1
|
Carducci M, Massai L, Lari E, Semplici B, Aruta MG, De Simone D, Piu P, Montomoli E, Berlanda Scorza F, Grappi S, Iturriza-Gómara M, Canals R, Rondini S, Rossi O. Qualification of an enzyme-linked immunosorbent assay for quantification of anti-Vi IgG in human sera. Front Immunol 2024; 15:1466869. [PMID: 39478859 PMCID: PMC11521798 DOI: 10.3389/fimmu.2024.1466869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024] Open
Abstract
Effective vaccines against Salmonella Typhi, targeting the Vi capsular polysaccharide, have been developed and are being introduced into routine immunization in endemic countries. Vi conjugated vaccines are also being tested in new multi-component vaccine formulations. Simple, high-throughput and cost-effective assays to quantify Vi-specific IgG in clinical sera are needed. In this study we present the development and qualification of a new anti-Vi ELISA with continuous readout, which expresses results as ELISA Unit/mL (EU/mL). We have qualified the assay in terms of precision, linearity and specificity, demonstrating performance in line with a commercially available anti-Vi ELISA. We have also calibrated the assay against the 16/138 anti-Vi international standard and established conversion factor between EU/mL and international units/mL, to allow comparability of results across studies. In summary, this new assay met all the suitability criteria and is being used to evaluate anti-Vi responses in clinical studies.
Collapse
Affiliation(s)
- Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | | | | | | | - Daniele De Simone
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | | | - Emanuele Montomoli
- VisMederi S.r.l., Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | | | | | - Rocio Canals
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Simona Rondini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
2
|
MacLennan CA. The Background, Role and Approach for Development of a Controlled Human Infection Model for Nontyphoidal Salmonella. Curr Top Microbiol Immunol 2024; 445:315-335. [PMID: 34958419 DOI: 10.1007/82_2021_246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nontyphoidal Salmonella (NTS) is responsible for a major global burden of disease and economic loss, particularly in low- and middle-income countries. It is designated a priority pathogen by the WHO for vaccine development and, with new impetus from vaccine developers, the establishment of an NTS controlled human infection model (CHIM) is timely and valuable. The broadly dichotomous clinical presentations of diarrhoea and invasive disease, commonly bacteraemia, present significant challenges to the development of an NTS CHIM. Nevertheless, if successful, such a CHIM will be invaluable for understanding the pathogenesis of NTS disease, identifying correlates of protection and advancing candidate vaccines towards licensure. This article describes the background case for a CHIM for NTS, the role of such a CHIM and outlines a potential approach to its development.
Collapse
Affiliation(s)
- Calman A MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
- Bill & Melinda Gates Foundation, 62 Buckingham Gate, London, SW16AJ, UK.
| |
Collapse
|
3
|
Boerth EM, Gong J, Roffler B, Thompson CM, Song B, Malley SF, Hirsch A, MacLennan CA, Zhang F, Malley R, Lu YJ. Induction of Broad Immunity against Invasive Salmonella Disease by a Quadrivalent Combination Salmonella MAPS Vaccine Targeting Salmonella Enterica Serovars Typhimurium, Enteritidis, Typhi, and Paratyphi A. Vaccines (Basel) 2023; 11:1671. [PMID: 38006003 PMCID: PMC10675568 DOI: 10.3390/vaccines11111671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Bloodstream infections in low- and middle-income countries (LMICs) are most frequently attributed to invasive Salmonella disease caused by four primary serovars of Salmonella enterica: Typhi, Paratyphi A, Typhimurium, and Enteritidis. We showed previously that a bivalent vaccine targeting S. Typhi and S. Paratyphi A using a Multiple Antigen-Presenting System (MAPS) induced functional antibodies against S. Typhi and S. Paratyphi. In the current study, we describe the preclinical development of a first candidate quadrivalent combination Salmonella vaccine with the potential to cover all four leading invasive Salmonella serotypes. We showed that the quadrivalent Salmonella MAPS vaccine, containing Vi from S. Typhi, O-specific Polysaccharide (OSP) from S. Paratyphi A, S. Enteritidis and S. Typhimurium, combined with the Salmonella-specific protein SseB, elicits robust and functional antibody responses to each of the components of the vaccine. Our data indicates that the application of MAPS technology to the development of vaccines targeting invasive forms of Salmonella is practical and merits additional consideration.
Collapse
Affiliation(s)
- Emily M. Boerth
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joyce Gong
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Becky Roffler
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Claudette M. Thompson
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Boni Song
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha F. Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Angelika Hirsch
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Calman A. MacLennan
- Enteric & Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, 500 5th Ave. N, Seattle, WA 98109, USA
| | - Fan Zhang
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Hagedoorn NN, Murthy S, Birkhold M, Marchello CS, Crump JA. Prevalence and distribution of non-typhoidal Salmonella enterica serogroups and serovars isolated from normally sterile sites: A global systematic review. Epidemiol Infect 2023; 152:e4. [PMID: 37850326 PMCID: PMC10789991 DOI: 10.1017/s0950268823001693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
To inform coverage by potential vaccines, we aimed to systematically review evidence on the prevalence and distribution of non-typhoidal Salmonella enterica serogroups and serovars. We searched four databases from inception through 4 June 2021. Articles were included that reported at least one non-typhoidal S. enterica strain by serogroup or serovar isolated from a normally sterile site. Of serogrouped isolates, we pooled the prevalence of serogroup O:4, serogroup O:9, and other serogroups using random-effects meta-analyses. Of serotyped isolates, we pooled the prevalence of Salmonella Typhimurium (member of serogroup O:4), Salmonella Enteritidis (member of serogroup O:9), and other serovars. Of 82 studies yielding 24,253 serogrouped isolates, the pooled prevalence (95% CI) was 44.6% (36.2%-48.2%) for serogroup O:4, 45.5% (37.0%-49.1%) for serogroup O:9, and 9.9% (6.1%-13.3%) for other serogroups. Of serotyped isolates, the pooled prevalence (95%CI) was 36.8% (29.9%-44.0%) for Salmonella Typhimurium, 37.8% (33.2%-42.4%) for Salmonella Enteritidis, and 18.4% (11.4%-22.9%) for other serovars. Of global serogrouped non-typhoidal Salmonella isolates from normally sterile sites, serogroup O:4 and O:9 together accounted for 90%, and among serotyped isolates, serovars Typhimurium and Enteritidis together accounted for 75%. Vaccine development strategies covering serogroups O:4 and O:9, or serovars Typhimurium and Enteritidis, have the potential to prevent the majority of non-typhoidal Salmonella invasive disease.
Collapse
Affiliation(s)
| | - Shruti Murthy
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Megan Birkhold
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | - John A. Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
5
|
MacLennan CA, Stanaway J, Grow S, Vannice K, Steele AD. Salmonella Combination Vaccines: Moving Beyond Typhoid. Open Forum Infect Dis 2023; 10:S58-S66. [PMID: 37274529 PMCID: PMC10236507 DOI: 10.1093/ofid/ofad041] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
There is now a robust pipeline of licensed and World Health Organization (WHO)-prequalified typhoid conjugate vaccines with a steady progression of national introductions. However, typhoid fever is responsible for less than half the total global burden of Salmonella disease, and even less among children aged <5 years. Invasive nontyphoidal Salmonella disease is the dominant clinical presentation of Salmonella in Africa, and over a quarter of enteric fever in Asia is due to paratyphoid A. In this article, we explore the case for combination Salmonella vaccines, review the current pipeline of these vaccines, and discuss key considerations for their development, including geographies of use, age of administration, and pathways to licensure. While a trivalent typhoid/nontyphoidal Salmonella vaccine is attractive for Africa, and a bivalent enteric fever vaccine for Asia, a quadrivalent vaccine covering the 4 main disease-causing serovars of Salmonella enterica would provide a single vaccine option for global Salmonella coverage.
Collapse
Affiliation(s)
- Calman A MacLennan
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jeffrey Stanaway
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA
| | - Stephanie Grow
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Kirsten Vannice
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - A Duncan Steele
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
6
|
Costanzo V, Roviello GN. The Potential Role of Vaccines in Preventing Antimicrobial Resistance (AMR): An Update and Future Perspectives. Vaccines (Basel) 2023; 11:vaccines11020333. [PMID: 36851210 PMCID: PMC9962013 DOI: 10.3390/vaccines11020333] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In the modern era, the consumption of antibiotics represents a revolutionary weapon against several infectious diseases, contributing to the saving of millions of lives worldwide. However, the misuse of antibiotics for human and animal purposes has fueled the process of antimicrobial resistance (AMR), considered now a global emergency by the World Health Organization (WHO), which significantly increases the mortality risk and related medical costs linked to the management of bacterial diseases. The current research aiming at developing novel efficient antibiotics is very challenging, and just a few candidates have been identified so far due to the difficulties connected with AMR. Therefore, novel therapeutic or prophylactic strategies to fight AMR are urgently needed. In this scenario, vaccines constitute a promising approach that proves to be crucial in preventing pathogen spreading in primary infections and in minimizing the usage of antibiotics following secondary bacterial infections. Unfortunately, most of the vaccines developed against the main resistant pathogens are still under preclinical and clinical evaluation due to the complexity of pathogens and technical difficulties. In this review, we describe not only the main causes of AMR and the role of vaccines in reducing the burden of infectious diseases, but we also report on specific prophylactic advancements against some of the main pathogens, focusing on new strategies that aim at improving vaccine efficiency.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna Alma Mater Studiorum, 40126 Bologna, Italy
- Correspondence: (V.C.); (G.N.R.)
| | - Giovanni N. Roviello
- Italian National Council for Research (IBB-CNR), Area di Ricerca site and Headquartes, Via Pietro Castellino 111, 80131 Naples, Italy
- Correspondence: (V.C.); (G.N.R.)
| |
Collapse
|
7
|
Elias SC, Muthumbi E, Mwanzu A, Wanjiku P, Mutiso A, Simon R, MacLennan CA. Complementary measurement of nontyphoidal Salmonella-specific IgG and IgA antibodies in oral fluid and serum. Heliyon 2023; 9:e12071. [PMID: 36704288 PMCID: PMC9871079 DOI: 10.1016/j.heliyon.2022.e12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/07/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Immuno-epidemiological studies of orally acquired, enteric pathogens such as nontyphoidal Salmonella (NTS) often focus on serological measures of immunity, ignoring potentially relevant oral mucosal responses. In this study we sought to assess the levels and detectability of both oral fluid and serum IgG and IgA to NTS antigens, in endemic and non-endemic populations. Methods IgG and IgA antibodies specific for Salmonella Typhimurium and Salmonella Enteritidis O antigen and phase 1 flagellin were assessed using Enzyme Linked Immunosorbent Assay (ELISA). Paired oral fluid and serum samples were collected from groups of 50 UK adults, Kenyan adults and Kenyan infants. Additionally, oral fluid alone was collected from 304 Kenyan individuals across a range of ages. Results Antigen-specific IgG and IgA was detectable in the oral fluid of both adults and infants. Oral fluid antibody increased with age, peaking in adulthood for both IgG and IgA but a separate peak was also observed for IgA in infants. Oral fluid and serum responses correlated for IgG but not IgA. Despite standardised collection the relationship between oral fluid volume and antibody levels varied with age and country of origin. Conclusions Measurement of NTS-specific oral fluid antibody can be used to complement measurement of serum antibody. For IgA in particular, oral fluid may offer insights into how protective immunity to NTS changes as individuals transition with age, from maternal to acquired systemic and mucosal immunity. This may prove useful in helping to guide future vaccine design.
Collapse
Affiliation(s)
- Sean C. Elias
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, UK
- Corresponding author.
| | - Esther Muthumbi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- London School of Hygiene & Tropical Medicine, UK
| | - Alfred Mwanzu
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Agnes Mutiso
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | |
Collapse
|
8
|
Jiang X, Chu C, Wang Z, Gu J, Hong Y, Li Q, Jiao X. Preclinical evaluation of OMVs as potential vaccine candidates against Salmonella enterica serovar Enteritidis infection. Front Cell Infect Microbiol 2022; 12:1037607. [DOI: 10.3389/fcimb.2022.1037607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is the most prevalent serotype that causes human infections worldwide. Consumption of S. Enteritidis-contaminated animal foods is a major source of human infections; however, eradicating bacteria from animals remains difficult. Therefore, it is necessary to develop new measures to prevent and control salmonellosis. Here, we used the outer-membrane vesicles (OMVs) of S. Enteritidis and assessed their protective efficacy and immune response in mice. Deletion of tolR in S. Enteritidis increased the production and size of OMVs compared to those in the wild type (WT) and ΔrfaQ strains. Intramuscular immunization with OMVs conferred greater protection than intraperitoneal and intranasal immunization. Moreover, OMVs extracted from both WT and ΔtolR strains provided an 83.3% protective rate in mice challenged with S. Enteritidis, which was higher than that provided by OMVs extracted from the ΔrfaQ strain. However, compared with OMVs from the ΔtolR strain, OMVs from WT and ΔrfaQ strains rapidly eradicated S. Enteritidis colonizing the liver, spleen, ileum, and cecum of BALB/c mice after immunization. Immunization with OMVs from each of the three strains induced humoral immune responses and showed no side effects on the growth of mice. Our study revealed that OMVs from various S. Enteritidis strains could be developed for use as subunit vaccine candidates against nontyphoidal Salmonella infections in mammals.
Collapse
|
9
|
Multiple immunodominant O-epitopes co-expression in live attenuated Salmonella serovars induce cross-protective immune responses against S. Paratyphi A, S. Typhimurium and S. Enteritidis. PLoS Negl Trop Dis 2022; 16:e0010866. [PMID: 36228043 PMCID: PMC9595534 DOI: 10.1371/journal.pntd.0010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/25/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Salmonella enterica subsp. enterica (S. enterica) is a significant public health concern and is estimated to cause more than 300,000 deaths annually. Nowadays, the vaccines available for human Salmonellosis prevention are all targeting just one serovar, i.e., S. Typhi, leaving a huge potential risk of Salmonella disease epidemiology change. In this study, we explored the strategy of multiple immunodominant O-epitopes co-expression in S. enterica serovars and evaluated their immunogenicity to induce cross-immune responses and cross-protections against S. Paratyphi A, S. Typhimurium and S. Enteritidis. We found that nucleotide sugar precursors CDP-Abe and CDP-Par (or CDP-Tyv) could be utilized by S. enterica serovars simultaneously, exhibiting O2&O4 (or O4&O9) double immunodominant O-serotypes without obvious growth defects. More importantly, a triple immunodominant O2&O4&O9 O-serotypes could be achieved in S. Typhimurium by improving the substrate pool of CDP-Par, glycosyltransferase WbaV and flippase Wzx via a dual-plasmid overexpressing system. Through immunization in a murine model, we found that double or triple O-serotypes live attenuated vaccine candidates could induce significantly higher heterologous serovar-specific antibodies than their wild-type parent strain. Meanwhile, the bacterial agglutination, serum bactericidal assays and protection efficacy experiments had all shown that these elicited serum antibodies are cross-reactive and cross-protective. Our work highlights the potential of developing a new type of live attenuated Salmonella vaccines against S. Paratyphi A, S. Typhimurium and S. Enteritidis simultaneously.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review describes recent findings about the burden of bacterial diarrhoea and its potential complications, newer diagnostics, the emerging threat of multidrug resistance, and the promise of vaccines in development. RECENT FINDINGS Introduction of rotavirus vaccines in over 110 countries has changed the landscape of diarrheal pathogens. In upper middle and high-income countries, the incidence of rotavirus-specific and all-cause gastroenteritis has declined substantially, and norovirus has become the major pathogen in many settings. Bacterial pathogens cause approximately 10-15% of episodes, most often Shigella, nontyphoidal Salmonella (NTS) Campylobacter and Shiga toxin-producing Escherichia coli (STEC). In lower income countries, bacterial pathogens remain a major cause of medically attended diarrhoea with Shigella, Campylobacter and enterotoxigenic Escherichia coli (ETEC) predominating. Multidrug-resistant strains of Shigella, NTS and, Campylobacter have emerged globally requiring judicious use of antibiotics according to current guidance. SUMMARY Management of bacterial diarrhoea includes standard fluid and electrolyte therapy, vigilance for potential complications, and use of antibiotics for children who have moderate-severe illness due to pathogens for which efficacy has been demonstrated, or for those at high risk for severe disease. The threat of multiply resistant strains provides impetus for preventive strategies such as development of vaccines.
Collapse
Affiliation(s)
- Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Jansen KU, Gruber WC, Simon R, Wassil J, Anderson AS. The impact of human vaccines on bacterial antimicrobial resistance. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:4031-4062. [PMID: 34602924 PMCID: PMC8479502 DOI: 10.1007/s10311-021-01274-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 05/07/2023]
Abstract
At present, the dramatic rise in antimicrobial resistance (AMR) among important human bacterial pathogens is reaching a state of global crisis threatening a return to the pre-antibiotic era. AMR, already a significant burden on public health and economies, is anticipated to grow even more severe in the coming decades. Several licensed vaccines, targeting both bacterial (Haemophilus influenzae type b, Streptococcus pneumoniae, Salmonella enterica serovar Typhi) and viral (influenza virus, rotavirus) human pathogens, have already proven their anti-AMR benefits by reducing unwarranted antibiotic consumption and antibiotic-resistant bacterial strains and by promoting herd immunity. A number of new investigational vaccines, with a potential to reduce the spread of multidrug-resistant bacterial pathogens, are also in various stages of clinical development. Nevertheless, vaccines as a tool to combat AMR remain underappreciated and unfortunately underutilized. Global mobilization of public health and industry resources is key to maximizing the use of licensed vaccines, and the development of new prophylactic vaccines could have a profound impact on reducing AMR.
Collapse
Affiliation(s)
| | | | - Raphael Simon
- Pfizer Vaccine Research and Development, Pearl River, NY USA
| | - James Wassil
- Pfizer Patient and Health Impact, Collegeville, PA USA
- Present Address: Vaxcyte, 353 Hatch Drive, Foster City, CA 94404 USA
| | | |
Collapse
|
12
|
Dhingra D, Marathe SA, Sharma N, Marathe A, Chakravortty D. Modeling the immune response to Salmonella during typhoid. Int Immunol 2021; 33:281-298. [PMID: 33406267 DOI: 10.1093/intimm/dxab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Several facets of the host immune response to Salmonella infection have been studied independently at great depths to understand the progress and pathogenesis of Salmonella infection. The circumstances under which a Salmonella-infected individual succumbs to an active disease, evolves as a persister or clears the infection are not understood in detail. We have adopted a system-level approach to develop a continuous-time mechanistic model. We considered key interactions of the immune system state variables with Salmonella in the mesenteric lymph node to determine the final disease outcome deterministically and exclusively temporally. The model accurately predicts the disease outcomes and immune response trajectories operational during typhoid. The results of the simulation confirm the role of anti-inflammatory (M2) macrophages as a site for persistence and relapsing infection. Global sensitivity analysis highlights the importance of both bacterial and host attributes in influencing the disease outcome. It also illustrates the importance of robust phagocytic and anti-microbial potential of M1 macrophages and dendritic cells (DCs) in controlling the disease. Finally, we propose therapeutic strategies for both antibiotic-sensitive and antibiotic-resistant strains (such as IFN-γ therapy, DC transfer and phagocytic potential stimulation). We also suggest prevention strategies such as improving the humoral response and macrophage carrying capacity, which could complement current vaccination schemes for enhanced efficiency.
Collapse
Affiliation(s)
- Divy Dhingra
- Department of Mechanical Engineering, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| | - Sandhya Amol Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| | - Nandita Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| | - Amol Marathe
- Department of Mechanical Engineering, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
13
|
Still WL, Tapia MD, Tennant SM, Sylla M, Touré A, Badji H, Keita AM, Sow SO, Levine MM, Kotloff KL. Surveillance for Invasive Salmonella Disease in Bamako, Mali, From 2002 to 2018. Clin Infect Dis 2020; 71:S130-S140. [PMID: 32725229 PMCID: PMC7388721 DOI: 10.1093/cid/ciaa482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Salmonella enterica bloodstream infections are an important cause of childhood morbidity and mortality, including in Mali. We report 17 years of surveillance for nontyphoidal and typhoidal S. enterica infections among inpatients and outpatients at l'Hôpital Gabriel Touré, the main source of pediatric tertiary care in Bamako, Mali. METHODS Between June 2002 and December 2018, a blood culture was collected from 54 748 children aged ≤15 years with fever and/or suspected invasive bacterial infection who provided consent (38 152 inpatients, 16 596 outpatients). Bacterial pathogens were identified using standard microbiological techniques and serovars of S. enterica were determined by PCR and/or agglutination with antisera. RESULTS Nontyphoidal Salmonella (NTS) was identified in 671 enrolled inpatients (1.8% of all enrolled inpatients, 13.8% of enrolled inpatients with a positive culture). S. Enteritidis, the most common NTS serovar, accounted for 38.5% of all NTS isolates (n = 258), followed by S. Typhimurium (31.7%, n = 213). The median (SD) age of children with a culture positive for NTS was 1.8 (3) years. Overall case fatality was 20.9%. An additional 138 inpatients (0.4%) had a positive culture for typhoidal Salmonella. NTS was identified in 11 outpatients (0.07%), while typhoidal Salmonella was found in 49 outpatients (0.3%). The annual incidence of invasive NTS disease decreased over the study period, but case fatality remained high. CONCLUSIONS Although incidence decreased, NTS remained a major cause of invasive bacterial infection and mortality among hospitalized children in Bamako, while typhoidal Salmonella was uncommon. Because 87% of NTS belonged to only 4 serovars, a multivalent vaccine may be an effective strategy to reduce the burden and mortality of invasive NTS.
Collapse
Affiliation(s)
- William L Still
- Department of Epidemiology and Public Health, University of Maryland Graduate School, Baltimore, Maryland, USA
| | - Milagritos D Tapia
- Department of Pediatrics and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M Tennant
- Department of Pediatrics and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mamadou Sylla
- Centre Pour le Développement des Vaccins–Mali, Bamako, Mali
| | - Aliou Touré
- Centre Pour le Développement des Vaccins–Mali, Bamako, Mali
| | - Henry Badji
- Centre Pour le Développement des Vaccins–Mali, Bamako, Mali
| | | | - Samba O Sow
- Centre Pour le Développement des Vaccins–Mali, Bamako, Mali
| | - Myron M Levine
- Centre Pour le Développement des Vaccins–Mali, Bamako, Mali
| | - Karen L Kotloff
- Department of Pediatrics and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Correspondence: K. L. Kotloff, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201–1509 ()
| |
Collapse
|
14
|
Baliban SM, Lu YJ, Malley R. Overview of the Nontyphoidal and Paratyphoidal Salmonella Vaccine Pipeline: Current Status and Future Prospects. Clin Infect Dis 2020; 71:S151-S154. [PMID: 32725233 PMCID: PMC7388718 DOI: 10.1093/cid/ciaa514] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nontyphoidal Salmonella and Salmonella Paratyphi are responsible for significant morbidity and mortality worldwide. To date, no vaccine has been licensed against these organisms. The development of effective vaccines remains an urgent priority. In this review, the rationale for and current status of various vaccine candidates against S. Paratyphi and nontyphoidal Salmonella are presented, with a focus on the research findings from the 2019 International Conference on Typhoid and Other Invasive Salmonelloses. Additionally, other vaccine candidates that are currently undergoing clinical development are highlighted. Future approaches, which may include antigens that are genetically conserved across Salmonella and confer broad, non-serotype-specific protection, are also discussed.
Collapse
Affiliation(s)
- Scott M Baliban
- Center for Vaccine Development and Global Health, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Piccini G, Montomoli E. Pathogenic signature of invasive non-typhoidal Salmonella in Africa: implications for vaccine development. Hum Vaccin Immunother 2020; 16:2056-2071. [PMID: 32692622 PMCID: PMC7553687 DOI: 10.1080/21645515.2020.1785791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Invasive non-typhoidal Salmonella (iNTS) infections are a leading cause of bacteremia in Sub-Saharan Africa (sSA), thereby representing a major public health threat. Salmonella Typhimurium clade ST313 and Salmonella Enteriditis lineages associated with Western and Central/Eastern Africa are among the iNTS serovars which are of the greatest concern due to their case-fatality rate, especially in children and in the immunocompromised population. Identification of pathogen-associated features and host susceptibility factors that increase the risk for invasive non-typhoidal salmonellosis would be instrumental for the design of targeted prevention strategies, which are urgently needed given the increasing spread of multidrug-resistant iNTS in Africa. This review summarizes current knowledge of bacterial traits and host immune responses associated with iNTS infections in sSA, then discusses how this knowledge can guide vaccine development while providing a summary of vaccine candidates in preclinical and early clinical development.
Collapse
Affiliation(s)
| | - Emanuele Montomoli
- VisMederi srl , Siena, Italy.,Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| |
Collapse
|
16
|
Tack B, Phoba MF, Barbé B, Kalonji LM, Hardy L, Van Puyvelde S, Ingelbeen B, Falay D, Ngonda D, van der Sande MAB, Deborggraeve S, Jacobs J, Lunguya O. Non-typhoidal Salmonella bloodstream infections in Kisantu, DR Congo: Emergence of O5-negative Salmonella Typhimurium and extensive drug resistance. PLoS Negl Trop Dis 2020; 14:e0008121. [PMID: 32240161 PMCID: PMC7156106 DOI: 10.1371/journal.pntd.0008121] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 04/14/2020] [Accepted: 02/07/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) are a major cause of bloodstream infection (BSI) in sub-Saharan Africa. This study aimed to assess its longitudinal evolution as cause of BSI, its serotype distribution and its antibiotic resistance pattern in Kisantu, DR Congo. METHODS As part of a national surveillance network, blood cultures were sampled in patients with suspected BSI admitted to Kisantu referral hospital from 2015-2017. Blood cultures were worked-up according to international standards. Results were compared to similar data from 2007 onwards. RESULTS In 2015-2017, NTS (n = 896) represented the primary cause of BSI. NTS were isolated from 7.6% of 11,764 suspected and 65.4% of 1371 confirmed BSI. In children <5 years, NTS accounted for 9.6% of suspected BSI. These data were in line with data from previous surveillance periods, except for the proportion of confirmed BSI, which was lower in previous surveillance periods. Salmonella Typhimurium accounted for 63.1% of NTS BSI and Salmonella Enteritidis for 36.4%. Of all Salmonella Typhimurium, 36.9% did not express the O5-antigen (i.e. variant Copenhagen). O5-negative Salmonella Typhimurium were rare before 2013, but increased gradually from then onwards. Multidrug resistance was observed in 87.4% of 864 NTS isolates, decreased ciprofloxacin susceptibility in 7.3%, ceftriaxone resistance in 15.7% and azithromycin resistance in 14.9%. A total of 14.2% of NTS isolates, that were all Salmonella Typhimurium, were multidrug resistant and ceftriaxone and azithromycin co-resistant. These Salmonella isolates were called extensively drug resistant. Compared to previous surveillance periods, proportions of NTS isolates with resistance to ceftriaxone and azithromycin and decreased ciprofloxacin susceptibility increased. CONCLUSION As in previous surveillance periods, NTS ranked first as the cause of BSI in children. The emergence of O5-negative Salmonella Typhimurium needs to be considered in the light of vaccine development. The high proportions of antibiotic resistance are worrisome.
Collapse
Affiliation(s)
- Bieke Tack
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, KU Leuven, Belgium
- * E-mail:
| | - Marie-France Phoba
- Department of Microbiology, National Institute for Biomedical Research, Kinshasa, Democratic Republic of the Congo
- Department of Microbiology, University Teaching Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Barbara Barbé
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Lisette M. Kalonji
- Department of Microbiology, National Institute for Biomedical Research, Kinshasa, Democratic Republic of the Congo
- Department of Microbiology, University Teaching Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Liselotte Hardy
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sandra Van Puyvelde
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Brecht Ingelbeen
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dadi Falay
- Department of Pediatrics, University Hospital of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Dauly Ngonda
- Department of Pediatrics, University Hospital of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Marianne A. B. van der Sande
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
- Global Health Centre, Julius Center for Health Sciences and Primary Care, University Medical Centrum Utrecht, Utrecht University, Utrecht, Netherlands
| | - Stijn Deborggraeve
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Octavie Lunguya
- Department of Microbiology, National Institute for Biomedical Research, Kinshasa, Democratic Republic of the Congo
- Department of Microbiology, University Teaching Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
17
|
Baliban SM, Curtis B, Amin MN, Levine MM, Pasetti MF, Simon R. Maternal Antibodies Elicited by Immunization With an O- Polysaccharide Glycoconjugate Vaccine Protect Infant Mice Against Lethal Salmonella Typhimurium Infection. Front Immunol 2019; 10:2124. [PMID: 31555302 PMCID: PMC6743215 DOI: 10.3389/fimmu.2019.02124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) are a leading cause of pediatric invasive bacterial infections in sub-Saharan Africa with high associated case fatality rates in children under 5 years old. We have developed glycoconjugate vaccines consisting of the lipid A-removed surface polysaccharide of NTS, core and O-polysaccharide (COPS), and the flagellar monomer protein (FliC) from the homologous serovar as the carrier. We previously established that COPS:FliC was immunogenic and protective in mice immunized as adults or infants; however, the brief period of murine infancy precluded the evaluation of protection against invasive NTS (iNTS) disease in early life. In the present study, we used a mouse model of maternal immunization to investigate transmission of S. Typhimurium COPS:FliC-induced maternal antibodies and protection against lethal iNTS challenge in infant mice. We found that vaccinated dams developed high levels of COPS- and FliC-specific IgG, which were transferred to their offspring. Sera from both vaccinated mothers and their litters mediated complement-dependent bactericidal activity in-vitro. Passively immunized 2-week old infant mice born to vaccinated mothers were fully protected from challenge with an S. Typhimurium blood isolate from sub-Saharan Africa. The pre-clinical findings reported herein demonstrate that anti-COPS:FliC antibodies induced by vaccination are sufficient for protection of murine infants against experimental S. Typhimurium infection. By underscoring the protective role of antibody, our results suggest that maintaining an adequate titer of protective anti-Salmonella antibodies during early life, either through pediatric or maternal COPS:FliC vaccination, may reduce iNTS disease in young children in sub-Saharan Africa.
Collapse
Affiliation(s)
- Scott M. Baliban
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Brittany Curtis
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mohammed N. Amin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Myron Mike Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcela F. Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Raphael Simon
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|