skeletal muscle via the activation of D1-like dopaminergic receptors. Arch Biochem Biophys 2024; 752:109886. [PMID: 38215960 DOI: 10.1016/j.abb.2024.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Recent studies have shown that some natural compounds from plants prevent obesity and related disorders, including the loss of skeletal muscle mass and strength. In this study, we investigated the effect of echinacoside (ECH), a caffeic acid glycoside from the phenylpropanoid class, on myogenesis and ATP-dependent thermogenesis in the skeletal muscle and its interaction with the dopaminergic receptors 1 and 5 (DRD1 and DRD5). We applied RT-PCR, immunoblot analysis, a staining method, and an assay kit to determine the effects of ECH on diverse target genes and proteins involved in skeletal muscle myogenesis and ATP-consuming futile processes. Our study demonstrated that ECH enhanced myogenic differentiation, glucose, and fatty acid uptake, as well as lipid catabolism, and induced ATP-dependent thermogenesis in vitro and in vivo. Moreover, ECH upregulated mitochondrial biogenesis proteins, mitochondrial oxidative phosphorylation (OXPHOS) complexes, and intracellular Ca2+ signaling as well as thermogenic proteins. These findings were further elucidated by mechanistic studies which showed that ECH mediates myogenesis via the DRD1/5 in C2C12 muscle cells. In addition, ECH stimulates α1-AR-mediated ATP-dependent thermogenesis via the DRD1/5/cAMP/SLN/SERCA1a pathway in C2C12 muscle cells. To the best of our knowledge, this is the first report that demonstrates the myogenic and thermogenic potential of ECH activity through the dopaminergic receptors. Understanding the novel functions of ECH in terms of its ability to prevent skeletal muscle loss and energy expenditure via ATP-consuming futile processes could help to develop potential alternative strategies to address muscle-related diseases, including combating obesity.
Collapse
Affiliation(s)
- Kiros Haddish
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
7
|
Jiang T, Yuan D, Wang R, Zhao C, Xu Y, Liu Y, Song W, Su X, Wang B. Echinacoside, a promising sortase A inhibitor, combined with vancomycin against murine models of MRSA-induced pneumonia. Med Microbiol Immunol 2023; 212:421-435. [PMID: 37796314 DOI: 10.1007/s00430-023-00782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacterium responsible for a range of severe infections, such as skin infections, bacteremia, and pneumonia. Due to its antibiotic-resistant nature, current research focuses on targeting its virulence factors. Sortase A (SrtA) is a transpeptidase that anchors surface proteins to the bacterial cell wall and is involved in adhesion and invasion to host cells. Through fluorescence resonance energy transfer (FRET), we identified echinacoside (ECH), a natural polyphenol, as a potential SrtA inhibitor with an IC50 of 38.42 μM in vitro. It was demonstrated that ECH inhibited SrtA-mediated S. aureus fibrinogen binding, surface protein A anchoring, and biofilm formation. The fluorescence quenching assay determined the binding mode of ECH to SrtA and calculated the KA-binding constant of 3.09 × 105 L/mol, demonstrating the direct interaction between the two molecules. Molecular dynamics simulations revealed that ECH-SrtA interactions occurred primarily at the binding sites of A92G, A104G, V168A, G192A, and R197A. Importantly, the combination of ECH and vancomycin offered protection against murine models of MRSA-induced pneumonia. Therefore, ECH may serve as a potential antivirulence agent against S. aureus infections, either alone or in combination with vancomycin.
Collapse
Affiliation(s)
- Tao Jiang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Dai Yuan
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Rong Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chunhui Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yangming Xu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yinghui Liu
- Changchun University of Chinese Medicine, Changchun, 130117, China
- Jilin Provincial People's Hospital, Changchun, 130021, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xin Su
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
8
|
Wang W, Jiang S, Zhao Y, Zhu G. Echinacoside: A promising active natural products and pharmacological agents. Pharmacol Res 2023; 197:106951. [PMID: 37804927 DOI: 10.1016/j.phrs.2023.106951] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Echinacoside, a natural phenylethanoid glycoside, was discovered and isolated from the garden plant Echinacea angustifolia DC., belonging to the Compositae family, approximately sixty years ago. Extensive investigations have revealed that it possesses a wide array of pharmacologically beneficial activities for human health, particularly notable for its neuroprotective and anticancer activity. Several crucial concerns surfaced, encompassing the recognition of active metabolites that exhibited inadequate bioavailability in their prototype form, the establishment of precise molecular signal pathways or targets associated with the aforementioned effects of echinacoside, and the scarcity of dependable clinical trials. Hence, the question remains unanswered as to whether scientific research can effectively utilize this natural compound. To support future studies on this natural product, it is imperative to provide a systematic overview and insights into potential future prospects. The current review provides a comprehensive analysis of the existing knowledge on echinacoside, encompassing its wide distribution, structural diversity and metabolism, diverse therapeutic applications, and improvement of echinacoside bioavailability for its potential utilization.
Collapse
Affiliation(s)
- Wang Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shujun Jiang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
9
|
Haddish K, Yun JW. Echinacoside Induces UCP1- and ATP-Dependent Thermogenesis in Beige Adipocytes via the Activation of Dopaminergic Receptors. J Microbiol Biotechnol 2023; 33:1268-1280. [PMID: 37463854 PMCID: PMC10619551 DOI: 10.4014/jmb.2306.06041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Echinacoside (ECH) is a naturally occurring phenylethanoid glycoside, isolated from Echinacea angustifolia, and this study aimed to analyze its effect on thermogenesis and its interaction with dopaminergic receptors 1 and 5 (DRD1 and DRD5) in 3T3-L1 white adipocytes and mice models. We employed RT-PCR, immunoblot, immunofluorescence, a staining method, and an assay kit to determine its impact. ECH showed a substantial increase in browning signals in vitro and a decrease in adipogenic signals in vivo. Additionally, analysis of the iWAT showed that the key genes involved in beiging, mitochondrial biogenesis, and ATP-dependent thermogenesis were upregulated while adipogenesis and lipogenesis genes were downregulated. OXPHOS complexes, Ca2+ signaling proteins as well as intracellular Ca2+ levels were also upregulated in 3T3-L1 adipocytes following ECH treatment. This was collectively explained by mechanistic studies which showed that ECH mediated the beiging process via the DRD1/5-cAMP-PKA and subsequent downstream molecules, whereas it co-mediated the α1-AR-signaling thermogenesis via the DRD1/5/SERCA2b/RyR2/CKmt pathway in 3T3-L1 adipocytes. Animal experiments revealed that there was a 12.28% reduction in body weight gain after the ECH treatment for six weeks. The effects of ECH treatment on adipose tissue can offer more insights into the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Kiros Haddish
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| |
Collapse
|
10
|
Xie P, Gao Y, Wu C, Li X, Yang Y. The inhibitory mechanism of echinacoside against Staphylococcus aureus Ser/Thr phosphatase Stp1 by virtual screening and molecular modeling. J Mol Model 2023; 29:320. [PMID: 37725157 DOI: 10.1007/s00894-023-05723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
CONTEXT Stp1 is a new potential target closely related to the pathogenicity of Staphylococcus aureus (S. aureus). In this study, effective Stp1 inhibitors were screened via virtual screening and enzyme activity experiments, and the inhibition mechanism was analyzed using molecular dynamics simulation. METHODS AutoDock Vina 4.0 software was used for virtual screening. The molecular structures of Stp1 and ligands were obtained from the RCSB Protein Data Bank and Zinc database, respectively. The molecular dynamics simulation used the Gromacs 4.5.5 software package with the Amberff99sb force field and TIP3P water model. AutoDock Tools was used to add polar hydrogen atoms to Stp1 and distribute part of the charge generated by Kollman's combined atoms. The binding free energies were calculated using the Amber 10 package. RESULTS The theoretical calculation results are consistent with the experimental results. We found that echinacoside (ECH) substantially inhibits the hydrolytic activity of Stp1. ECH competes with the substrate by binding to the active center of Stp1, resulting in a decrease in Stp1 activity. In addition, Met39, Gly41, Asp120, Asn162, and Ile163 were identified to play key roles in the binding of Stp1 to ECH. The benzene ring of ECH also plays an important role in complex binding. These findings provide a robust foundation for the development of innovative anti-infection drugs.
Collapse
Affiliation(s)
- Peng Xie
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Yue Gao
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Chenqi Wu
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Xuenan Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yanan Yang
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China.
| |
Collapse
|
11
|
Guo J, Luo Y, Zuo J, Teng J, Shen B, Liu X. Echinacea Polyphenols Inhibit NLRP3-Dependent Pyroptosis, Apoptosis, and Necroptosis via Suppressing NO Production during Lipopolysaccharide-Induced Acute Lung Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7289-7298. [PMID: 37154470 DOI: 10.1021/acs.jafc.2c08382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PANoptosis is an intricate programmed death pathway that involves the interaction between pyroptosis, apoptosis, and necroptosis. We systematically explored the protective effect of Echinacea polyphenols (EPP) against the lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the underlying mechanisms both in vitro and in vivo. We noted that EPP pretreatment could significantly alleviate LPS-induced lung tissue injury and pulmonary edema. EPP inhibited the PANoptosis by regulating the expression of nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome, gasdermin D, caspase-8, caspase-3, and mixed lineage kinase domain-like protein. Meanwhile, a comparative study of EPP and inducible nitric oxide synthase inhibitor S-methylisothiourea sulfate indicated that EPP may play a preprotective role in inhibiting PANoptosis via reducing the activity of inducible nitric oxide synthase and the production of nitric oxide (NO) during ALI. Our results clearly indicated that PANoptosis existed in LPS-induced ALI, and EPP pretreatment could provide obvious protective effects to LPS-induced ALI by inhibiting PANoptosis, which may be related to NO production.
Collapse
Affiliation(s)
- Jingjing Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingru Zuo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiang Teng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bingyu Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Wu L, Xiang T, Chen C, Isah MB, Zhang X. Studies on Cistanches Herba: A Bibliometric Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1098. [PMID: 36903966 PMCID: PMC10005655 DOI: 10.3390/plants12051098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
As a famous tonic herb, Cistanches Herba is known for its broad medicinal functions, especially its hormone balancing, anti-aging, anti-dementia, anti-tumor, anti-oxidative, neuroprotective, and hepatoprotective effects. This study aims to provide a comprehensive bibliometric analysis of studies on Cistanche and to identify research hotspots and frontier topics on the genus. Based on the metrological analysis software CiteSpace, 443 Cistanche related papers were quantitatively reviewed. The results indicate that 330 institutions from 46 countries have publications in this field. China was the leading country in terms of research importance and number of publication (335 articles). In the past decades, studies on Cistanche have mainly focused on its rich active substances and pharmacological effects. Although the research trend shows that Cistanche has grown from an endangered species to an important industrial plant, its breeding and cultivation continue to be important areas for research. In the future, the application of Cistanche species as functional foods may be a new research trend. In addition, active collaborations among researchers, institutions, and countries are expected.
Collapse
Affiliation(s)
- Longjiang Wu
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Tian Xiang
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Murtala Bindawa Isah
- Department of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, P.M.B. 2218, Katsina 820102, Nigeria
- Biomedical Research and Training Centre, Yobe State University, P.M.B. 1144, Damaturu 600213, Nigeria
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
13
|
Tan Z, Zhang B. Echinacoside alleviates osteoarthritis in rats by activating the Nrf2-HO-1 signaling pathway. Immunopharmacol Immunotoxicol 2022; 44:850-859. [PMID: 35815581 DOI: 10.1080/08923973.2022.2088384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is a progressive disease characterized by degeneration of cartilage and echinacoside (Ech) has anti-inflammatory and antioxidant effects in various human diseases. This study aimed to reveal the effect and potential mechanism of Ech on OA. MATERIALS AND METHODS The in vitro OA model was established by rat chondrocytes treated with IL-1β, and the in vivo OA model was established by anterior cruciate ligament transaction. The effect of Ech on the viability, inflammatory response, extracellular matrix (ECM) degradation, and oxidative stress of IL-1β-treated rat chondrocytes were evaluated by Cell Counting Kit-8 assay, enzyme-linked immunosorbent assay, quantitative real-time PCR, Western blot, and immunofluorescence assay. Meanwhile, the mechanism of Ech was assessed using Western blot, Cell Counting Kit-8 assay, enzyme-linked immunosorbent assay, and immunofluorescence analysis. Moreover, the function of Ech in vivo was analyzed in rat models of OA. RESULTS Functionally, Ech enhanced the viability of rat chondrocytes, repressed the inflammatory response and ECM degradation of rat chondrocytes induced by IL-1β with restrained oxidative stress. Mechanically, Ech repressed IL-1β-induced chondrocyte injury by activating the Nrf2/HO-1 signaling pathway. Meanwhile, Ech alleviated the degree of articular cartilage injury in rats and exerted protective effects on the rat model of OA in vivo. DISCUSSION AND CONCLUSIONS Ech alleviated OA in rats by activating the Nrf2-HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zhijun Tan
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Wang H, Li Y, Bian Y, Li X, Wang Y, Wu K, Liu C, Liu Y, Wang X. Potential hepatoprotective effects of Cistanche deserticola Y.C. Ma: Integrated phytochemical analysis using UPLC-Q-TOF-MS/MS, target network analysis, and experimental assessment. Front Pharmacol 2022; 13:1018572. [PMID: 36313288 PMCID: PMC9597371 DOI: 10.3389/fphar.2022.1018572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/27/2022] [Indexed: 10/09/2023] Open
Abstract
Cistanche deserticola Y.C. Ma (CD) possesses hepatoprotective activity, while the active ingredients and involved mechanisms have not been fully explored. The objective of this study was to investigate the chemical composition and hepatoprotective mechanisms of CD. We primarily used ultra-performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) to identify the phenylethanoid glycoside (PhG) components of CD. Then, network analysis was used to correlate and predict the pharmacology of the identified active components of PhGs with hepatoprotection. Next, the mechanisms of the core components and targets of action were explored by cellular assays and toll-like receptor 4 (TLR4) target competition assays. Finally, its hepatoprotective effects were further validated in in vivo experiments. The results showed that a total of 34 PhGs were identified based on the UPLC-Q-TOF-MS/MS method. Echinacoside (ECH) was identified as the key ingredient, and TLR4 and nuclear factor-kappa B (NF-κB) were speculated as the core targets of the hepatoprotective effect of CD via network analysis. The cellular assays confirmed that PhGs had significant anti-inflammatory activity. In addition, the real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot indicated that ECH notably reduced the levels of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), as well as the mRNA expression of TLR4, TNF-α, and IL-6, and decreased the high expression of the TLR4 protein, which in turn downregulated the myeloid differentiation factor 88 (MyD88), p-P65 and TNF-α proteins in the inflammatory model. The target competition experiments suggested that ECH and LPS could competitively bind to the TLR4 receptor, thereby reducing the expression of TLR4 downstream proteins. The results of in vivo studies showed that ECH significantly ameliorated LPS-induced hepatic inflammatory infiltration and liver tissue damage and reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in mice. Moreover, ECH remarkably inhibited the release of inflammatory factors such as TNF-α, IL-6, IL-1β, and MCP-1 in the serum of mice, exerting the hepatoprotective effect by the TLR4/NF-κB signaling pathway. More importantly, ECH could act as a potential inhibitor of TLR4 and deserves further in-depth study. Our results could provide a basis for exploring the hepatoprotective properties of CD.
Collapse
Affiliation(s)
- Haichao Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaying Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Li
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yubei Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ke Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuhong Liu
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
15
|
Chemical profiling of six Stachys taxa from Balkan Peninsula. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Jiang F, Yang R, Xue D, Li R, Tan M, Zeng Z, Xu L, Liu L, Song Y, Lin F. Effects of a natural nutritional supplement on immune cell infiltration and immune gene expression in exercise-induced injury. Front Nutr 2022; 9:987545. [PMID: 36185677 PMCID: PMC9523794 DOI: 10.3389/fnut.2022.987545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory immune response plays a key role in exercise-induced injury and healing; however, the relevant regulatory mechanisms of immune infiltration in exercise-induced injuries remain less studied. In the present study, a highly efficient system for screening immunity-related biomarkers and immunomodulatory ability of natural nutritional supplements was developed by integrating intelligent data acquisition, data mining, network pharmacology, and computer-assisted target fishing. The findings demonstrated that resting natural killer cells showed a higher rate of infiltration after exercise, whereas naive B cells and activated dendritic cells showed higher rate of infiltration before exercise. Four key genes, namely PRF1, GZMB, CCL4, and FASLG, were associated with exercise-induced injuries and inflammatory immune response. In total, 26 natural compounds including echinacoside, eugenol, tocopherol, and casuariin were predicted by using the HERB databases. Molecular docking analysis showed that GZMB, FASLG, and CCL4 bound to echinacoside. In vivo experiments in mice showed that after 30 min swimming, natural killer (NK) cells showed high infiltration rates, and the key genes (GZMB, PRF1, FASLG, and CCL4) were highly expressed; however, echinocandin significantly reduced the level of NK cells and decreased the expression of the four key genes post exercise. This natural nutritional supplement may act to protect against inflammatory injury after exercise by suppressing specific immune infiltration.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Rongfeng Yang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Diya Xue
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Rong Li
- Department of Obstetrics, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Tan
- Wenhua Community Health Service Center, Shenzhen Luohu Hospital Group, Shenzhen, China
| | - Zhicong Zeng
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Luhua Xu
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Linling Liu
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yinzhi Song
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Fengxia Lin
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Fengxia Lin,
| |
Collapse
|
17
|
Countering Triple Negative Breast Cancer via Impeding Wnt/β-Catenin Signaling, a Phytotherapeutic Approach. PLANTS 2022; 11:plants11172191. [PMID: 36079579 PMCID: PMC9460573 DOI: 10.3390/plants11172191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/03/2022]
Abstract
Triple negative breast cancer (TNBC) is characterized as a heterogeneous disease with severe malignancy and high mortality. Aberrant Wnt/β-catenin signaling is responsible for self-renewal and mammosphere generation, metastasis and resistance to apoptosis and chemotherapy in TNBC. Nonetheless, in the absence of a targeted therapy, chemotherapy is regarded as the exclusive treatment strategy for the treatment of TNBC. This review aims to provide an unprecedented overview of the plants and herbal derivatives which repress the progression of TNBC through prohibiting the Wnt/β-catenin pathway. Herbal medicine extracts and bioactive compounds (alkaloids, retinoids. flavonoids, terpenes, carotenoids and lignans) alone, in combination with each other and/or with chemotherapy agents could interrupt the various steps of Wnt/β-catenin signaling, i.e., WNT, FZD, LRP, GSK3β, Dsh, APC, β-catenin and TCF/LEF. These phytotherapy agents diminish proliferation, metastasis, breast cancer stem cell self-renewal and induce apoptosis in cell and animal models of TNBC through the down-expression of the downstream target genes of Wnt signaling. Some of the herbal derivatives simultaneously impede Wnt/β-catenin signaling and other overactive pathways in triple negative breast cancer, including: mTORC1; ER stress and SATB1 signaling. The herbal remedies and their bioactive ingredients perform essential roles in the treatment of the very fatal TNBC via repression of Wnt/β-catenin signaling.
Collapse
|
18
|
Pormohammad A, Hansen D, Turner RJ. Antibacterial, Antibiofilm, and Antioxidant Activity of 15 Different Plant-Based Natural Compounds in Comparison with Ciprofloxacin and Gentamicin. Antibiotics (Basel) 2022; 11:1099. [PMID: 36009966 PMCID: PMC9404727 DOI: 10.3390/antibiotics11081099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Plant-based natural compounds (PBCs) are comparatively explored in this study to identify the most effective and safe antibacterial agent/s against six World Health Organization concern pathogens. Based on a contained systematic review, 11 of the most potent PBCs as antibacterial agents are included in this study. The antibacterial and antibiofilm efficacy of the included PBCs are compared with each other as well as common antibiotics (ciprofloxacin and gentamicin). The whole plants of two different strains of Cannabis sativa are extracted to compare the results with sourced ultrapure components. Out of 15 PBCs, tetrahydrocannabinol, cannabidiol, cinnamaldehyde, and carvacrol show promising antibacterial and antibiofilm efficacy. The most common antibacterial mechanisms are explored, and all of our selected PBCs utilize the same pathway for their antibacterial effects. They mostly target the bacterial cell membrane in the initial step rather than the other mechanisms. Reactive oxygen species production and targeting [Fe-S] centres in the respiratory enzymes are not found to be significant, which could be part of the explanation as to why they are not toxic to eukaryotic cells. Toxicity and antioxidant tests show that they are not only nontoxic but also have antioxidant properties in Caenorhabditis elegans as an animal model.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
- C-Crest Laboratories Inc., Montreal, QC H1P 3H8, Canada
| | - Dave Hansen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
19
|
Qiu H, Liu X. Echinacoside Improves Cognitive Impairment by Inhibiting Aβ Deposition Through the PI3K/AKT/Nrf2/PPARγ Signaling Pathways in APP/PS1 Mice. Mol Neurobiol 2022; 59:4987-4999. [PMID: 35665898 PMCID: PMC9363339 DOI: 10.1007/s12035-022-02885-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
Abstract
Echinacoside (ECH), a phenylethanoid glycoside, has protective activity in neurodegenerative disease, including anti-inflammation and antioxidation. However, the effects of ECH in Alzheimer's disease (AD) are not very clear. This present study investigates the role and mechanism of ECH in the pathological process of AD. APP/PS1 mice treated with ECH in 50 mg/kg/day for 3 months. Morris water maze, nesting test, and immunofluorescence staining used to observe whether ECH could improve AD pathology. Western blot used to study the mechanism of ECH improving AD pathology. The results showed that ECH alleviated the memory impairment of APP/PS1 mice by reducing the time of escape latency as well as increasing the times of crossing the platform and rescued the impaired ability to construct nests. In addition, ECH significantly reduced the deposition of senile plaques in the brain and decreased the expression of BACE1 in APP/PS1 mice through activating PI3K/AKT/Nrf2/PPARγ pathway. Furthermore, ECH decreased ROS formation, GP91 and 8-OHdG expression, upregulated the expression of SOD1 and SOD2 as well as activating the PI3K/AKT/Nrf2 signaling pathway. Moreover, ECH inhibited glia cells activation, pro-inflammatory cytokine IL-1β and TNF-α release, NLRP3 inflammasome formation through TXNIP/Trx-1 signaling pathway. In conclusion, this paper reported that ECH improved cognitive function, inhibited oxidative stress, and inflammatory response in AD. Therefore, we suggest that ECH may considered as a potential drug for AD treatment.
Collapse
Affiliation(s)
- Hui Qiu
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Xuemin Liu
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
20
|
Ding L, Ye H, Gu LD, Du AQ, Yuan XL. Echinacoside Alleviates Cognitive Impairment in Cerebral Ischemia Rats through α 7nAChR-Induced Autophagy. Chin J Integr Med 2022; 28:809-816. [PMID: 35799084 DOI: 10.1007/s11655-022-2893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate the effect of echinacoside (ECH) on cognitive dysfunction in post cerebral stroke model rats. METHODS The post stroke cognitive impairment rat model was created by occlusion of the transient middle cerebral artery (MCAO). The rats were randomly divided into 3 groups by a random number table: the sham group (sham operation), the MCAO group (received operation for focal cerebral ischemia), and the ECH group (received operation for focal cerebral ischemia and ECH 50 mg/kg per day), with 6 rats in each group. The infarct volume and spatial learning were evaluated by triphenyl tetrazolium chloride staining and Morris water maze. The expression of α7nAChR in the hippocampus was detected by immunohistochemistry. The contents of acetylcholine (ACh), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), activities of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and catalase (CAT) were evaluated by enzyme linked immunosorbent assay. The neural apoptosis and autophagy were determined by TUNEL staining and LC3 staining, respectively. RESULTS ECH significantly lessened the brain infarct volume and ameliorated neurological deficit in infarct volume and water content (both P<0.01). Compared with MCAO rats, administration of ECH revealed shorter escape latency and long retention time at 7, 14 and 28 days (all P<0.01), increased the α7nAChR protein expression, ACh content, and ChAT activity, and decreased AChE activity in MCAO rats (all P<0.01). ECH significantly decreased MDA content and increased the GSH content, SOD, and CAT activities compared with MCAO rats (all P<0.05). ECH suppressed neuronal apoptosis by reducing TUNEL-positive cells and also enhanced autophagy in MCAO rats (all P<0.01). CONCLUSION ECH treatment helped improve cognitive impairment by attenuating neurological damage and enhancing autophagy in MCAO rats.
Collapse
Affiliation(s)
- Ling Ding
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Hong Ye
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Long-Dian Gu
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - An-Qing Du
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xin-Lu Yuan
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
21
|
Burlou-Nagy C, Bănică F, Jurca T, Vicaș LG, Marian E, Muresan ME, Bácskay I, Kiss R, Fehér P, Pallag A. Echinacea purpurea (L.) Moench: Biological and Pharmacological Properties. A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091244. [PMID: 35567246 PMCID: PMC9102300 DOI: 10.3390/plants11091244] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 05/25/2023]
Abstract
Echinacea purpurea (L.) Moench (EP)is a perennial herbaceous flowering plant, commonly known as purple coneflower and it belongs to the Asteraceae family. The Echinacea genus is originally from North America, in the United States, and its species are widely distributed throughout. There are nine different species of Echinacea, but only three of them are used as medicinal plants with wide therapeutic uses: Echinacea purpurea (L.) Moench, Echinacea pallida (Nutt.) Nutt. and Echinacea angustifolia DC. Several significant groups of bioactive compounds with pharmacological activities have been isolated from Echinacea species. Numerous beneficial effects have been demonstrated about these compounds. The immunomodulatory effect was initially demonstrated, but over time other effects have also been highlighted. The present review gives a comprehensive summary of the chemical constituents, bioactive compounds, biological effects and therapeutical uses of purple coneflower. Research shows that such a well-known and recognized species needs to be further studied to obtain efficient products with a guarantee of the safety.
Collapse
Affiliation(s)
- Cristina Burlou-Nagy
- Doctoral School of Pharmaceutical Sciences, University of Oradea, 410087 Oradea, Romania;
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Florin Bănică
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Tünde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Mariana Eugenia Muresan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary; (I.B.); (P.F.)
| | - Rita Kiss
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary; (I.B.); (P.F.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| |
Collapse
|
22
|
Fu K, Zhou H, Wang C, Gong L, Ma C, Zhang Y, Li Y. A review: Pharmacology and pharmacokinetics of Schisandrin A. Phytother Res 2022; 36:2375-2393. [DOI: 10.1002/ptr.7456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/20/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
23
|
Yang H, Zhao L, Li Q. Echinacoside alleviates sevoflurane-induced cognitive dysfunction by activating FOXO1-mediated autophagy. Int J Dev Neurosci 2022; 82:339-348. [PMID: 35362638 DOI: 10.1002/jdn.10183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 11/07/2022] Open
Abstract
The current study aimed to examine the effects of echinacoside on cognitive impairment in mice after exposure to sevoflurane. To examine the role of FOXO1, si-FOXO1 and si-con were injected into the hippocampus through the left lateral cerebral ventricles. Sevoflurane-induced mice had serious cognitive dysfunction. However, pretreatment with echinacoside alleviated the cognitive dysfunction, as measured by a shortened escape latency time, and increased platform crossing times, the percentage of distance in the target quadrant and Y-maze spontaneous alternations. In addition, we found that echinacoside elevated FOXO1 expression in the hippocampus, increased the expression of autophagy-related proteins including Beclin 1, ATG5, ATG7 and LC3, and reduced P62 expression. Silencing of FOXO1 aggravated the cognitive deficits and reduced expression of the autophagy-related markers, while the effects of si-FOXO1 on memory were abrogated by echinacoside. Echinacoside attenuated the cognitive impairment in sevoflurane-induced mice through FOXO1-mediated autophagy.
Collapse
Affiliation(s)
- Huifang Yang
- Department of Anesthesia, Affiliated Hangzhou First People's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Zhao
- Department of Anesthesia, Affiliated Hangzhou First People's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qin Li
- Department of Respiration, Hebei Children's Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
24
|
Wu Y, Qiao A, Lin S, Chen L. In vitro evaluation of the inhibition potential of echinacoside on human cytochrome P450 isozymes. BMC Complement Med Ther 2022; 22:46. [PMID: 35180866 PMCID: PMC8857812 DOI: 10.1186/s12906-022-03517-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
Background Echinacoside (ECH) possesses a wide range of biological activity. This present study analyzes the effect of ECH on cytochrome P450 isozymes (CYPs) activities of human liver microsomes. Methods The effect of ECH on CYPs enzyme activities were studied using the enzyme-selective substrates phenacetin (1A2), chlorzoxazone (2E1), S-mephenytoin (2C19), testosterone (3A4), coumarin (2A6), diclofenac (2C9), paclitaxel (2C8), and dextromethorphan (2D6). The IC50 values for CYP1A2, CYP2E1, CYP2C19, and CYP3A4 isoforms were examined to express the strength of inhibition. Further, the inhibition of CYPs was checked for time-dependent or not, and then fitted with competitive or non-competitive inhibition models. The corresponding parameters were also obtained. Results ECH caused inhibitions on CYP1A2, CYP2E1, CYP2C19 and CYP3A4 enzyme activities in HLMs with IC50 of 21.23, 19.15, 8.70 and 55.42 μM, respectively. The obtained results showed that the inhibition of ECH on CYP3A4 was time-dependent with the KI/Kinact value of 6.63/0.066 min− 1·μM− 1. Moreover, ECH inhibited the activity of CYP1A2 and CYP2E1 via non-competitive manners (Ki = 10.90 μM and Ki = 14.40 μM, respectively), while ECH attenuated the CYP2C19 activity via a competitive manner (Ki = 4.41 μM). Conclusions The results of this study indicate that ECH inhibits CYP1A2, CYP2E1, CYP2C19 and CYP3A4 activities in vitro. In vivo and clinical studies are warranted to verify the relevance of these interactions.
Collapse
Affiliation(s)
- Yujie Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China
| | - Aiqing Qiao
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China
| | - Shu Lin
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China
| | - Lijia Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China.
| |
Collapse
|
25
|
Chuang HW, Wang TY, Huang CC, Wei IH. Echinacoside exhibits antidepressant-like effects through AMPAR-Akt/ERK-mTOR pathway stimulation and BDNF expression in mice. Chin Med 2022; 17:9. [PMID: 34983570 PMCID: PMC8728918 DOI: 10.1186/s13020-021-00549-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
Background Several natural products have been demonstrated to be effective in the treatment of depressive disorders. Echinacoside, a naturally occurring phenol extracted from Cistanche tubulosa, Echinacea angustifolia, and Cistanche spp, has a wide range of physiological effects, such as antioxidation, neuroprotection, anti-inflammatory, and immunoregulation, which are closely related to depression. In addition, echinacoside can activate protein kinase B (Akt), extracellular signal–regulated kinase (ERK), and brain-derived neurotrophic factor (BDNF) in the brain. A key downstream event of the Akt, ERK, and BDNF signaling pathways, namely mechanistic target of rapamycin (mTOR) signaling, plays a crucial role in generating an rapid antidepressant effect. Thus, echinacoside is a promising therapeutic agent for depression. However, research regarding the role of echinacoside in antidepressant effect and brain mTOR activation remains lacking. Materials and methods The forced swimming test and Western blot analysis in C57BL/6 mice was used to investigate the antidepressant-like activities of echinacoside and the underlying mechanism involved inα-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)–Akt/ERK–mTOR pathway. Results We confirmed the suggestions by previous reports that echinacoside activates Akt/ERK signaling and further demonstrated that echinacoside could provide antidepressant-like effects in mice via the activation of AMPAR–Akt/ERK–mTOR pathway in the hippocampus. Conclusions To the best of our knowledge, our study is the first to reveal that echinacoside is a potential treatment for depressive disorders. Moreover, the present study suggests a mechanism for the neuroprotective effect of echinacoside. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00549-5.
Collapse
Affiliation(s)
- Han-Wen Chuang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Tse-Yen Wang
- Department of Post-baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Chia Huang
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan. .,Department of Psychiatry, China Medical University, Taichung, Taiwan. .,Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan. .,Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - I-Hua Wei
- Department of Anatomy, China Medical University, Taichung, Taiwan.
| |
Collapse
|
26
|
Thida M, Li B, Zhang X, Chen C, Zhang X. Echinacoside alleviates acetaminophen-induced liver injury by attenuating oxidative stress and inflammatory cytokines in mice. J Appl Biomed 2021; 19:105-112. [PMID: 34907710 DOI: 10.32725/jab.2021.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
This study evaluates the protective effect of Echinacoside on acute liver toxicity induced by acetaminophen in mice and the mechanism behind it. Echinacoside and N-Acetyl Cysteine were intragastrically administrated for 7 days, and acetaminophen was intraperitoneally injected into mice 1 h after the last treatment on day 7. At the end of the experimental period, histological examination, parameters for the level of oxidative damage, hepatic malondialdehyde, serum pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6, and interleukin-1β), UDP-glucuronosyltransferases, and sulfotransferases changes were examined using enzyme-linked immunosorbent assay and standard biochemical procedures. The expression of cytochrome P450 2E1 protein was assessed by western blot, followed by in silico molecular docking. Acetaminophen treatment obviously increased the levels of ALT and AST, changed hepatic histopathology, promoted oxidative stress, decreased antioxidant enzyme activities, and elevated the pro-inflammatory cytokines. Echinacoside significantly attenuated Acetaminophen-induced liver damage in a dose-dependent manner, with the most effective dose at 100 mg/kg. The pretreatments of Echinacoside in different concentrations altered the Acetaminophen-induced hepatotoxicity levels by decreasing the level of liver enzymes, reducing the liver necrosis with vacuolization, decreasing the hepatic malondialdehyde formation, increasing hepatic antioxidants activities, suppressing the pro-inflammatory cytokines (Tumor Necrosis Factor, Interleukin-6 and Interleukin-1beta), inhibiting Nitric Oxide production, enhancing sulfotransferases and UDP-glucuronosyltransferases activities. Notably, the expression of cytochrome P450 2E1 was inhibited by Echinacoside in a dose-dependent manner and the binding energy was -214.3 MeV. Echinacoside showed a significant protective effect against Acetaminophen-induced hepatotoxicity through the inhibition of oxidative stress, the expression of pro-inflammatory cytokines and cytochrome P450 2E1 protein expression.
Collapse
Affiliation(s)
- Mya Thida
- Shaanxi University of Technology, College of Biological Science and Engineering, Chinese-German Joint Laboratory for Natural Product Research, Hanzhong, Shaanxi, China.,Ministry of Education, Biotechnology Research Department, Kyaukse, Myanmar
| | - Ben Li
- Shaanxi University of Technology, College of Biological Science and Engineering, Chinese-German Joint Laboratory for Natural Product Research, Hanzhong, Shaanxi, China
| | - Xiaoyao Zhang
- Shaanxi University of Technology, College of Biological Science and Engineering, Chinese-German Joint Laboratory for Natural Product Research, Hanzhong, Shaanxi, China
| | - Chen Chen
- Shaanxi University of Technology, College of Biological Science and Engineering, Chinese-German Joint Laboratory for Natural Product Research, Hanzhong, Shaanxi, China
| | - Xiaoying Zhang
- Shaanxi University of Technology, College of Biological Science and Engineering, Chinese-German Joint Laboratory for Natural Product Research, Hanzhong, Shaanxi, China.,University of Minho, Department of Biology, Centre of Molecular and Environmental Biology, Campus de Gualtar, Braga, Portugal.,Northwest A&F University, College of Veterinary Medicine, Yangling, China
| |
Collapse
|
27
|
Wang C, Xing Y, Ding H, Wang P, Zhang L, Fu Z, Han L, Pang X. Multiple component-pharmacokinetic studies on 10 bioactive constituents of Peiyuan Tongnao capsule using parallel reaction monitoring mode. Biomed Chromatogr 2021; 35:e5153. [PMID: 33931876 DOI: 10.1002/bmc.5153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 11/07/2022]
Abstract
Peiyuan Tongnao capsule (PTC) plays an important role in clinical application due to its excellent curative efficacy in the treatment of ischemic stroke and chronic cerebral circulation insufficiency. To standardize and rationalize the clinical application of PTC, a rapid and sensitive method based on ultra-high performance liquid chromatography/quadrupole-Orbitrap mass spectrometry with parallel reaction monitoring (PRM) mode was developed and validated for the pharmacokinetic (PK) study. Ten bioactive compounds (aucubin, salidroside, echinacoside, paeoniflorin, verbascoside, liquiritin, 2,3,5,4'-tetrahydroxy stilbene-2-O-β-d-glucoside, coumarin, glycyrrhizic acid, and emodin) were simultaneously determined in rat plasma. All calibration curves exhibited good linearity (r2 > 0.99). The lower limits of quantification were 0.082-13.291 ng mL-1 . The intra- and inter-day precision was 0.54-12.36%, whereas the intra- and inter-day accuracy ranged from 100.45 to 114.00%. The mean extraction recoveries were 81.77-117.66%, and the average matrix effects (MEs) were 86.23-109.96%. The high extraction recoveries and acceptable MEs indicated that the pretreatment method was feasible. And the stability was acceptable under various storage conditions and processing procedures. The validated method was successfully applied to the multiple components-PK studies, which lay the foundation for further pharmacological and clinical research of PTC and may provide a reference for other traditional Chinese medicines.
Collapse
Affiliation(s)
- Chenxi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanchao Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Ding
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ping Wang
- The Henan Lingrui Pharmaceutical Co., Ltd., Xinyang, China
| | - Lihua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifei Fu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Pang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
28
|
Tao Z, Zhang L, Wu T, Fang X, Zhao L. Echinacoside ameliorates alcohol-induced oxidative stress and hepatic steatosis by affecting SREBP1c/FASN pathway via PPARα. Food Chem Toxicol 2021; 148:111956. [PMID: 33378712 DOI: 10.1016/j.fct.2020.111956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/26/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Alcoholic liver disease (ALD) is one of the most common health problems for drinkers, especially in men. Echinacoside (ECH), a natural phenylethanoid glycoside welcomed by the market, has been shown to have a variety of biological activities, such as neuroprotective, anti-fatigue, anti-diabetes and so on. Here, the protective effect and the underlying mechanism of ECH on ethanol-induced liver injuries were studied. In vitro, the HepG2 cells were treated with ECH prior to ethanol. In vivo, C57BL/6 J mice were fed a Lieber-DeCarli ethanol liquid diet and gave with or without 100 mg/kg ECH for 10 days. Our experiments showed that ECH significantly enhanced the levels of antioxidants and reduced the level of ROS, thus attenuating ethanol-induced oxidative stress. Besides, ECH attenuated lipid accumulation caused by ethanol, as evidenced by oil-red O staining, histological examination and the quantification of TG and TC. Finally, ECH increased the level of PPAR-α, and reduced the levels of SREBP-1c and FASN. When PPAR-α inhibitor was introduced in the system, the effects of ECH on SREBP-1c and FASN were reversed. Taken together, our study suggest that ECH can protect against ethanol-induced liver injuries via alleviating oxidative stress and hepatic steatosis by affecting SREBP-1c/FASN pathway via PPAR-α.
Collapse
Affiliation(s)
- Zhi Tao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Lihu Zhang
- Department of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Tao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Xianying Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.
| |
Collapse
|
29
|
Al Mamun A, Wu Y, Monalisa I, Jia C, Zhou K, Munir F, Xiao J. Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res 2021; 28:97-109. [PMID: 33364048 PMCID: PMC7753222 DOI: 10.1016/j.jare.2020.08.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Currently, spinal cord injury (SCI) is a pathological incident that triggers several neuropathological conditions, leading to the initiation of neuronal damage with several pro-inflammatory mediators' release. However, pyroptosis is recognized as a new programmed cell death mechanism regulated by the stimulation of caspase-1 and/or caspase-11/-4/-5 signaling pathways with a series of inflammatory responses. AIM Our current review concisely summarizes the potential role of pyroptosis-regulated programmed cell death in SCI, according to several molecular and pathophysiological mechanisms. This review also highlights the targeting of pyroptosis signaling pathways and inflammasome components and its therapeutic implications for the treatment of SCI. KEY SCIENTIFIC CONCEPTS Multiple pieces of evidence have illustrated that pyroptosis plays significant roles in cell swelling, plasma membrane lysis, chromatin fragmentation and intracellular pro-inflammatory factors including IL-18 and IL-1β release. In addition, pyroptosis is directly mediated by the recently discovered family of pore-forming protein known as GSDMD. Current investigations have documented that pyroptosis-regulated cell death plays a critical role in the pathogenesis of multiple neurological disorders as well as SCI. Our narrative article suggests that inhibiting the pyroptosis-regulated cell death and inflammasome components could be a promising therapeutic approach for the treatment of SCI in the near future.
Collapse
Key Words
- AIM2, Absent in melanoma 2
- ASC, apoptosis-associated speck-like protein
- ATP, Adenosine triphosphate
- BBG, Brilliant blue G
- CCK-8, Cell Counting Kit-8
- CNS, central nervous system
- CO, Carbon monoxide
- CORM-3, Carbon monoxide releasing molecle-3
- Caspase-1
- Cx43, Connexin 43
- DAMPs, Damage-associated molecular patterns
- DRD1, Dopamine Receptor D1
- ECH, Echinacoside
- GSDMD, Gasdermin D
- Gal-3, Galectin-3
- H2O2, Hydrogen peroxide
- HO-1, Heme oxygenase-1
- IL-18, Interleukin-18
- IL-1β, Interleukin-1 beta
- IRE1, Inositol requiring enzyme 1
- JOA, Japanese orthopedics association
- LPS, Lipopolysaccharide
- NDI, Neck data index
- NF-κB, Nuclear factor-kappa B
- NLRP1, NOD-like receptor protein 1
- NLRP1b, NOD-like receptor protein 1b
- NLRP3
- NLRP3, Nucleotide-binding domain-like receptor protein 3
- Neuroinflammation
- Nrf2, Nuclear factor erythroid 2-related factor 2
- OPCs, Oligodendrocyte progenitor cells
- PAMPs, Pathogen-associated molecular patterns
- PRRs, Pattern recognition receptors
- Pyroptosis
- ROS, Reactive oxygen species
- Spinal cord injury
- TLR4, Toll-like receptor 4
- TXNIP, Thioredoxin-interacting protein
- Therapeutic implications
- double stranded DNAIR, Ischemia reperfusion
- si-RNA, Small interfering RNA
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035 Zhejiang Province, China
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| |
Collapse
|
30
|
Ni Y, Deng J, Liu X, Li Q, Zhang J, Bai H, Zhang J. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol. J Cell Mol Med 2021; 25:203-216. [PMID: 33314649 PMCID: PMC7810933 DOI: 10.1111/jcmm.15904] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Myocardial remodelling is important pathological basis of HF, mitochondrial oxidative stress is a promoter to myocardial hypertrophy, fibrosis and apoptosis. ECH is the major active component of a traditional Chinese medicine Cistanches Herba, plenty of studies indicate it possesses a strong antioxidant capacity in nerve cells and tumour, it inhibits mitochondrial oxidative stress, protects mitochondrial function, but the specific mechanism is unclear. SIRT1/FOXO3a/MnSOD is an important antioxidant axis, study finds that ECH binds covalently to SIRT1 as a ligand and up-regulates the expression of SIRT1 in brain cells. We hypothesizes that ECH may reverse myocardial remodelling and improve heart function of HF via regulating SIRT1/FOXO3a/MnSOD signalling axis and inhibit mitochondrial oxidative stress in cardiomyocytes. Here, we firstly induce cellular model of oxidative stress by ISO with AC-16 cells and pre-treat with ECH, the level of mitochondrial ROS, mtDNA oxidative injury, MMP, carbonylated protein, lipid peroxidation, intracellular ROS and apoptosis are detected, confirm the effect of ECH in mitochondrial oxidative stress and function in vitro. Then, we establish a HF rat model induced by ISO and pre-treat with ECH. Indexes of heart function, myocardial remodelling, mitochondrial oxidative stress and function, expression of SIRT1/FOXO3a/MnSOD signalling axis are measured, the data indicate that ECH improves heart function, inhibits myocardial hypertrophy, fibrosis and apoptosis, increases the expression of SIRT1/FOXO3a/MnSOD signalling axis, reduces the mitochondrial oxidative damages, protects mitochondrial function. We conclude that ECH reverses myocardial remodelling and improves cardiac function via up-regulating SIRT1/FOXO3a/MnSOD axis and inhibiting mitochondrial oxidative stress in HF rats.
Collapse
Affiliation(s)
- Yajuan Ni
- Department of CardiologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi'anshaanxiChina
| | - Jie Deng
- Department of CardiologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi'anshaanxiChina
| | - Xin Liu
- Department of CardiologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi'anshaanxiChina
| | - Qing Li
- Department of CardiologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi'anshaanxiChina
| | - Juanli Zhang
- Department of CardiologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi'anshaanxiChina
| | - Hongyuan Bai
- Department of CardiologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi'anshaanxiChina
| | - Jingwen Zhang
- Department of Cardiology, NHC Key Laboratory on Assisted Circulation of the First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
31
|
Zhao Y, Yi Y, Gu B, Wang H, Ma J, Guo Z. Echinacoside protects adenine-induced uremic rats from sciatic nerve damage by up-regulating α-Klotho. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:413-421. [PMID: 34465681 PMCID: PMC8426649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
OBJECTIVES To investigate the therapeutic effect of Echinacoside on uremia-induced sciatic nerve injury and explore the specific molecular mechanism and role of α-Klotho. METHODS SD rats were given continuous gavage of adenine to prepare a uremia-induced sciatic nerve injury model. The model was given either Echinacoside or α-Klotho by gavage. Histopathological changes of kidney and sciatic nerve were detected by H&E staining. The changes of creatinine, urea nitrogen, and urine protein were detected by biochemical detection. The changes of IL-1β and IL-18 were detected by ELISA. Nerve activity-related indicators were detected by biochemical detection. Changes in related mRNA and protein expression were detected by qPCR and western blot. RESULTS Creatinine, urea nitrogen, urine protein, and malondialdehyde (MDA) in the model group were significantly increased and inhibited by Echinacoside and α-Klotho treatment with Echinacoside dose-dependence. Meanwhile, the activities of ATP concentration, potassium adenosine triphosphate (Na+, K+ ATPase), succinate dehydrogenase (SDH), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) showed opposite trends. CONCLUSIONS Echinacoside can significantly relieve uremia-induced sciatic nerve injury in rats. Its specific molecular mechanism is related to the inhibition of the classical cellular pyroptosis pathway, which is likely achieved by promoting α-Klotho expression.
Collapse
Affiliation(s)
- Yingdan Zhao
- Department of Nephrology, Changhai Hospital of Second Military Medical University, Shanghai, China
| | - Yang Yi
- Department of Nephrology, Jing’ an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Bo Gu
- Department of Nephrology, Jing’ an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Hanqing Wang
- Department of Nephrology, Jing’ an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jun Ma
- Department of Nephrology, Jing’ an District Centre Hospital of Shanghai, Fudan University, Shanghai, China,Jun Ma, Department of Nephrology, Jing’ an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China E-mail:
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital of Second Military Medical University, Shanghai, China
| |
Collapse
|
32
|
Tian Y, Jin S, Promes V, Liu X, Zhang Y. Astragaloside IV and echinacoside benefit neuronal properties via direct effects and through upregulation of SOD1 astrocyte function in vitro. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:1019-1029. [PMID: 33219470 DOI: 10.1007/s00210-020-02022-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as a major type of motor neuron disease, is a disease characterized by the degeneration of both upper and lower motor neurons. Astragaloside IV (AST) is one of the most effective compounds isolated from Astragalus membranaceus. Echinacoside (ECH) is also an active constituent in Cistanche tubulosa. These two herbs had been used in treating disease described like ALS in ancient China under the guidance of traditional Chinese medicine theory and now they are still being used extensively for ALS in current Chinese medicine practice, but whether AST or ECH has effect on ALS disease condition is still unclear. Survivals of primary cultured neuron and astrocyte were determined by the MTS assay. Proteins including GLT1 and GFAP, from SOD1 G93A Tg (transgenic) astrocyte lysate were determined by Western blot. Synaptic markers, PSD95 and VGLUT1, were stained by immunofluorescence and observed by a confocal microscope. Proper dilution of AST and ECH was confirmed to be not harmful to both astrocytes and neurons. AST and ECH enhanced neuronal synaptic markers density or intensity/area in different aspects. Both AST and ECH could significantly rescue SOD1 astrocyte conditional medium-treated neuronal survival and synapse loss. Ten micromolars ECH could significantly rescue the suppressed GLT1 level expressed by SOD1 Tg astrocyte. This present research proved that AST and ECH could benefit neuronal properties and rescue certain dysfunction, such as GLT1 low expression, loss of neuron-supporting function, of astrocytes under SOD1 condition.
Collapse
Affiliation(s)
- Yang Tian
- Beijing University of Chinese Medicine, Beijing, People's Republic of China.,Tufts University School of Medicine, Boston, MA, USA
| | - Shijie Jin
- Tufts University School of Medicine, Boston, MA, USA
| | | | - Xuemei Liu
- Central Laboratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People's Republic of China.
| |
Collapse
|
33
|
Structure-based drug repurposing to inhibit the DNA gyrase of Mycobacterium tuberculosis. Biochem J 2020; 477:4167-4190. [PMID: 33030198 DOI: 10.1042/bcj20200462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Drug repurposing is an alternative avenue for identifying new drugs to treat tuberculosis (TB). Despite the broad-range of anti-tubercular drugs, the emergence of multi-drug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis (Mtb) H37Rv, as well as the significant death toll globally, necessitates the development of new and effective drugs to treat TB. In this study, we have employed a drug repurposing approach to address this drug resistance problem by screening the drugbank database to identify novel inhibitors of the Mtb target enzyme, DNA gyrase. The compounds were screened against the ATPase domain of the gyrase B subunit (MtbGyrB47), and the docking results showed that echinacoside, doxorubicin, epirubicin, and idarubicin possess high binding affinities against MtbGyrB47. Comprehensive assessment using fluorescence spectroscopy, surface plasmon resonance spectroscopy (SPR), and circular dichroism (CD) titration studies revealed echinacoside as a potent binder of MtbGyrB47. Furthermore, ATPase, and DNA supercoiling assays exhibited an IC50 values of 2.1-4.7 µM for echinacoside, doxorubicin, epirubicin, and idarubicin. Among these compounds, the least MIC90 of 6.3 and 12 μM were observed for epirubicin and echinacoside, respectively, against Mtb. Our findings indicate that echinacoside and epirubicin targets mycobacterial DNA gyrase, inhibit its catalytic cycle, and retard mycobacterium growth. Further, these compounds exhibit potential scaffolds for optimizing novel anti-mycobacterial agents that can act on drug-resistant strains.
Collapse
|
34
|
Li Y, Li N, Zhao X, Zhang B, Yang L, Liu J, Snooks H, Hu C, Ma X. Beneficial effect of 2'-acetylacteoside on ovariectomized mice via modulating the function of bone resorption. Biomed Pharmacother 2020; 131:110747. [PMID: 32932047 DOI: 10.1016/j.biopha.2020.110747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
2'-Acetylacteoside-(2'-AA), a bioactive constituent isolated from Cistanche deserticola, has been proven to possess a variety of important pharmacological effects, thus brought an increased amount of scientists' attention. As the extract of C. deserticola exhibited significant anti-osteoporotic bioactivity in our previous study, we proposed that 2'-AA maybe one of the responsibilities. As a result, 2'-AA (10, 20 and 40 mg/kg body weight/day) exhibited significant anti-osteoporotic effects on ovariectomized (OVX) mice after 12 weeks of oral administration, confirmed by the increased bone mineral density, enhanced bone strength and improved trabecular bone micro-architecture including bone mineral content, tissue mineral content, trabecular number, and trabecular separation of OVX mice. Moreover, the properties of bone resorption markers including cathepsin K, TRAP and deoxypyridinoline were significantly suppressed, whereas the activities of bone formation index like ALP and BGP as well as the weights of the body, uterus, and vagina were seemingly not influenced by 2'-AA intervention. Mechanistically, the above therapeutic effect of 2'-AA on bone resorption of OVX mice operated maybe mainly through RANKL/RANK/TRAF6-mediated NF-κB/NFATc1 pathway, which was confirmed by the down-regulated expressions of RANK, TRAF6, IκB kinase β, NF-κB and NFATc1. Summarily, 2'-AA exhibited significant anti-osteoporotic activity and may be regarded as a promising anti-osteoporotic candidate for future clinical trial.
Collapse
Affiliation(s)
- Yanting Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Nan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaojun Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Bo Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Jingjing Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Hunter Snooks
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Caroline A & T State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Caroline A & T State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
35
|
Tian XY, Li MX, Lin T, Qiu Y, Zhu YT, Li XL, Tao WD, Wang P, Ren XX, Chen LP. A review on the structure and pharmacological activity of phenylethanoid glycosides. Eur J Med Chem 2020; 209:112563. [PMID: 33038797 DOI: 10.1016/j.ejmech.2020.112563] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Phenylethanoid glycosides (PhGs) are compounds made of phenylethyl alcohol, caffeic acid and glycosyl moieties. The first published references about phenylethanoid glycosides concerned the isolation of echinacoside from Echinaceu ungustifolia (Asteraceae) in 1950 and verbascoside from Verbascum sinuatum (Scrophulariaceae) in 1963. Over the past 60 years, many compounds with these structural characteristics have been isolated from natural sources, and most of these compounds possess significant bioactivities, including antibacterial, antitumor, antiviral, anti-inflammatory, neuro-protective, antioxidant, hepatoprotective, and immunomodulatory activities, among others. In this review, we will summarize the phenylethanoid glycosides described in recent papers and list all the compounds that have been isolated over the past few decades. We will also attempt to present and assess recent studies about the separation, extraction, determination, and pharmacological activity of the excellent natural components, phenylethanoid glycosides.
Collapse
Affiliation(s)
- Xiu-Yu Tian
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Lanzhou University, Lanzhou, 730030, PR China
| | - Mao-Xing Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Lanzhou University, Lanzhou, 730030, PR China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730030, PR China.
| | - Tong Lin
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Yan Qiu
- Department of Pharmacy, Pudong New Area People's Hospital Affiliated to Shanghai Health University, Shanghai, 201299, PR China
| | - Yu-Ting Zhu
- Department of Pharmacy, 3201 Hospital, Hanzhong, 723000, Shaanxi, PR China
| | - Xiao-Lin Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730030, PR China
| | - Wen-Di Tao
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Lanzhou University, Lanzhou, 730030, PR China
| | - Peng Wang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730030, PR China
| | - Xiao-Xia Ren
- Northwest Normal University, Lanzhou, 730000, PR China
| | - Li-Ping Chen
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| |
Collapse
|
36
|
Wu L, Georgiev MI, Cao H, Nahar L, El-Seedi HR, Sarker SD, Xiao J, Lu B. Therapeutic potential of phenylethanoid glycosides: A systematic review. Med Res Rev 2020; 40:2605-2649. [PMID: 32779240 DOI: 10.1002/med.21717] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
Phenylethanoid glycosides (PhGs) are generally water-soluble phenolic compounds that occur in many medicinal plants. Until June 2020, more than 572 PhGs have been isolated and identified. PhGs possess antibacterial, anticancer, antidiabetic, anti-inflammatory, antiobesity, antioxidant, antiviral, and neuroprotective properties. Despite these promising benefits, PhGs have failed to fulfill their therapeutic applications due to their poor bioavailability. The attempts to understand their metabolic pathways to improve their bioavailability are investigated. In this review article, we will first summarize the number of PhGs compounds which is not accurate in the literature. The latest information on the biological activities, structure-activity relationships, mechanisms, and especially the clinical applications of PhGs will be reviewed. The bioavailability of PhGs will be summarized and factors leading to the low bioavailability will be analyzed. Recent advances in methods such as bioenhancers and nanotechnology to improve the bioavailability of PhGs are also summarized. The existing scientific gaps of PhGs in knowledge are also discussed, highlighting research directions in the future.
Collapse
Affiliation(s)
- Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Hui Cao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Lutfun Nahar
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool, UK
| | - Hesham R El-Seedi
- Department of Medicinal Chemistry, Pharmacognosy Group, Uppsala University, Uppsala, Sweden.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Satyajit D Sarker
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool, UK
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
37
|
Meng H, Li J, Dong Y, He Y, Ren H, Liu Y, Qu Z, Zhang W, Zhang L, Bao T, Yi F. Poly traditional Chinese medicine formulation prepared with skin moisturizing properties. Dermatol Ther 2020; 33:e14105. [PMID: 32735060 DOI: 10.1111/dth.14105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/28/2022]
Abstract
Many traditional Chinese medicine compositions can moisturize the skin and utilize in cosmetics. Using a combination of Chinese Medicine Materials and guided by Traditional Chinese Medicine principles, this study selected Echinacea purpurea to protect the skin barrier, Dendrobium nobile to clear heat and promote fluid production, Sophora flavescens to clear heat for diminished inflammation, and Aloe vera combined Lycium barbarum to nourish yin, to together form a "poly TCM moisturizing formulation." These poly plant extracts were investigated and optimized for the stability, safety, and moisturizing ability. The combination moisturizing effect was determined by measuring the expression of FLG mRNA, CLDN-1 mRNA, and AQP3 protein. Toxicological analysis included a red blood cell hemolysis test and a 3T3 phototoxicity test. It has been observed that by using polysaccharide yield as the evaluation criterion showed optimal extraction at a material-to-liquid ratio of 1:100, an extraction temperature of 100°C, and an extraction time of 3 hours. Moisturizing effect experiments showed that the expression of FLG mRNA, CLDN-1 mRNA, and AQP3 protein was significantly increased. Toxicological tests showed that the composition was safe and caused no irritating effects. Based on these results, this poly traditional Chinese medicine moisturizing formulation is safe within moisturizing effects and can be used as a moisturizing raw material in cosmetics.
Collapse
Affiliation(s)
- Hong Meng
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Jiarui Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yinmao Dong
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yifan He
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Hankun Ren
- Oriental Nutri-Woods Biotechnology Co. Ltd, Beijing, People's Republic of China
| | - Youting Liu
- Beijing Academy of TCM Beauty Supplements Co. Ltd, Beijing, People's Republic of China
| | - Zhaohui Qu
- Beijing Academy of TCM Beauty Supplements Co. Ltd, Beijing, People's Republic of China
| | - Weihong Zhang
- Beijing Academy of TCM Beauty Supplements Co. Ltd, Beijing, People's Republic of China
| | - Liping Zhang
- SMRITY International Cosmetics (Beijing) Co. Ltd, Beijing, People's Republic of China
| | - Tuya Bao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China.,Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, People's Republic of China
| |
Collapse
|
38
|
Phytochemical and Bioactive Properties of Phelypaea Tournefortii – Effect of Parasitic Lifestyle and Environmental Factors. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2020. [DOI: 10.2478/aucft-2020-0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Some holoparasitic species can become cultivated plants due to their unique chemical composition. A lot of bioactive contents are characteristic for them. Holoparasites of the family Orobanchaceae are known to be an important and rich source of polyphenols, especially metabolites of the phenylethanoid glycosides (PhGs) group. However, only a minority of the species in this family have been phytochemically tested. They are reported to have multiple biological and therapeutic effects and have been used for centuries in traditional Chinese medicine. This is the first study to present phytochemical profiling for a representative of genus Phelypaea. The chemical composition and biological activity in particular organs of the parasite, P. tournefortii, were determined. The interaction with its host, Tanacetum polycephalum (Asteraceae), from different places and altitudes was also studied. We presented the determination of polyphenolic compounds with the UPLC-PDA-MS/MS method, antioxidative effects and inhibitory activities, polyphenols, and nitrates content, ABTS•+, DPPH, FRAP, as well as colour parameters. The polyphenols profile of the parasite and host were different in quality and quantity. Identification of polyphenolic compounds revealed 41 compounds, 15 in the parasite (12 phenylethanoids and 3 anthocyanins), and 26 in the host (mainly flavonoids and phenolic acids). The amount and biological activity of polyphenolic compounds present in Phelypaea was very diverse and depended on the host plant and the parasite’s organs, as well as on population altitude. The results show that P. tournefortii is a potential source of functional and pro-health components. They also direct researchers’ attention to the parasite’s organs, host, and environmental influence.
Collapse
|
39
|
Piwowarczyk R, Ochmian I, Lachowicz S, Kapusta I, Sotek Z, Błaszak M. Phytochemical parasite-host relations and interactions: A Cistanche armena case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137071. [PMID: 32069695 DOI: 10.1016/j.scitotenv.2020.137071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 05/20/2023]
Abstract
The holoparasitic genus Cistanche (Orobanchaceae) has been the most widely used and well known genus in traditional Chinese medicine for centuries. This is the first study that reports the phytochemical profile of Cistanche armena - an endemic species from Armenia and evaluates the composition and biological activity in relation to specific organs of the parasite (flowers vs stem with tuber) and its interaction with two host species: Alhagi maurorum (Fabaceae) and Salsola dendroides (Chenopodiaceae). We identified polyphenolic compounds using the UPLC-PDA-MS/MS method and quantified the antioxidative effects; inhibitory activities; polyphenol, nitrate III and nitrate V contents; ABTS+, DPPH, and FRAP activities; and colour parameters. A total of 28 polyphenolic compounds were tentatively identified. In C. armena, 9 compounds belonged to the phenylethanoid glycosides, mainly acteoside, B-hydroxyverbascoside and echinacoside, and in its hosts, 19 compounds belonged mainly to hydroxycinnamic acid and the flavanols. The profile of polyphenols in the host species was qualitatively and quantitatively different than the profile of the compounds in the parasite; this indicates the existence of a unique pathway of compound biosynthesis in the parasite. The colour and the amount and bioactivity of the polyphenolic compounds found in Cistanche were very diverse and depended on both the host plant and their location (organs) in the parasite. The stem and tuber of Cistanche hosted by Salsola had the highest polyphenol content, which was approximately 4 times higher than that in the stem and flowers of Cistanche individuals that parasitized A. maurorum. In addition, the stem and tuber of Cistanche that parasitized S. dendroides was characterized by the highest antioxidant activity (ABTS+, DPPH and FRAP) and high inhibitory activities. Conversely, the amount of polyphenols in the host Alhagi was 12 times higher than that in S. dendroides. These results highlight the importance of C. armena as a promising source of functional and bioactive ingredients (harvested from potential cultivation, not from natural endangered localities) and also draws the attention of future researchers to an important aspect regarding the parasite organ and the host's influence on the harvested material of various parasitic herbs.
Collapse
Affiliation(s)
- Renata Piwowarczyk
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7 Street, 25-406 Kielce, Poland.
| | - Ireneusz Ochmian
- Department of Horticulture, West Pomeranian University of Technology Szczecin, Słowackiego 17 Street, 71-434 Szczecin, Poland.
| | - Sabina Lachowicz
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37 Street, 51-630 Wrocław, Poland.
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Rzeszów University, Zelwerowicza 4 Street, 35-601 Rzeszów, Poland.
| | - Zofia Sotek
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16 Street, 70-383 Szczecin, Poland.
| | - Magdalena Błaszak
- West Pomeranian University of Technology Szczecin, Department of Bioengineering, Słowackiego 17 Street, 71-434 Szczecin, Poland.
| |
Collapse
|
40
|
Paudel YN, Angelopoulou E, Semple B, Piperi C, Othman I, Shaikh MF. Potential Neuroprotective Effect of the HMGB1 Inhibitor Glycyrrhizin in Neurological Disorders. ACS Chem Neurosci 2020; 11:485-500. [PMID: 31972087 DOI: 10.1021/acschemneuro.9b00640] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glycyrrhizin (glycyrrhizic acid), a bioactive triterpenoid saponin constituent of Glycyrrhiza glabra, is a traditional medicine possessing a plethora of pharmacological anti-inflammatory, antioxidant, antimicrobial, and antiaging properties. It is a known pharmacological inhibitor of high mobility group box 1 (HMGB1), a ubiquitous protein with proinflammatory cytokine-like activity. HMGB1 has been implicated in an array of inflammatory diseases when released extracellularly, mainly by activating intracellular signaling upon binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). HMGB1 neutralization strategies have demonstrated disease-modifying outcomes in several preclinical models of neurological disorders. Herein, we reveal the potential neuroprotective effects of glycyrrhizin against several neurological disorders. Emerging findings demonstrate the therapeutic potential of glycyrrhizin against several HMGB1-mediated pathological conditions including traumatic brain injury, neuroinflammation and associated conditions, epileptic seizures, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Glycyrrhizin's effects in neurological disorders are mainly attributed to the attenuation of neuronal damage by inhibiting HMGB1 expression and translocation as well as by downregulating the expression of inflammatory cytokines. A large number of preclinical findings supports the notion that glycyrrhizin might be a promising therapeutic alternative to overcome the shortcomings of the mainstream therapeutic strategies against neurological disorders, mainly by halting disease progression. However, future research is warranted for a deeper exploration of the precise underlying molecular mechanism as well as for clinical translation.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Bridgette Semple
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| |
Collapse
|
41
|
Ameliorative effects of echinacoside against spinal cord injury via inhibiting NLRP3 inflammasome signaling pathway. Life Sci 2019; 237:116978. [DOI: 10.1016/j.lfs.2019.116978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 01/09/2023]
|
42
|
Zhang J, He Y, Jiang X, Jiang H, Shen J. Nature brings new avenues to the therapy of central nervous system diseases—An overview of possible treatments derived from natural products. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1332-1367. [DOI: 10.1007/s11427-019-9587-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
|
43
|
Morikawa T, Xie H, Pan Y, Ninomiya K, Yuan D, Jia X, Yoshikawa M, Nakamura S, Matsuda H, Muraoka O. A Review of Biologically Active Natural Products from a Desert Plant Cistanche tubulosa. Chem Pharm Bull (Tokyo) 2019; 67:675-689. [PMID: 31257323 DOI: 10.1248/cpb.c19-00008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An Orobanchaceae plant Cistanche tubulosa (SCHENK) WIGHT (Kanka-nikujuyou in Japanese), which is one of the authorized plant resources as Cistanches Herba in both Japanese and Chinese Pharmacopoeias, is a perennial parasitic plant growing on roots of sand-fixing plants. The stems of C. tubulosa have traditionally been used for treatment of impotence, sterility, lumbago, and body weakness as well as a promoting agent of blood circulation. In recent years, Cistanches Herba has also been widely used as a health food supplement in Japan, China, and Southeast Asian countries. Here we review our recent studies on chemical constituents from the stems of C. tubulosa as well as their bioactivities such as vasorelaxtant, hepatoprotective, and glucose tolerance improving effects.
Collapse
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| | - Haihui Xie
- Kyoto Pharmaceutical University.,South China Botanical Garden, Chinese Academy of Sciences
| | - Yingni Pan
- Pharmaceutical Research and Technology Institute, Kindai University.,School of Traditional Chinese Medicines, Shenyang Pharmaceutical University
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| | - Dan Yuan
- School of Traditional Chinese Medicines, Shenyang Pharmaceutical University
| | - Xiaoguang Jia
- Kyoto Pharmaceutical University.,Xinjiang Institute of Chinese Materia Medica and Ethnodrug
| | - Masayuki Yoshikawa
- Pharmaceutical Research and Technology Institute, Kindai University.,Kyoto Pharmaceutical University
| | | | | | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| |
Collapse
|
44
|
Echinacoside Alleviates Hypoxic-Ischemic Brain Injury in Neonatal Rat by Enhancing Antioxidant Capacity and Inhibiting Apoptosis. Neurochem Res 2019; 44:1582-1592. [PMID: 30911982 DOI: 10.1007/s11064-019-02782-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a leading cause of death and disability in neonatal or perinatal all over the world, seriously affecting children, families and society. Unfortunately, only few satisfactory therapeutic strategies have been developed. It has been demonstrated that Echinacoside (ECH), the major active component of Cistanches Herba, exerts many beneficial effects, including antioxidative, anti-apoptosis, and neuroprotective in the traditional medical practice in China. Previous research has demonstrated that ECH plays a protective effect on ischemic brain injury. This study aimed to investigate whether ECH provides neuroprotection against HIBD in neonatal rats. We subjected 120 seven-day-old Sprague-Dawley rats to cerebral hypoxia-ischemia (HI) and randomly divided into the following groups: sham group, HI group and ECH (40, 80 and 160 mg/kg, intraperitoneal) post-administration group. After 48 h of HI, 2,3,5-Triphenyltetrazolium chloride, Hematoxylin-Eosin and Nissl staining were conducted to evaluate the extent of brain damage. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, total antioxidant capacity (T-AOC), and malondialdehyde (MDA) production were assessed to determine the antioxidant capacity of ECH. TUNEL staining and Western blot analysis was performed to respectively estimate the extent of brain cell apoptosis and the expression level of the apoptosis-related proteins caspase-3, Bax, and Bcl-2. Results showed that ECH remarkably reduced the brain infarct volume and ameliorated the histopathological damage to neurons. ECH post-administration helped recovering the antioxidant enzyme activities and decreasing the MDA production. Furthermore, ECH treatment suppressed neuronal apoptosis in the rats with HIBD was by reduced TUNEL-positive neurons, the caspase-3 levels and increased the Bcl-2/Bax ratio. These results suggested that ECH treatment was beneficial to reducing neuronal damage by attenuating oxidative stress and apoptosis in the brain under HIBD.
Collapse
|
45
|
Zheng H, Su Y, Sun Y, Tang T, Zhang D, He X, Wang J. Echinacoside alleviates hypobaric hypoxia‐induced memory impairment in C57 mice. Phytother Res 2019; 33:1150-1160. [DOI: 10.1002/ptr.6310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/28/2018] [Accepted: 01/18/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Hongnan Zheng
- Department of Natural Medicine, School of PharmacyFourth Military Medical University Xi'an China
| | - Yuting Su
- School of New Media ArtXi'an Polytechnic University Xi'an China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of PharmacyFourth Military Medical University Xi'an China
| | - Tianle Tang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of PharmacyFourth Military Medical University Xi'an China
| | - Di Zhang
- Department of PharmacyXijing Hospital, Fourth Military Medical University Xi'an China
| | - Xuefeng He
- Department of Natural Medicine, School of PharmacyFourth Military Medical University Xi'an China
| | - Jianbo Wang
- Department of Natural Medicine, School of PharmacyFourth Military Medical University Xi'an China
- Product R & D DepartmentSichuan Institute for Translational Chinese Medicine Chengdu China
| |
Collapse
|