1
|
Gupta S, Dasmahapatra AK. Lycopene destabilizes preformed Aβ fibrils: Mechanistic insights from all-atom molecular dynamics simulation. Comput Biol Chem 2023; 105:107903. [PMID: 37320982 DOI: 10.1016/j.compbiolchem.2023.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The therapeutic strategy employing destabilization of the preformed Aβ fibril by various natural compounds, as studied by experimental and computational methods, has been reported significant in curing Alzheimer's disease (AD). However, lycopene (a carotenoid), from terpenes family, needs investigation for its destabilization potential of Aβ fibril. The highest antioxidant potential and ability to cross blood brain barrier makes lycopene a preferred choice as drug lead for treating AD. The current study focuses on investigating the destabilization potential and underpinning mechanism of lycopene on different polymorphic forms of Aβ fibril via Molecular Dynamics (MD) simulation. The key findings highlight binding of lycopene to the outer surface of the chain F of the fibril (2NAO). Herein G9, K16 and V18 residues were found to be involved in van der Waals with the methyl groups of the lycopene. Additionally, Y10 and F20 residues were observed to interact via π-π interactions with CC bonds of the lycopene. The surface mediated binding of lycopene to the fibril is attributed to the large size and structural rigidity of lycopene along with the bulky size of 2NAO and narrow space of fibrillar cavity. The destabilization of the fibril is evident by breakage of inherent H-bonds and hydrophobic interactions in the presence of one lycopene molecule. The lesser β-sheet content explains disorganization of the fibril and bars the higher order aggregation curbing neurotoxicity of the fibril. The higher concentration of the lycopene is not found to be linearly correlated with the extent of destabilization of the fibril. Lycopene is also observed to destabilize the other polymorphic form of Aβ fibril (2BEG), by accessing the fibrillar cavity and lowering the β-sheet content. The destabilization observed by lycopene on two major polymorphs of Aβ fibril explains its potency towards developing an effective therapeutic approach in treating AD.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Gupta S, Dasmahapatra AK. Enhanced stability of a disaggregated Aβ fibril on removal of ligand inhibits refibrillation: An all atom Molecular Dynamics simulation study. Int J Biol Macromol 2023; 240:124481. [PMID: 37076062 DOI: 10.1016/j.ijbiomac.2023.124481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The extraneuronally deposited senile plaques, composed of neurotoxic aggregates of Aβ fibril, define Alzheimer's disease (AD). Natural compounds have been tested for their destabilization potential on Aβ fibril, thereby curing AD. However, the resultant destabilized Aβ fibril, needs to be checked for its irreversibility to the native organized state after removal of the ligand. Herein, we assessed the stability of a destabilized fibril after the ligand (ellagic acid represented as REF) is removed from the complex. The study has been conducted via Molecular Dynamics (MD) simulation of 1 μs for both Aβ-Water (control) and Aβ-REF″ (test or REF removed) system. The increased value of RMSD, Rg, SASA, lower β-sheet content and reduced number of H-bonds explains enhanced destabilization observed in Aβ-REF″ system. The increased inter-chain distance demonstrates breaking of the residual contacts, testifying the drift of terminal chains from the pentamer. The increased SASA along with the ∆Gps(polar solvation energy) accounts for the reduced interaction amongst residues, and more with solvent molecules, governing irreversibility to native state. The higher Gibb's free energy of the misaligned structure of Aβ-REF″ ensures irreversibility to the organized structure due to its inability to cross such high energy barrier. The observed stability of the disaggregated structure, despite ligand elimination, establishes the effectiveness of the destabilization technique as a promising therapeutic approach towards treating AD.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Gupta S, Dasmahapatra AK. Destabilization of Aβ fibrils by omega-3 polyunsaturated fatty acids: a molecular dynamics study. J Biomol Struct Dyn 2023; 41:581-598. [PMID: 34856889 DOI: 10.1080/07391102.2021.2009915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The senile plaques of neurotoxic aggregates of Aβ protein, deposited extraneuronally, mark the pathological hallmark of Alzheimer's disease (AD). The natural compounds such as omega-3 (ω-3) polyunsaturated fatty acids (PUFAs), which can access blood-brain barrier, are believed to be potential disruptors of preformed Aβ fibrils to cure AD with unknown mechanism. Herein, we present the destabilization potential of three ω-3 PUFAs, viz. Eicosapentaenoic acid (EPA), Docosahexaenoic acid (HXA), and α-linolenic acid (LNL) by molecular dynamics simulation. After an initial testing of 300 ns, EPA and HXA have been considered further for extended production run time, 500 ns. The increased value of root mean square deviation (RMSD), radius of gyration, and solvent-accessible surface area (SASA), the reduced number of H-bonds and β-sheet content, and disruption of salt bridges and hydrophobic contacts establish the binding of these ligands to Aβ fibril leading to destabilization. The polar head was found to interact with positively charged lysine (K28) residue in the fibril. However, the hydrophobicity of the long aliphatic tail competes with the intrinsic hydrophobic interactions of Aβ fibril. This amphiphilic nature of EPA and HXA led to the breaking of inherent hydrophobic contacts and formation of new bonds between the tail of PUFA and hydrophobic residues of Aβ fibril, leading to the destabilization of fibril. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) results explain the binding of EPA and HXA to Aβ fibril by interacting with different residues. The destabilization potential of EPA and HXA establishes them as promising drug leads to cure AD, and encourages prospecting of other fatty acids for therapeutic intervention in AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
4
|
Dehabadi MH, Caflisch A, Ilie IM, Firouzi R. Interactions of Curcumin's Degradation Products with the Aβ 42 Dimer: A Computational Study. J Phys Chem B 2022; 126:7627-7637. [PMID: 36148988 DOI: 10.1021/acs.jpcb.2c05846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid-β (Aβ) dimers are the smallest toxic species along the amyloid-aggregation pathway and among the most populated oligomeric accumulations present in the brain affected by Alzheimer's disease (AD). A proposed therapeutic strategy to avoid the aggregation of Aβ into higher-order structures is to develop molecules that inhibit the early stages of aggregation, i.e., dimerization. Under physiological conditions, the Aβ dimer is highly dynamic and does not attain a single well-defined structure but is rather characterized by an ensemble of conformations. In a recent study, a highly heterogeneous library of conformers of the Aβ dimer was generated by an efficient sampling method with constraints based on ion mobility mass spectrometry data. Here, we make use of the Aβ dimer library to study the interaction with two curcumin degradation products, ferulic aldehyde and vanillin, by molecular dynamics (MD) simulations. Ensemble docking and MD simulations are used to provide atomistic detail of the interactions between the curcumin degradation products and the Aβ dimer. The simulations show that the aromatic residues of Aβ, and in particular 19FF20, interact with ferulic aldehyde and vanillin through π-π stacking. The binding of these small molecules induces significant changes on the 16KLVFF20 region.
Collapse
Affiliation(s)
- Maryam Haji Dehabadi
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Boulevard, 1496813151 Tehran, Iran
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ioana M Ilie
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Rohoullah Firouzi
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Boulevard, 1496813151 Tehran, Iran
| |
Collapse
|
5
|
Nikolaeva NS, Yandulova EY, Aleksandrova YR, Starikov AS, Neganova ME. The Role of a Pathological Interaction between β-amyloid and Mitochondria in the Occurrence and Development of Alzheimer's Disease. Acta Naturae 2022; 14:19-34. [PMID: 36348714 PMCID: PMC9611857 DOI: 10.32607/actanaturae.11723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in existence. It is characterized by an impaired cognitive function that is due to a progressive loss of neurons in the brain. Extracellular β-amyloid (Aβ) plaques are the main pathological features of the disease. In addition to abnormal protein aggregation, increased mitochondrial fragmentation, altered expression of the genes involved in mitochondrial biogenesis, disruptions in the ER-mitochondria interaction, and mitophagy are observed. Reactive oxygen species are known to affect Aβ expression and aggregation. In turn, oligomeric and aggregated Aβ cause mitochondrial disorders. In this review, we summarize available knowledge about the pathological effects of Aβ on mitochondria and the potential molecular targets associated with proteinopathy and mitochondrial dysfunction for the pharmacological treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- N. S. Nikolaeva
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - E. Yu. Yandulova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - Yu. R. Aleksandrova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - A. S. Starikov
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - M. E. Neganova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| |
Collapse
|
6
|
Saffari B, Amininasab M. Crocin Inhibits the Fibrillation of Human α-synuclein and Disassembles Mature Fibrils: Experimental Findings and Mechanistic Insights from Molecular Dynamics Simulation. ACS Chem Neurosci 2021; 12:4037-4057. [PMID: 34636232 DOI: 10.1021/acschemneuro.1c00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aggregation of human alpha-synuclein (hαS) is pivotally implicated in the development of most types of synucleinopathies. Molecules that can inhibit or reverse the aggregation process of amyloidogenic proteins have potential therapeutic value. The anti-aggregating activity of multiple carotenoid compounds has been reported over the past decades against a growing list of amyloidogenic polypeptides. Here, we aimed to determine whether crocin, the main carotenoid glycoside component of saffron, would inhibit hαS aggregation or could disassemble its preformed fibrils. By employing a series of biochemical and biophysical techniques, crocin was exhibited to inhibit hαS fibrillation in a dose-dependent fashion by stabilizing very early aggregation intermediates in off-pathway non-toxic conformations with little β-sheet content. We also observed that crocin at high concentrations could efficiently destabilize mature fibrils and disassemble them into seeding-incompetent intermediates by altering their β-sheet conformation and reshaping their structure. Our atomistic molecular dynamics (MD) simulations demonstrated that crocin molecules bind to both the non amyloid-β component (NAC) region and C-terminal domain of hαS. These interactions could thereby stabilize the autoinhibitory conformation of the protein and prevent it from adopting aggregation-prone structures. MD simulations further suggested that ligand molecules prefer to reside longitudinally along the fibril axis onto the edges of the inter-protofilament interface where they establish hydrogen and hydrophobic bonds with steric zipper stabilizing residues. These interactions turned out to destabilize hαS fibrils by altering the interstrand twist angles, increasing the rigidity of the fibril core, and elevating its radius of gyration. Our findings suggest the potential pharmaceutical implication of crocin in synucleinopathies.
Collapse
Affiliation(s)
- Babak Saffari
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
7
|
Ramesh M, Acharya A, Murugan NA, Ila H, Govindaraju T. Thiophene-Based Dual Modulators of Aβ and Tau Aggregation. Chembiochem 2021; 22:3348-3357. [PMID: 34546619 DOI: 10.1002/cbic.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease is characterized by the accumulation of amyloid beta (Aβ) and Tau aggregates in the brain, which induces various pathological events resulting in neurodegeneration. There have been continuous efforts to develop modulators of the Aβ and Tau aggregation process to halt or modify disease progression. A few small-molecule-based inhibitors that target both Aβ and Tau pathology have been reported. Here, we report the screening of a targeted library of small molecules to modulate Aβ and Tau aggregation together with their in vitro, in silico and cellular studies. In vitro ThT fluorescence assay, dot blot assay, gel electrophoresis and transmission electron microscopy (TEM) results have shown that thiophene-based lead molecules effectively modulate Aβ aggregation and inhibit Tau aggregation. In silico studies performed by employing molecular docking, molecular dynamics and binding-free energy calculations have helped in understanding the mechanism of interaction of the lead thiophene compounds with Aβ and Tau fibril targets. In cellulo studies revealed that the lead candidate is biocompatible and effectively ameliorates neuronal cells from Aβ and Tau-mediated amyloid toxicity.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Anand Acharya
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - N Arul Murugan
- Department of Computer Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Hiriyakkanavar Ila
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|
8
|
Mladenova K, Stavrakov G, Philipova I, Atanasova M, Petrova S, Doumanov J, Doytchinova I. A Galantamine-Curcumin Hybrid Decreases the Cytotoxicity of Amyloid-Beta Peptide on SH-SY5Y Cells. Int J Mol Sci 2021; 22:7592. [PMID: 34299209 PMCID: PMC8307467 DOI: 10.3390/ijms22147592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
Misfolded amyloid beta (Aβ) peptides aggregate and form neurotoxic oligomers. Membrane and mitochondrial damages, calcium dysregulation, oxidative stress, and fibril deposits are among the possible mechanisms of Aβ cytotoxicity. Galantamine (GAL) prevents apoptosis induced by Aβ mainly through the ability to stimulate allosterically the α7 nAChRs and to regulate the calcium cytosolic concentration. Here, we examined the cytoprotective effects of two GAL derivatives, namely compounds 4b and 8, against Aβ cytotoxicity on the human neuroblastoma cell line SH-SY5Y. The protective effects were tested at simultaneous administration, pre-incubation and post-incubation, with Aβ. GAL and curcumin (CU) were used in the study as reference compounds. It was found that 4b protects cells in a similar mode as GAL, while compound 8 and CU potentiate the toxic effects of Aβ. Allosteric stimulation of α7 nAChRs is suggested as a possible mechanism of the cytoprotectivity of 4b. These and previous findings characterize 4b as a prospective non-toxic multi-target agent against neurodegenerative disorders with inhibitory activity on acetylcholinesterase, antioxidant, and cytoprotective properties.
Collapse
Affiliation(s)
- Kirilka Mladenova
- Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Georgi Stavrakov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (G.S.); (M.A.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Irena Philipova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Mariyana Atanasova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (G.S.); (M.A.)
| | - Svetla Petrova
- Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Jordan Doumanov
- Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Irini Doytchinova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (G.S.); (M.A.)
| |
Collapse
|
9
|
Ritacca AG, Ritacco I, Dabbish E, Russo N, Mazzone G, Sicilia E. A Boron-Containing Compound Acting on Multiple Targets Against Alzheimer's Disease. Insights from Ab Initio and Molecular Dynamics Simulations. J Chem Inf Model 2021; 61:3397-3410. [PMID: 34253017 DOI: 10.1021/acs.jcim.1c00262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Given the multifactorial nature and pathogenesis of Alzheimer's disease, therapeutic strategies are addressed to combine the benefits of every single-target drug into a sole molecule. Quantum mechanics and molecular dynamics (MD) methods were employed here to investigate the multitarget action of a boron-containing compound against Alzheimer's disease. The antioxidant activity as a radical scavenger and metal chelator was explored by means of density functional theory. The most plausible radical scavenger mechanisms, which are hydrogen transfer, radical adduct formation, and single-electron transfer in aqueous and lipid environments, were fully examined. Metal chelation ability was investigated by considering the complexation of Cu(II) ion, one of the metals that in excess can even catalyze the β-amyloid (Aβ) aggregation. The most probable complexes in the physiological environment were identified by considering both the stabilization energy and the shift of the λmax induced by the complexation. The excellent capability to counteract Aβ aggregation was explored by performing MD simulations on protein-ligand adducts, and the activity was compared with that of curcumin, chosen as a reference.
Collapse
Affiliation(s)
- Alessandra G Ritacca
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy
| | - Ida Ritacco
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, 84084 Fisciano (SA), Italy
| | - Eslam Dabbish
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy
| | - Nino Russo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy
| |
Collapse
|
10
|
Effects of Curcumin and Ferulic Acid on the Folding of Amyloid-β Peptide. Molecules 2021; 26:molecules26092815. [PMID: 34068636 PMCID: PMC8126156 DOI: 10.3390/molecules26092815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
Abstract
The polyphenols curcumin (CU) and ferulic acid (FA) are able to inhibit the aggregation of amyloid-β (Aβ) peptide with different strengths. CU is a strong inhibitor while FA is a weaker one. In the present study, we examine the effects of CU and FA on the folding process of an Aβ monomer by 1 µs molecular dynamics (MD) simulations. We found that both inhibitors increase the helical propensity and decrease the non-helical propensity of Aβ peptide. They prevent the formation of a dense bulk core and shorten the average lifetime of intramolecular hydrogen bonds in Aβ. CU makes more and longer-lived hydrogen bonds, hydrophobic, π–π, and cation–π interactions with Aβ peptide than FA does, which is in a good agreement with the observed stronger inhibitory activity of CU on Aβ aggregation.
Collapse
|
11
|
Prakashkumar N, Sivamaruthi BS, Chaiyasut C, Suganthy N. Decoding the Neuroprotective Potential of Methyl Gallate-Loaded Starch Nanoparticles against Beta Amyloid-Induced Oxidative Stress-Mediated Apoptosis: An In Vitro Study. Pharmaceutics 2021; 13:299. [PMID: 33668877 PMCID: PMC7996348 DOI: 10.3390/pharmaceutics13030299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a multifaceted neuronal disorder and a challenge to medical practitioners, as the blood-brain barrier (BBB) acts as a major obstacle for drug delivery to the brain. Development of a nanomaterial-based drug delivery system (DDS) paved a way to penetrate the BBB. Starch, a ubiquitous natural biopolymer, has received much attention as a DDS due to its biocompatibility, biodegradability and eco-friendly nature. The present study focuses on encapsulating methyl gallate (MG) within starch nanoparticles (starch-encapsulated MG (SEMG)) and assesses its neuroprotective potential against β-amyloid (Aβ)-induced toxicity, the key factor for AD pathogenesis in Neuro2A cells. SEMG showed potent acetylcholinesterase inhibitory, antioxidant activity and anti-amyloidogenic activity by attenuating the fibrillation of Aβ and destabilizing the preformed mature fibrils. Furthermore, SEMG also attenuated the cytotoxic effect induced by Aβ in Neuro2A cells (50% inhibitory concentration 18.25 ± 0.025 μg/mL) by mitigating reactive oxygen species (ROS)-mediated macromolecular damage, restoring mitochondrial membrane potential and attenuating apoptosis. Characterization of SEMG revealed amorphous rock-shaped structure with average particle size of 264.6 nm, exhibiting 83% loading efficiency and sustained release of drug, with 73% release within 24 h at physiological pH. Overall, the outcome of the present study signifies starch as a promising nanocarrier for the delivery of drugs for the treatment of AD.
Collapse
Affiliation(s)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, India;
| |
Collapse
|
12
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Kaur A, Goyal D, Goyal B. An α-helix mimetic oligopyridylamide, ADH-31, modulates Aβ 42 monomer aggregation and destabilizes protofibril structures: insights from molecular dynamics simulations. Phys Chem Chem Phys 2020; 22:28055-28073. [PMID: 33289734 DOI: 10.1039/d0cp04672h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD), an epidemic growing worldwide due to no effective medical aid available in the market, is a neurological disorder. AD is known to be directly associated with the toxicity of amyloid-β (Aβ) aggregates. In search of potent inhibitors of Aβ aggregation, Hamilton and co-workers reported an α-helix mimetic, ADH-31, which acts as a powerful antagonist of Aβ42 aggregation. To identify the key interactions between protein-ligand complexes and to gain insights into the inhibitory mechanism of ADH-31 against Aβ42 aggregation, molecular dynamics (MD) simulations were performed in the present study. The MD simulations highlighted that ADH-31 showed distinct binding capabilities with residues spanning from the N-terminal to the central hydrophobic core (CHC) region of Aβ42 and restricted the conformational transition of the helix-rich structure of Aβ42 into another form of secondary structures (coil/turn/β-sheet). Hydrophobic contacts, hydrogen bonding and π-π interaction contribute to the strong binding between ADH-31 and Aβ42 monomer. The Dictionary of Secondary Structure of Proteins (DSSP) analysis highlighted that the probability of helical content increases from 38.5% to 50.2% and the turn content reduces from 14.7% to 6.2% with almost complete loss of the β-sheet structure (4.5% to 0%) in the Aβ42 monomer + ADH-31 complex. The per-residue binding free energy analysis demonstrated that Arg5, Tyr10, His14, Gln15, Lys16, Val18, Phe19 and Lys28 residues of Aβ42 are responsible for the favourable binding free energy in Aβ42 monomer + ADH-31 complex, which is consistent with the 2D HSQC NMR of the Aβ42 monomer that depicted a change in the chemical shift of residues spanning from Glu11 to Phe20 in the presence of ADH-31. The MD simulations highlighted the prevention of sampling of amyloidogenic β-strand conformations in Aβ42 trimer in the presence of ADH-31 as well as the ability of ADH-31 to destabilize Aβ42 trimer and protofibril structures. The lower binding affinity between Aβ42 trimer chains in the presence of ADH-31 highlights the destabilization of the Aβ42 trimer structure. Overall, MD results highlighted that ADH-31 inhibited Aβ42 aggregation by constraining Aβ peptides into helical conformation and destabilized Aβ42 trimer as well as protofibril structures. The present study provides a theoretical insight into the atomic level details of the inhibitory mechanism of ADH-31 against Aβ42 aggregation as well as protofibril destabilization and could be implemented in the structure-based drug design of potent therapeutic agents for AD.
Collapse
Affiliation(s)
- Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India.
| | | | | |
Collapse
|
14
|
Tavanti F, Pedone A, Menziani MC. Disclosing the Interaction of Gold Nanoparticles with Aβ(1-40) Monomers through Replica Exchange Molecular Dynamics Simulations. Int J Mol Sci 2020; 22:ijms22010026. [PMID: 33375086 PMCID: PMC7792802 DOI: 10.3390/ijms22010026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid-β aggregation is one of the principal causes of amyloidogenic diseases that lead to the loss of neuronal cells and to cognitive impairments. The use of gold nanoparticles treating amyloidogenic diseases is a promising approach, because the chemistry of the gold surface can be tuned in order to have a specific binding, obtaining effective tools to control the aggregation. In this paper, we show, by means of Replica Exchange Solute Tempering Molecular Simulations, how electrostatic interactions drive the absorption of Amyloid-β monomers onto citrates-capped gold nanoparticles. Importantly, upon binding, amyloid monomers show a reduced propensity in forming β-sheets secondary structures that are characteristics of mature amyloid fibrils.
Collapse
Affiliation(s)
- Francesco Tavanti
- CNR-NANO Research Center, Via Campi 213/a, 41125 Modena, Italy
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (A.P.); (M.C.M.)
- Correspondence:
| | - Alfonso Pedone
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (A.P.); (M.C.M.)
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (A.P.); (M.C.M.)
| |
Collapse
|
15
|
Ngoc LLN, Itoh SG, Sompornpisut P, Okumura H. Replica-permutation molecular dynamics simulations of an amyloid-β(16–22) peptide and polyphenols. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Tavanti F, Pedone A, Menziani MC, Alexander-Katz A. Computational Insights into the Binding of Monolayer-Capped Gold Nanoparticles onto Amyloid-β Fibrils. ACS Chem Neurosci 2020; 11:3153-3160. [PMID: 32926781 DOI: 10.1021/acschemneuro.0c00497] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Amyloids-β (Aβ) fibrils are involved in several neurodegenerative diseases. In this study, atomistic molecular dynamics simulations have been used to investigate how monolayer-protected gold nanoparticles interact with Aβ(1-40) and Aβ(1-42) fibrils. Our results show that small gold nanoparticles bind with the external side of amyloid-β fibrils that is involved in the fibrillation process. The binding affinity, studied for both kinds of fibrils as a function of the monolayer composition and the nanoparticle diameter, is modulated by hydrophobic interactions and ligand monolayer conformation. Our findings thus show that monolayer-protected nanoparticles are good candidates to prevent fibril aggregation and secondary nucleation or to deliver drugs to specific fibril regions.
Collapse
Affiliation(s)
- Francesco Tavanti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi, 103, I-41125 Modena, Italy
- CNR-NANO Istituto Nanoscienze, Centro S3, Via Campi 213/A, I-41125 Modena, Italy
| | - Alfonso Pedone
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi, 103, I-41125 Modena, Italy
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi, 103, I-41125 Modena, Italy
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Massachusetts Avenue, 77, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
17
|
Curcumin Inhibits the Primary Nucleation of Amyloid-Beta Peptide: A Molecular Dynamics Study. Biomolecules 2020; 10:biom10091323. [PMID: 32942739 PMCID: PMC7563689 DOI: 10.3390/biom10091323] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 12/11/2022] Open
Abstract
The amyloid plaques are a key hallmark of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Amyloidogenesis is a complex long-lasting multiphase process starting with the formation of nuclei of amyloid peptides: a process assigned as a primary nucleation. Curcumin (CU) is a well-known inhibitor of the aggregation of amyloid-beta (Aβ) peptides. Even more, CU is able to disintegrate preformed Aβ firbils and amyloid plaques. Here, we simulate by molecular dynamics the primary nucleation process of 12 Aβ peptides and investigate the effects of CU on the process. We found that CU molecules intercalate among the Aβ chains and bind tightly to them by hydrogen bonds, hydrophobic, π–π, and cation–π interactions. In the presence of CU, the Aβ peptides form a primary nucleus of a bigger size. The peptide chains in the nucleus become less flexible and more disordered, and the number of non-native contacts and hydrogen bonds between them decreases. For comparison, the effects of the weaker Aβ inhibitor ferulic acid (FA) on the primary nucleation are also examined. Our study is in good agreement with the observation that taken regularly, CU is able to prevent or at least delay the onset of neurodegenerative disorders.
Collapse
|
18
|
Understanding the binding between Rosmarinic acid and serum albumin: In vitro and in silico insight. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113348] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Tavanti F, Pedone A, Menziani MC. Insights into the Effect of Curcumin and (-)-Epigallocatechin-3-Gallate on the Aggregation of Aβ(1-40) Monomers by Means of Molecular Dynamics. Int J Mol Sci 2020; 21:ijms21155462. [PMID: 32751722 PMCID: PMC7432714 DOI: 10.3390/ijms21155462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
In this study, we compared the effects of two well-known natural compounds on the early step of the fibrillation process of amyloid-β (1–40), responsible for the formation of plaques in the brains of patients affected by Alzheimer’s disease (AD). The use of extensive replica exchange simulations up to the µs scale allowed us to characterize the inhibition activity of (–)-epigallocatechin-3-gallate (EGCG) and curcumin (CUR) on unfolded amyloid fibrils. A reduced number of β-strands, characteristic of amyloid fibrils, and an increased distance between the amino acids that are responsible for the intra- and interprotein aggregations are observed. The central core region of the amyloid-β (Aβ(1–40)) fibril is found to have a high affinity to EGCG and CUR due to the presence of hydrophobic residues. Lastly, the free binding energy computed using the Poisson Boltzmann Surface Ares suggests that EGCG is more likely to bind to unfolded Aβ(1–40) fibrils and that this molecule can be a good candidate to develop new and more effective congeners to treat AD.
Collapse
Affiliation(s)
- Francesco Tavanti
- CNR–NANO Research Center S3, Via Campi 213/a, 41125 Modena, Italy
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (A.P.); (M.C.M.)
- Correspondence:
| | - Alfonso Pedone
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (A.P.); (M.C.M.)
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (A.P.); (M.C.M.)
| |
Collapse
|
20
|
Muscat S, Pallante L, Stojceski F, Danani A, Grasso G, Deriu MA. The Impact of Natural Compounds on S-Shaped Aβ42 Fibril: From Molecular Docking to Biophysical Characterization. Int J Mol Sci 2020; 21:ijms21062017. [PMID: 32188076 PMCID: PMC7139307 DOI: 10.3390/ijms21062017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
The pursuit for effective strategies inhibiting the amyloidogenic process in neurodegenerative disorders, such as Alzheimer’s disease (AD), remains one of the main unsolved issues, and only a few drugs have demonstrated to delay the degeneration of the cognitive system. Moreover, most therapies induce severe side effects and are not effective at all stages of the illness. The need to find novel and reliable drugs appears therefore of primary importance. In this context, natural compounds have shown interesting beneficial effects on the onset and progression of neurodegenerative diseases, exhibiting a great inhibitory activity on the formation of amyloid aggregates and proving to be effective in many preclinical and clinical studies. However, their inhibitory mechanism is still unclear. In this work, ensemble docking and molecular dynamics simulations on S-shaped Aβ42 fibrils have been carried out to evaluate the influence of several natural compounds on amyloid conformational behaviour. A deep understanding of the interaction mechanisms between natural compounds and Aβ aggregates may play a key role to pave the way for design, discovery and optimization strategies toward an efficient destabilization of toxic amyloid assemblies.
Collapse
Affiliation(s)
- Stefano Muscat
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), CH-6928 Manno, Switzerland
| | - Lorenzo Pallante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, IT-10128 Torino, Italy
| | - Filip Stojceski
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), CH-6928 Manno, Switzerland
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), CH-6928 Manno, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), CH-6928 Manno, Switzerland
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, IT-10128 Torino, Italy
- Correspondence:
| |
Collapse
|
21
|
Kaur A, Shuaib S, Goyal D, Goyal B. Interactions of a multifunctional di-triazole derivative with Alzheimer's Aβ42monomer and Aβ42protofibril: a systematic molecular dynamics study. Phys Chem Chem Phys 2020; 22:1543-1556. [DOI: 10.1039/c9cp04775a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The molecular dynamics simulations results highlighted that the multi-target-directed ligand6nstabilizes the native α-helix conformation of the Aβ42monomer and induces a sizable destabilization in the Aβ42protofibril structure.
Collapse
Affiliation(s)
- Anupamjeet Kaur
- Department of Chemistry
- Faculty of Basic and Applied Sciences
- Sri Guru Granth Sahib World University
- Fatehgarh Sahib-140406
- India
| | - Suniba Shuaib
- Department of Chemistry
- Faculty of Basic and Applied Sciences
- Sri Guru Granth Sahib World University
- Fatehgarh Sahib-140406
- India
| | - Deepti Goyal
- Department of Chemistry
- Faculty of Basic and Applied Sciences
- Sri Guru Granth Sahib World University
- Fatehgarh Sahib-140406
- India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry
- Thapar Institute of Engineering & Technology
- Patiala-147004
- India
| |
Collapse
|
22
|
Gupta S, Dasmahapatra AK. Destabilization potential of phenolics on Aβ fibrils: mechanistic insights from molecular dynamics simulation. Phys Chem Chem Phys 2020; 22:19643-19658. [DOI: 10.1039/d0cp02459g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ellagic acid from pomegranate and walnuts is found to destabilize Aβ fibrils. It can be a potential drug to treat AD.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati – 781039
- India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati – 781039
- India
- Center for Nanotechnology
| |
Collapse
|
23
|
|
24
|
Development and In Vitro Evaluation of Linear PEI-Shelled Heparin/Berberine Nanoparticles in Human Osteosarcoma U-2 OS Cells. Molecules 2018; 23:molecules23123122. [PMID: 30487471 PMCID: PMC6320921 DOI: 10.3390/molecules23123122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023] Open
Abstract
Berberine (BBR), a natural isoquinoline alkaloid derived from Chinese herbs, exerts many biological effects, including antiviral, antimicrobial, antidiarrhea, anti-inflammatory, and antitumor effects. In this study, a novel berberine nanoparticle (NP) consisting of heparin (HP) and BBR with or without being shelled with linear polyethyleneimine (LPEI) was developed to enhance its antitumor activity on osteosarcoma U-2 OS cells. With varying ratios of HP to BBR, HP/BBR NPs had a size ranging from 218.4 ± 3.9 to 282.0 ± 5.1 nm and zeta potential from -35.7 ± 0.4 to -51.9 ± 1.8 mV. After shelling with LPEI, the resultant NPs (HP/BBR/LPEI) possessed a size ranging from 226.3 ± 3.0 to 405.7 ± 85.2 nm and zeta potential from -46.5 ± 0.3 to -35.6 ± 0.5 mV; the encapsulation rate of BBR was close to 80%. The release profiles of both NPs were revealed to be slower than that of BBR solution. Results also showed that BBR and its two derived NPs reduced the viability of U-2 OS cells, and BBR NPs increased the cellular uptake of BBR. Cells were arrested at the G₁ phase when treated individually with BBR and the two NPs (HP/BBR and HP/BBR/LPEI) and DNA condensation was induced. In addition, BBR and BBR NPs reduced the expression of mouse double minute 2 homolog (MDM2) but increased that of p53, and BBR NPs enhanced apoptotic effects. In short, heparin-based nanoparticles could be potential carriers for osteosarcoma treatment.
Collapse
|
25
|
Yan F, Liu X, Zhang S, Su J, Zhang Q, Chen J. Molecular Dynamics Exploration of Selectivity of Dual Inhibitors 5M7, 65X, and 65Z toward Fatty Acid Binding Proteins 4 and 5. Int J Mol Sci 2018; 19:ijms19092496. [PMID: 30142969 PMCID: PMC6164837 DOI: 10.3390/ijms19092496] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 12/11/2022] Open
Abstract
Designing highly selective inhibitors of fatty acid binding proteins 4 and 5 (FABP4 and FABP5) is of importance for treatment of some diseases related with inflammation, metabolism, and tumor growth. In this study, molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) method were performed to probe binding selectivity of three inhibitors (5M7, 65X, and 65Z) to FABP4/FABP5 with Ki values of 0.022/0.50 μM, 0.011/0.086 μM, and 0.016/0.12 μM, respectively. The results not only suggest that all inhibitors associate more tightly with FABP4 than FABP5, but also prove that the main forces driving the selective bindings of inhibitors to FABP4 and FABP5 stem from the difference in the van der Waals interactions and polar interactions of inhibitors with two proteins. Meanwhile, a residue-based free energy decomposition method was applied to reveal molecular basis that inhibitors selectively interact with individual residues of two different proteins. The calculated results show that the binding difference of inhibitors to the residues (Phe16, Phe19), (Ala33, Gly36), (Phe57, Leu60), (Ala75, Ala78), (Arg126, Arg129), and (Tyr128, Tyr131) in (FABP4, FABP5) drive the selectivity of inhibitors toward FABP4 and FABP5. This study will provide great help for further design of effective drugs to protect against a series of metabolic diseases, arteriosclerosis, and inflammation.
Collapse
Affiliation(s)
- Fangfang Yan
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Jing Su
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| |
Collapse
|
26
|
Orteca G, Tavanti F, Bednarikova Z, Gazova Z, Rigillo G, Imbriano C, Basile V, Asti M, Rigamonti L, Saladini M, Ferrari E, Menziani MC. Curcumin derivatives and Aβ-fibrillar aggregates: An interactions' study for diagnostic/therapeutic purposes in neurodegenerative diseases. Bioorg Med Chem 2018; 26:4288-4300. [PMID: 30031653 DOI: 10.1016/j.bmc.2018.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023]
Abstract
Several neurodegenerative diseases, like Alzheimer's (AD), are characterized by amyloid fibrillar deposition of misfolded proteins, and this feature can be exploited for both diagnosis and therapy design. In this paper, structural modifications of curcumin scaffold were examined in order to improve its bioavailability and stability in physiological conditions, as well as its ability to interfere with β-amyloid fibrils and aggregates. The acid-base behaviour of curcumin derivatives, their pharmacokinetic stability in physiological conditions, and in vitro ability to interfere with Aβ fibrils at different incubation time were investigated. The mechanisms governing these phenomena have been studied at atomic level by means of molecular docking and dynamic simulations. Finally, biological activity of selected curcuminoids has been investigated in vitro to evaluate their safety and efficiency in oxidative stress protection on hippocampal HT-22 mouse cells. Two aromatic rings, π-conjugated structure and H-donor/acceptor substituents on the aromatic rings showed to be the sine qua non structural features to provide interaction and disaggregation activity even at very low incubation time (2h). Computational simulations proved that upon binding the ligands modify the conformational dynamics and/or interact with the amyloidogenic region of the protofibril facilitating disaggregation. Significantly, in vitro results on hippocampal cells pointed out protection against glutamate toxicity and safety when administered at low concentrations (1 μM). On the overall, in view of its higher stability in physiological conditions with respect to curcumin, of his rapid binding to fibrillar aggregates and strong depolymerizing activity, phtalimmide derivative K2F21 appeared a good candidate for both AD diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Giulia Orteca
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Francesco Tavanti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | - Giovanna Rigillo
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 213/D, 41125 Modena, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 213/D, 41125 Modena, Italy
| | - Valentina Basile
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 213/D, 41125 Modena, Italy
| | - Mattia Asti
- Nuclear Medicine Unit, Advanced Technology Department, AUSL - IRCCS Reggio Emilia, viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Luca Rigamonti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Monica Saladini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| |
Collapse
|