1
|
Norrsell R, Bauden M, Andersson R, Ansari D. L-type Amino Acid Transporter 1 as a Therapeutic Target in Pancreatic Cancer. Cancer Control 2024; 31:10732748241251583. [PMID: 38683590 PMCID: PMC11060026 DOI: 10.1177/10732748241251583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Metabolic rewiring is a key feature of cancer cells to support the demands of growth and proliferation. The metabolism of amino acids is altered in many cancers, including pancreatic cancer. The cellular uptake of amino acids is regulated by amino acid transporters, such as L-type amino acid transporter 1 (LAT1). Accumulating evidence suggests that LAT1 is overexpressed in pancreatic cancer and confers a poor prognosis. Here we discuss the prospects of utilizing LAT1 as a novel target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ragnar Norrsell
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Monika Bauden
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
2
|
Wang M, Qu K, Zhao P, Yin X, Meng Y, Herdewijn P, Liu C, Zhang L, Xia X. Synthesis and anticancer evaluation of acetylated-lysine conjugated gemcitabine prodrugs. RSC Med Chem 2023; 14:1572-1580. [PMID: 37593582 PMCID: PMC10429768 DOI: 10.1039/d3md00190c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Gemcitabine is an antimetabolite drug approved for the treatment of various cancers. However, its use is limited due to several issues such as stability, toxicity and drug resistance. Herein, we present the design and synthesis of a series of gemcitabine prodrugs with modifications on the 4-N-amino group by employing an acetylated l- or d-lysine moiety masked by different substitutions. Prodrugs 1-3 and 6-8 showed up to 2.4 times greater anticancer activity than gemcitabine in A549 lung cells, while they exhibited potent activity against BxPC-3 pancreatic cells with IC50 values in the range of 7-40 nM. Moreover, prodrugs 2-3 and 7-8 were found to be less potent against CTSL low expression Caco-2 cells and at least 69-fold less toxic towards human normal HEK-293T cells compared to gemcitabine, leading to improved selectivity and safety profiles. Further stability studies showed that representative prodrugs 2 and 7 exhibited enhanced metabolic stability in human plasma, human liver microsomes and cytidine deaminase. Prodrug 1 can be cleaved by tumor cell-enriched CTSL to release parent drug gemcitabine. Overall, these results demonstrated that acetylated lysine conjugated gemcitabine prodrugs could serve as promising leads for further evaluation as new anticancer drugs.
Collapse
Affiliation(s)
- Mengmeng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Kunyu Qu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Yiwei Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven 3000 Leuven Belgium
| | - Chao Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST) Shanghai 200237 China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| |
Collapse
|
3
|
Inkoom A, Ndemazie NB, Smith T, Frimpong E, Bulusu R, Poku R, Zhu X, Han B, Trevino J, Agyare E. Biological evaluation of novel gemcitabine analog in patient-derived xenograft models of pancreatic cancer. BMC Cancer 2023; 23:435. [PMID: 37179357 PMCID: PMC10182601 DOI: 10.1186/s12885-023-10928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023] Open
Abstract
Gemcitabine (Gem) has been a standard first-line drug for pancreatic cancer (PCa) treatment; however, Gem's rapid metabolism and systemic instability (short half-life) limit its clinical outcome. The objective of this study was to modify Gem into a more stable form called 4-(N)-stearoyl-gemcitabine (4NSG) and evaluate its therapeutic efficacy in patient-derived xenograft (PDX) models from PCa of Black and White patients.Methods 4NSG was synthesized and characterized using nuclear magnetic resonance (NMR), elemental analysis, and high-performance liquid chromatography (HPLC). 4NSG-loaded solid lipid nanoparticles (4NSG-SLN) were developed using the cold homogenization technique and characterized. Patient-derived pancreatic cancer cell lines labeled Black (PPCL-192, PPCL-135) and White (PPCL-46, PPCL-68) were used to assess the in vitro anticancer activity of 4NSG-SLN. Pharmacokinetics (PK) and tumor efficacy studies were conducted using PDX mouse models bearing tumors from Black and White PCa patients.Results 4NSG was significantly stable in liver microsomal solution. The effective mean particle size (hydrodynamic diameter) of 4NSG-SLN was 82 ± 6.7 nm, and the half maximal inhibitory concentration (IC50) values of 4NSG-SLN treated PPCL-192 cells (9 ± 1.1 µM); PPCL-135 (11 ± 1.3 µM); PPCL-46 (12 ± 2.1) and PPCL-68 equaled to 22 ± 2.6 were found to be significantly lower compared to Gem treated PPCL-192 (57 ± 1.5 µM); PPCL-135 (56 ± 1.5 µM); PPCL-46 (56 ± 1.8 µM) and PPCL-68 (57 ± 2.4 µM) cells. The area under the curve (AUC), half-life, and pharmacokinetic clearance parameters for 4NSG-SLN were 3-fourfold higher than that of GemHCl. For in-vivo studies, 4NSG-SLN exhibited a two-fold decrease in tumor growth compared with GemHCl in PDX mice bearing Black and White PCa tumors.Conclusion 4NSG-SLN significantly improved the Gem's pharmacokinetic profile, enhanced Gem's systemic stability increased its antitumor efficacy in PCa PDX mice bearing Black and White patient tumors.
Collapse
Affiliation(s)
- Andriana Inkoom
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Nkafu Bechem Ndemazie
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Taylor Smith
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Esther Frimpong
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Raviteja Bulusu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Rosemary Poku
- College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Xue Zhu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Bo Han
- Department of Surgery, Keck School of Medicine University of Southern California, Los Angeles, California, 90033, USA
| | - Jose Trevino
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- Department of Surgery, College of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edward Agyare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA.
| |
Collapse
|
4
|
Gyimesi G, Hediger MA. Transporter-Mediated Drug Delivery. Molecules 2023; 28:molecules28031151. [PMID: 36770817 PMCID: PMC9919865 DOI: 10.3390/molecules28031151] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Transmembrane transport of small organic and inorganic molecules is one of the cornerstones of cellular metabolism. Among transmembrane transporters, solute carrier (SLC) proteins form the largest, albeit very diverse, superfamily with over 400 members. It was recognized early on that xenobiotics can directly interact with SLCs and that this interaction can fundamentally determine their efficacy, including bioavailability and intertissue distribution. Apart from the well-established prodrug strategy, the chemical ligation of transporter substrates to nanoparticles of various chemical compositions has recently been used as a means to enhance their targeting and absorption. In this review, we summarize efforts in drug design exploiting interactions with specific SLC transporters to optimize their therapeutic effects. Furthermore, we describe current and future challenges as well as new directions for the advanced development of therapeutics that target SLC transporters.
Collapse
|
5
|
Puris E, Fricker G, Gynther M. The Role of Solute Carrier Transporters in Efficient Anticancer Drug Delivery and Therapy. Pharmaceutics 2023; 15:pharmaceutics15020364. [PMID: 36839686 PMCID: PMC9966068 DOI: 10.3390/pharmaceutics15020364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Transporter-mediated drug resistance is a major obstacle in anticancer drug delivery and a key reason for cancer drug therapy failure. Membrane solute carrier (SLC) transporters play a crucial role in the cellular uptake of drugs. The expression and function of the SLC transporters can be down-regulated in cancer cells, which limits the uptake of drugs into the tumor cells, resulting in the inefficiency of the drug therapy. In this review, we summarize the current understanding of low-SLC-transporter-expression-mediated drug resistance in different types of cancers. Recent advances in SLC-transporter-targeting strategies include the development of transporter-utilizing prodrugs and nanocarriers and the modulation of SLC transporter expression in cancer cells. These strategies will play an important role in the future development of anticancer drug therapies by enabling the efficient delivery of drugs into cancer cells.
Collapse
|
6
|
Wang R, Li Y, Gao J, Luan Y. WRQ-2, a gemcitabine prodrug, reverses gemcitabine resistance caused by hENT1 inhibition. Drug Discov Ther 2022; 16:286-292. [PMID: 36529509 DOI: 10.5582/ddt.2022.01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gemcitabine is widely used in the clinic as a first-line antitumor agent. However, intrinsic and acquired resistance hinders its wide clinical application. In this study, a gemcitabine prodrug nominated as WRQ-2 was designed and synthesized by conjugating gemcitabine with the indole-3-methanol analogue OSU-A9 through a carbamate linkage. WRQ-2 exhibited high cytotoxicity against six cancer cell lines (HeLa, A549, MDA-MB-231, HuH-7, MGC-803, and HCT-116) with IC50 values in low micromolar range. WRQ-2 reversed the resistance of HeLa cells to gemcitabine caused by hENT1 inhibition. Compared to gemcitabine, WRQ-2 induced a higher degree of DNA damage and apoptosis in the presence of hENT1 inhibitor. Our study suggests that compound WRQ-2 is a potential gemcitabine prodrug and worth of further antitumor activity investigation.
Collapse
Affiliation(s)
- Ruquan Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yongliang Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jianjun Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Awasthi A, Kumar N, Mishra A, Ravi R, Dalal A, Shankar S, Chandra R. Noscapine-Amino Acid Conjugates Suppress the Progression of Cancer Cells. ACS Pharmacol Transl Sci 2022; 5:1292-1304. [PMID: 36524011 PMCID: PMC9745893 DOI: 10.1021/acsptsci.2c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer deaths globally; 1 in 16 people are diagnosed with lung cancer in their lifetime. Microtubules, a critical cytoskeletal assembly, have an essential role in cell division. Interference with the microtubule assembly leads to genetic instability during mitosis and cancer cell death. Currently, available antimitotic drugs such as vincas and taxanes are limited due to side effects such as alopecia, myelosuppression, and drug resistance. Noscapine, an opium alkaloid, is a tubulin-binding agent and can alter the microtubule assembly, causing cancer cell death. Amino acids are fundamental building blocks for protein synthesis, making them essential for the biosynthesis of cancer cells. However, the ability of amino acids in drug transportation has yet to be exploited in developing noscapine analogues as a potential drug candidate for cancer. Hence, in the present study, we have explored the ninth position of noscapine by introducing a hydroxymethylene group using the Blanc reaction and further coupled it with a series of amino acids to construct five target conjugates in good yields. The synthesized amino acid conjugate molecules were biologically evaluated against the A549 lung cancer cell line, among which the noscapine-tryptophan conjugate showed IC50 = 32 μM, as compared to noscapine alone (IC50 = 73 μM). Morphological changes in cancer cells, cell cycle arrest in the G1 phase, and ethidium bromide/acridine orange staining indicated promising anticancer properties. Molecular docking confirmed strong binding to tubulin, with a score of -41.47 kJ/mol with all 3D coordinates and significant involvement of molecular forces, including the hydrogen bonds and hydrophobic interactions. Molecular dynamics simulations demonstrated a stable binding of noscapine-tryptophan conjugate for a prolonged time (100 ns) with the involvement of free energy through the reaction coordinates analyses, solving the bioavailability of parent noscapine to the body.
Collapse
Affiliation(s)
- Amardeep Awasthi
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Neeraj Kumar
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois60611, United States
| | - Abhijeet Mishra
- Department of Biochemistry, Shivaji College, University of Delhi, Delhi-110027, India
| | - Rangnath Ravi
- Department of Chemistry, Shivaji College, University of Delhi, Delhi-110027, India
| | - Anu Dalal
- Department of Chemistry, Indian Institute of Technology, Delhi, Delhi-110016, India
| | - Saurav Shankar
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi-110007, India
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110007, India
- Institute of Nano Medical Sciences, University of Delhi, Delhi-110007, India
| |
Collapse
|
8
|
Li Y, Liu Y, Chen Y, Wang K, Luan Y. Design, synthesis and antitumor activity study of a gemcitabine prodrug conjugated with a HDAC6 inhibitor. Bioorg Med Chem Lett 2022; 72:128881. [PMID: 35810950 DOI: 10.1016/j.bmcl.2022.128881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Gemcitabine, as a first-line antitumor drug, has attracted extensive attention. However the occurrence of drug resistance limits its clinical utilization. In this paper, a gemcitabine prodrug GZ was designed and synthesized by conjugation of gemcitabine with a newly reported HDAC6 selective inhibitor pentadecanoic acid. GZ displayed high cytotoxicity to nine cancer cell lines with IC50 values in the low micromolar range. In vivo, GZ displayed superior antitumor activity to gemcitabine in a 4T1 tumor xenograft model without obvious pathological damage to important organs of mice. Our study showed that compound GZ is a potential gemcitabine prodrug, which is worthy of further antitumor activity exploration.
Collapse
Affiliation(s)
- Yongliang Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China; Department of Pharmacology, School of Pharmacology, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yuanpeng Liu
- Department of Pharmacology, School of Basic Medicine, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yiran Chen
- Department of Pharmacology, School of Pharmacology, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Kewei Wang
- Department of Pharmacology, School of Pharmacology, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
9
|
Pandit B, Royzen M. Recent Development of Prodrugs of Gemcitabine. Genes (Basel) 2022; 13:genes13030466. [PMID: 35328020 PMCID: PMC8954202 DOI: 10.3390/genes13030466] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/28/2022] Open
Abstract
Gemcitabine is a nucleoside analog that has been used widely as an anticancer drug for the treatment of a variety of conditions, including ovarian, bladder, non-small-cell lung, pancreatic, and breast cancer. However, enzymatic deamination, fast systemic clearance, and the emergence of chemoresistance have limited its efficacy. Different prodrug strategies have been explored in recent years, seeking to obtain better pharmacokinetic properties, efficacy, and safety. Different drug delivery strategies have also been employed, seeking to transform gemcitabine into a targeted medicine. This review will provide an overview of the recent developments in gemcitabine prodrugs and their effectiveness in treating cancerous tumors.
Collapse
|
10
|
Zhang B, Gao Y, Zhang X, Jiang J, Ren J, Wang S, Hu H, Zhao Y, Chen L, Zhao K, Dai F. Ultra-stable dextran conjugated prodrug micelles for oxidative stress and glycometabolic abnormality combination treatment of Alzheimer's disease. Int J Biol Macromol 2022; 203:430-444. [PMID: 35093435 DOI: 10.1016/j.ijbiomac.2022.01.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
Sophisticated nanomedicines are continually being developed, but big obstacles remain before they finish the drug release mission. The first challenge is rupture possibility of structure when infinite dilution, competitive reaction of electrolytes and protein in blood circulation. In addition, low responsive drug release efficiency in the lesion site remains the major challenge for clinical application of nanomedicine combination treatment. In this study, we discussed the opportunities for Alzheimer's disease (AD) combination therapy based on the thermodynamically ultra-stable dextran conjugated prodrug micelles. Dextran-nateglinide conjugated prodrug micelles (NA) and dextran-vitamin E succinate conjugated prodrug micelles (VES) presented ultra-low critical micelle concentration of ~10-5 mM and high physiological stability when challenged by NaCl, sodium dodecyl sulphate (SDS), dodecyl dimethyl benzyl ammonium chloride (DDBAC) and no rupture of structure happened. The NA/insulin polymer-drug conjugate micelles (NA/INS PDC) and VES/insulin polymer-drug conjugate micelles (VES/INS PDC) efficiently cleaved by reactive oxygen species (ROS), leading to over 80% release of the encapsulated and conjugated drugs. The combination of nateglinide and insulin, vitamin E succinate and insulin improved the glucose metabolism, reduced oxidative stress, improved the mitochondrial function and recovered the cognitive capacity of mice. This work demonstrated a paradigm for specific and high efficacy AD combination therapy.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yachai Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaolei Zhang
- Heibei Research Centre of Analysis and Testing, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jicheng Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jian Ren
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shaoteng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haodong Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Fengying Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
11
|
Wang Y, Qin L, Chen W, Chen Q, Sun J, Wang G. Novel strategies to improve tumour therapy by targeting the proteins MCT1, MCT4 and LAT1. Eur J Med Chem 2021; 226:113806. [PMID: 34517305 DOI: 10.1016/j.ejmech.2021.113806] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
Poor selectivity, potential systemic toxicity and drug resistance are the main challenges associated with chemotherapeutic drugs. MCT1 and MCT4 and LAT1 play vital roles in tumour metabolism and growth by taking up nutrients and are thus potential targets for tumour therapy. An increasing number of studies have shown the feasibility of including these transporters as components of tumour-targeting therapy. Here, we summarize the recent progress in MCT1-, MCT4-and LAT1-based therapeutic strategies. First, protein structures, expression, relationships with cancer, and substrate characteristics are introduced. Then, different drug targeting and delivery strategies using these proteins have been reviewed, including designing protein inhibitors, prodrugs and nanoparticles. Finally, a dual targeted strategy is discussed because these proteins exert a synergistic effect on tumour proliferation. This article concentrates on tumour treatments targeting MCT1, MCT4 and LAT1 and delivery techniques for improving the antitumour effect. These innovative tactics represent current state-of-the-art developments in transporter-based antitumour drugs.
Collapse
Affiliation(s)
- Yang Wang
- Personnel Department, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Liuxin Qin
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Weiwei Chen
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Qing Chen
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Jin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, China
| | - Gang Wang
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China.
| |
Collapse
|
12
|
Bongioanni A, Bueno MS, Mezzano BA, Longhi MR, Garnero C. Amino acids and its pharmaceutical applications: A mini review. Int J Pharm 2021; 613:121375. [PMID: 34906648 DOI: 10.1016/j.ijpharm.2021.121375] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
Amino acids are natural compounds that can be safely used in pharmaceutical applications. Considering the great interest in the amino acids used in the pharmaceutical industry, this article presents an overview of investigations reported in recent years. In this regard, the first sections begin with an introductory description of the properties, classification and safety of amino acids, while in the other sections the most common methods for the preparation of amino acids formulations and their application on solubilization, permeation and stabilization of several active pharmaceutical ingredients are described. Furthermore, available data about the multicomponent systems approach is included. Lastly, the impact of amino acids formulations on therapeutic efficacy is explored. The advantages illustrated suggest that amino acids are capable of improving the biopharmaceutical properties of drugs.
Collapse
Affiliation(s)
- Agustina Bongioanni
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| | - Maria Soledad Bueno
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| | - Belén Alejandra Mezzano
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| | - Marcela Raquel Longhi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| | - Claudia Garnero
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| |
Collapse
|
13
|
Bo T, Kobayashi S, Inanami O, Fujii J, Nakajima O, Ito T, Yasui H. LAT1 inhibitor JPH203 sensitizes cancer cells to radiation by enhancing radiation-induced cellular senescence. Transl Oncol 2021; 14:101212. [PMID: 34461558 PMCID: PMC8405945 DOI: 10.1016/j.tranon.2021.101212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
X-irradiation increased cellular neutral amino acid uptake via LAT1. JPH203 inhibited the radiation-induced increase in neutral amino acid uptake. JPH203 significantly sensitized cancer cells to radiation. JPH203 downregulated mTOR activity after irradiation. JPH203 enhanced cellular senescence after irradiation.
L-type amino acid transporter 1 (LAT1) is important for transporting neutral amino acids into cells. LAT1 expression is correlated with cancer malignancy, suggesting that LAT1 is a promising target for cancer therapy. JPH203, a potential novel drug targeting LAT1, has been shown to suppress tumor growth in various cancer cell lines. However, a combination study of JPH203 and radiation therapy has not been reported. Here, we examined the effects of JPH203 on radiosensitivity after irradiation in A549 and MIA Paca-2 cells. We showed that X-irradiation increased cellular neutral amino acid uptake via LAT1 in both cell lines. JPH203 inhibited the radiation-induced increase in neutral amino acid uptake. We demonstrated that JPH203, at minimally toxic concentrations, significantly sensitized cancer cells to radiation. JPH203 significantly downregulated mTOR activity and enhanced cellular senescence post-irradiation without reducing ATP and GSH levels. These results indicate that LAT1 inhibition by JPH203 sensitizes cancer cells to radiation by enhancing cellular senescence via mTOR downregulation. Thus, JPH203 may be a potent anti-cancer drug in combination with radiation therapy.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Japan.
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Japan
| | - Osamu Nakajima
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Japan
| | - Tsunekata Ito
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
14
|
Recent developments in ligands and chemical probes targeting solute carrier transporters. Curr Opin Chem Biol 2021; 62:53-63. [PMID: 33689964 DOI: 10.1016/j.cbpa.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 12/30/2022]
Abstract
Solute carrier (SLC) membrane transporters remain a largely unexploited target class, despite their central roles in cell identity and metabolism. This gap is reflected in the lack of high-quality chemical ligands or probes and in the small number of compounds that have progressed toward clinical development. In this review, we discuss recent advancements in SLC ligand discovery as well as new candidates that have been added to the investigational toolkit, with a particular focus on first-in-class ligands and the cognate discovery strategies. The availability of new probes expands the opportunity to elucidate the functions of SLCs and their relevance in physiology and explores any future potential of SLC druggability.
Collapse
|
15
|
Design, synthesis, and evaluation of liver-specific gemcitabine prodrugs for potential treatment of hepatitis C virus infection and hepatocellular carcinoma. Eur J Med Chem 2021; 213:113135. [PMID: 33454548 DOI: 10.1016/j.ejmech.2020.113135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022]
Abstract
Many successful anti-viral and anti-cancer drugs are nucleoside analogs, which disrupt RNA and/or DNA synthesis. Here, we present liver-specific prodrugs of the chemotherapy drug gemcitabine (2',2'-difluorodeoxycytidine) for the treatment of hepatitis C virus (HCV) infection and hepatocellular carcinoma. The prodrugs were synthesized by introducing aromatic functional moieties to the cytosine 4-NH2 group of gemcitabine via amide bonds. The chemical modification was designed to i) enable passive diffusion across cellular membrane, ii) protect the prodrugs from inactivating deamination by cellular enzymes, and iii) allow release of active gemcitabine after amide hydrolysis by high levels of carboxylesterases in the liver. We found that many of our prodrugs exhibited similar toxicity as gemcitabine toward liver- and kidney-derived cancer cell lines but were 24- to 620-fold less cytotoxic than gemcitabine in breast- and pancreas-derived cancer cells, respectively. The prodrugs also inhibited an HCV replicon with IC50 values ranging from 10 nM-1.7 μM. Moreover, many of the prodrugs had therapeutic index values of >10,000 and have synergetic effects when combined with other Food and Drug Administration-approved anti-HCV small molecule drugs. These characteristics support the development of gemcitabine prodrugs as liver-specific therapeutics.
Collapse
|
16
|
Miao H, Chen X, Luan Y. Small Molecular Gemcitabine Prodrugs for Cancer Therapy. Curr Med Chem 2020; 27:5562-5582. [PMID: 31419928 DOI: 10.2174/0929867326666190816230650] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/22/2019] [Accepted: 07/09/2019] [Indexed: 02/04/2023]
Abstract
Gemcitabine as a pyrimidine nucleoside analog anticancer drug has high efficacy for a broad spectrum of solid tumors. Gemcitabine is activated within tumor cells by sequential phosphorylation carried out by deoxycytidine kinase to mono-, di-, and triphosphate nucleotides with the last one as the active form. But the instability, drug resistance and toxicity severely limited its utilization in clinics. In the field of medicinal chemistry, prodrugs have proven to be a very effective means for elevating drug stability and decrease undesirable side effects including the nucleoside anticancer drug such as gemcitabine. Many works have been accomplished in design and synthesis of gemcitabine prodrugs, majority of which were summarized in this review.
Collapse
Affiliation(s)
- He Miao
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Shandong Province, Qingdao, China
| | - Xuehong Chen
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Shandong Province, Qingdao, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Shandong Province, Qingdao, China
| |
Collapse
|
17
|
Puris E, Gynther M, Auriola S, Huttunen KM. L-Type amino acid transporter 1 as a target for drug delivery. Pharm Res 2020; 37:88. [PMID: 32377929 PMCID: PMC7203094 DOI: 10.1007/s11095-020-02826-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Our growing understanding of membrane transporters and their substrate specificity has opened a new avenue in the field of targeted drug delivery. The L-type amino acid transporter 1 (LAT1) has been one of the most extensively investigated transporters for delivering drugs across biological barriers. The transporter is predominantly expressed in cerebral cortex, blood-brain barrier, blood-retina barrier, testis, placenta, bone marrow and several types of cancer. Its physiological function is to mediate Na+ and pH independent exchange of essential amino acids: leucine, phenylalanine, etc. Several drugs and prodrugs designed as LAT1 substrates have been developed to improve targeted delivery into the brain and cancer cells. Thus, the anti-parkinsonian drug, L-Dopa, the anti-cancer drug, melphalan and the anti-epileptic drug gabapentin, all used in clinical practice, utilize LAT1 to reach their target site. These examples provide supporting evidence for the utility of the LAT1-mediated targeted delivery of the (pro)drug. This review comprehensively summarizes recent advances in LAT1-mediated targeted drug delivery. In addition, the use of LAT1 is critically evaluated and limitations of the approach are discussed.
Collapse
Affiliation(s)
- Elena Puris
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, 69120, Heidelberg, Germany.
| | - Mikko Gynther
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
18
|
Zhang L, Sui C, Yang W, Luo Q. Amino acid transporters: Emerging roles in drug delivery for tumor-targeting therapy. Asian J Pharm Sci 2020; 15:192-206. [PMID: 32373199 PMCID: PMC7193455 DOI: 10.1016/j.ajps.2019.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/22/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022] Open
Abstract
Amino acid transporters, which play a vital role in transporting amino acids for the biosynthesis of mammalian cells, are highly expressed in types of tumors. Increasing studies have shown the feasibility of amino acid transporters as a component of tumor-targeting therapy. In this review, we focus on tumor-related amino acid transporters and their potential use in tumor-targeting therapy. Firstly, the expression characteristics of amino acid transporters in cancer and their relationship with tumor growth are reviewed. Secondly, the recognition requirements are discussed, focusing on the "acid-base" properties, conformational isomerism and structural analogues. Finally, recent developments in amino acid transporter-targeting drug delivery strategies are highlighted, including prodrugs and nanocarriers, with special attention to the latest findings of molecular mechanisms and targeting efficiency of transporter-mediated endocytosis. We aim to offer related clues that might lead to valuable tumor-targeting strategies by the utilization of amino acid transporters.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biotherapy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Chengguang Sui
- Department of Biotherapy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wenhan Yang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Department of Pharmacy, China Medical University, Shenyang 110001, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Department of Pharmacy, China Medical University, Shenyang 110001, China
| |
Collapse
|
19
|
Self-assembled multifunctional nanotheranostics loading GEM for targeted lung cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110786. [PMID: 32409023 DOI: 10.1016/j.msec.2020.110786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
The aim of this study was to prepare a promising drug carrier for treatment of lung cancer. The self-assembly nanoparticles of SDP-GEM/PEI-PEG-anti-EGFR with chemotherapeutic drug of gemcitabine (GEM), Magnetic resonance imaging (MRI) guided- imaging and targeting of anti- Epidermal Growth Factor Receptor (anti-EGFR) were designed. The imaging capacity, targeting feasibility and anti-tumor function were evaluated respectively. SDP-GEM/PEI-PEG-anti-EGFR exhibited contrast enhancement under T2 Weight Image (T2WI) and a liner relationship was found between the concentration and relaxation rate of R2 and R2* in vitro. With the targeting of anti-EGFR, the endocytosis of nanoparticles increased significantly, which effectively killed lung cancer cells in vitro, and importantly it can be accurately delivered to tumor site within 3 h in vivo. Prolonged lifetime and smaller tumor volume demonstrated that SDP-GEM/PEI-PEG-anti-EGFR efficiently inhibited tumor growth in vivo. Therefore, SDP-GEM/PEI-PEG-anti-EGFR was an effective and safe drug carrier, which had a great potential application in MRI-guided lung cancer therapy.
Collapse
|
20
|
Sapalidis K, Kosmidis C, Funtanidou V, Katsaounis A, Barmpas A, Koimtzis G, Mantalobas S, Alexandrou V, Aidoni Z, Koulouris C, Pavlidis E, Giannakidis D, Surlin V, Pantea S, Strambu V, Constantina RO, Amaniti A, Zarogoulidis P, Mogoantă S, Kesisoglou I, Sardeli C. Update on current pancreatic treatments: from molecular pathways to treatment. J Cancer 2019; 10:5162-5172. [PMID: 31602269 PMCID: PMC6775621 DOI: 10.7150/jca.36300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is still diagnosed at a late stage although we have novel diagnostic tools. Pancreatic cancer chemotherapy treatment resistance is observed and therefore novel treatments are in need. Anti-cancer stem cell therapy, combination of chemotherapy and/or radiotherapy with immunotherapy, proteins/enzymes and gene therapy are currently under evaluation. Targeted treatment with tyrosine kinase inhibitors is also administered and novel inhibitors are also under evaluation. In the current review we present recent data from our search within the year 2018.
Collapse
Affiliation(s)
- Konstantinos Sapalidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Christoforos Kosmidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Varvara Funtanidou
- Anesthesiology Department, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Athanasios Katsaounis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Amastasios Barmpas
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Georgios Koimtzis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Stylianos Mantalobas
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Vyron Alexandrou
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Zoi Aidoni
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Charilaos Koulouris
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Efstathios Pavlidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Dimitrios Giannakidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Valeriu Surlin
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | | | - Victor Strambu
- General Surgery Department, "Dr Carol Davila", University of Medicine and Pharmacy, Bucuresti, Romania
| | | | - Aikaterini Amaniti
- Anesthesiology Department, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Paul Zarogoulidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
- Anesthesiology Department, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Stelian Mogoantă
- Department of Pharmacology and Department of Surgery, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Isaak Kesisoglou
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Chrysanthi Sardeli
- Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
21
|
Flurbiprofen-Loaded Solid SNEDDS Preconcentrate for the Enhanced Solubility, In-Vitro Dissolution and Bioavailability in Rats. Pharmaceutics 2018; 10:pharmaceutics10040247. [PMID: 30487449 PMCID: PMC6321466 DOI: 10.3390/pharmaceutics10040247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to prepare and optimize a solid self-nanoemulsifying drug delivery system pre-concentrate (SSP) containing water-insoluble flurbiprofen (FL) using a novel pseudo-ternary phase diagram. The pseudo-ternary phase diagram, composed of FL as the drug and dispersion core, Kollisolv MCT 70 as the oil phase, and TPGS (tocopherol polyethylene glycol 1000 succinate) as the surfactant, was constructed for the determination of the SSP region. SSP was investigated in terms of particle size, physical state by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD), in vitro dissolution and oral pharmacokinetics in rats. The determined SSP (FL/Kollisolv MCT 70/TPGS = 10/10/80, weight %) in the pseudo-ternary phase diagram had the melting point of 32.37 °C and uniform mean particle size of below 30 nm without any precipitation of FL in the dispersion. In the dissolution test, the SSP exhibited 95.70 ± 3.40% of release at 15 min, whereas the raw FL showed poor dissolution (i.e., 6.75 ± 1.30%) at that time point. In addition, the SSP showed the enhanced oral absorption (i.e., 1.93-fold increase in AUCinfinite) as compared to the suspension group of raw FL. Therefore, the developed SSP would be a promising drug delivery system with excellent solubilization, dissolution, and bioavailability for FL.
Collapse
|