1
|
Shen YR, Cheng L, Zhang DF. TRPV1: A novel target for the therapy of diabetes and diabetic complications. Eur J Pharmacol 2024; 984:177021. [PMID: 39362389 DOI: 10.1016/j.ejphar.2024.177021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disease characterized by abnormally elevated blood glucose levels. Type II diabetes accounts for approximately 90% of all cases. Several drugs are available for hyperglycemia treatment. However, the current therapies for managing high blood glucose do not prevent or reverse the disease progression, which may result in complications and adverse effects, including diabetic neuropathy, retinopathy, and nephropathy. Hence, developing safer and more effective methods for lowering blood glucose levels is imperative. Transient receptor potential vanilloid-1 (TRPV1) is a significant member of the transient receptor potential family. It is present in numerous body tissues and organs and performs vital physiological functions. PURPOSE This review aimed to develop new targeted TRPV1 hypoglycemic drugs by systematically summarizing the mechanism of action of the TRPV1-based signaling pathway in preventing and treating diabetes and its complications. METHODS Literature searches were performed in the PubMed, Web of Science, Google Scholar, Medline, and Scopus databases for 10 years from 2013 to 2023. The search terms included "diabetes," "TRPV1," "diabetic complications," and "capsaicin." RESULTS TRPV1 is an essential potential target for treating diabetes mellitus and its complications. It reduces hepatic glucose production and food intake and promotes thermogenesis, metabolism, and insulin secretion. Activation of TRPV1 ameliorates diabetic nephropathy, retinopathy, myocardial infarction, vascular endothelial dysfunction, gastroparesis, and bladder dysfunction. Suppression of TRPV1 improves diabetes-related osteoporosis. However, the therapeutic effects of activating or suppressing TRPV1 may vary when treating diabetic neuropathy and periodontitis. CONCLUSION This review demonstrates that TRPV1 is a potential therapeutic target for diabetes and its complications. Additionally, it provides a theoretical basis for developing new hypoglycemic drugs that target TRPV1.
Collapse
Affiliation(s)
- Yu-Rong Shen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Long Cheng
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Musolino M, D’Agostino M, Zicarelli M, Andreucci M, Coppolino G, Bolignano D. Spice Up Your Kidney: A Review on the Effects of Capsaicin in Renal Physiology and Disease. Int J Mol Sci 2024; 25:791. [PMID: 38255865 PMCID: PMC10815060 DOI: 10.3390/ijms25020791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Capsaicin, the organic compound which attributes the spicy flavor and taste of red peppers and chili peppers, has been extensively studied for centuries as a potential natural remedy for the treatment of several illnesses. Indeed, this compound exerts well-known systemic pleiotropic effects and may thus bring important benefits against various pathological conditions like neuropathic pain, rhinitis, itching, or chronic inflammation. Yet, little is known about the possible biological activity of capsaicin at the kidney level, as this aspect has only been addressed by sparse experimental investigations. In this paper, we aimed to review the available evidence focusing specifically on the effects of capsaicin on renal physiology, as well as its potential benefits for the treatment of various kidney disorders. Capsaicin may indeed modulate various aspects of renal function and renal nervous activity. On the other hand, the observed experimental benefits in preventing acute kidney injury, slowing down the progression of diabetic and chronic kidney disease, ameliorating hypertension, and even delaying renal cancer growth may set the stage for future human trials of capsaicin administration as an adjuvant or preventive therapy for different, difficult-to-treat renal diseases.
Collapse
Affiliation(s)
- Michela Musolino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Mario D’Agostino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
| | | | - Michele Andreucci
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Giuseppe Coppolino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Davide Bolignano
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Wruck W, Genfi AKA, Adjaye J. Natural Products in Renal-Associated Drug Discovery. Antioxidants (Basel) 2023; 12:1599. [PMID: 37627594 PMCID: PMC10451693 DOI: 10.3390/antiox12081599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The global increase in the incidence of kidney failure constitutes a major public health problem. Kidney disease is classified into acute and chronic: acute kidney injury (AKI) is associated with an abrupt decline in kidney function and chronic kidney disease (CKD) with chronic renal failure for more than three months. Although both kidney syndromes are multifactorial, inflammation and oxidative stress play major roles in the diversity of processes leading to these kidney malfunctions. Here, we reviewed various publications on medicinal plants with antioxidant and anti-inflammatory properties with the potential to treat and manage kidney-associated diseases in rodent models. Additionally, we conducted a meta-analysis to identify gene signatures and associated biological processes perturbed in human and mouse cells treated with antioxidants such as epigallocatechin gallate (EGCG), the active ingredient in green tea, and the mushroom Ganoderma lucidum (GL) and in kidney disease rodent models. We identified EGCG- and GL-regulated gene signatures linked to metabolism; inflammation (NRG1, E2F1, NFKB1 and JUN); ion signalling; transport; renal processes (SLC12A1 and LOX) and VEGF, ERBB and BDNF signalling. Medicinal plant extracts are proving to be effective for the prevention, management and treatment of kidney-associated diseases; however, more detailed characterisations of their targets are needed to enable more trust in their application in the management of kidney-associated diseases.
Collapse
Affiliation(s)
- Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Afua Kobi Ampem Genfi
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, University for Development Studies, Nyankpala P.O. Box TL 1882, Ghana
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
- EGA Institute for Women's Health, Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
4
|
Huang J, Liang Y, Zhou L. Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction. Front Pharmacol 2023; 14:1142001. [PMID: 37007023 PMCID: PMC10050361 DOI: 10.3389/fphar.2023.1142001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The patients with kidney diseases are increasing rapidly all over the world. With the rich abundance of mitochondria, kidney is an organ with a high consumption of energy. Hence, renal failure is highly correlated with the breakup of mitochondrial homeostasis. However, the potential drugs targeting mitochondrial dysfunction are still in mystery. The natural products have the superiorities to explore the potential drugs regulating energy metabolism. However, their roles in targeting mitochondrial dysfunction in kidney diseases have not been extensively reviewed. Herein, we reviewed a series of natural products targeting mitochondrial oxidative stress, mitochondrial biogenesis, mitophagy, and mitochondrial dynamics. We found lots of them with great medicinal values in kidney disease. Our review provides a wide prospect for seeking the effective drugs targeting kidney diseases.
Collapse
|
5
|
López M, Quintero-Macías L, Huerta M, Rodríguez-Hernández A, Melnikov V, Cárdenas Y, Bricio-Barrios JA, Sánchez-Pastor E, Gamboa-Domínguez A, Leal C, Trujillo X, Ríos-Silva M. Capsaicin Decreases Kidney Iron Deposits and Increases Hepcidin Levels in Diabetic Rats with Iron Overload: A Preliminary Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227764. [PMID: 36431865 PMCID: PMC9695924 DOI: 10.3390/molecules27227764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Iron overload (IOL) increases the risk of diabetes mellitus (DM). Capsaicin (CAP), an agonist of transient receptor potential vanilloid-1 (TRPV1), reduces the effects of IOL. We evaluated the effects of chronic CAP administration on hepcidin expression, kidney iron deposits, and urinary biomarkers in a male Wistar rat model with IOL and DM (DM-IOL). IOL was induced with oral administration of iron for 12 weeks and DM was induced with streptozotocin. Four groups were studied: Healthy, DM, DM-IOL, and DM-IOL + CAP (1 mg·kg-1·day-1 for 12 weeks). Iron deposits were visualized with Perls tissue staining and a colorimetric assay. Serum hepcidin levels were measured with an enzyme-linked immunosorbent assay. Kidney biomarkers were assayed in 24 h urine samples. In the DM-IOL + CAP group, the total area of iron deposits and the total iron content in kidneys were smaller than those observed in both untreated DM groups. CAP administration significantly increased hepcidin levels in the DM-IOL group. Urinary levels of albumin, cystatin C, and beta-2-microglobulin were similar in all three experimental groups. In conclusion, we showed that in a DM-IOL animal model, CAP reduced renal iron deposits and increased the level of circulating hepcidin.
Collapse
Affiliation(s)
- Marisa López
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | - Laura Quintero-Macías
- Faculty of Medicine, Universidad de Colima, Av. Universidad #333, Col. Las Víboras, Colima 28040, Mexico
| | - Miguel Huerta
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | | | - Valery Melnikov
- Faculty of Medicine, Universidad de Colima, Av. Universidad #333, Col. Las Víboras, Colima 28040, Mexico
| | - Yolitzy Cárdenas
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | | | - Enrique Sánchez-Pastor
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | - Armando Gamboa-Domínguez
- Belisario Domínguez Sección XVI, Pathology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Caridad Leal
- Centro de Investigaciones Biomédicas de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada No. 800, Col. Independencia, Guadalajara 44340, Mexico
| | - Xóchitl Trujillo
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | - Mónica Ríos-Silva
- University Center of Biomedical Research, CONACyT-Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
- Correspondence: ; Tel./Fax: +52-312-316-1000 (ext. 70557 or 47452)
| |
Collapse
|
6
|
Catalfamo LM, Marrone G, Basilicata M, Vivarini I, Paolino V, Della-Morte D, De Ponte FS, Di Daniele F, Quattrone D, De Rinaldis D, Bollero P, Di Daniele N, Noce A. The Utility of Capsicum annuum L. in Internal Medicine and In Dentistry: A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11187. [PMID: 36141454 PMCID: PMC9517535 DOI: 10.3390/ijerph191811187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Capsaicin is a chili peppers extract, genus Capsicum, commonly used as a food spice. Since ancient times, Capsaicin has been used as a "homeopathic remedy" for treating a wild range of pathological conditions but without any scientific knowledge about its action. Several studies have demonstrated its potentiality in cardiovascular, nephrological, nutritional, and other medical fields. Capsaicin exerts its actions thanks to the bond with transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is a nociceptive receptor, and its activation starts with a neurosensitive impulse, responsible for a burning pain sensation. However, constant local application of Capsaicin desensitized neuronal cells and leads to relief from neuropathic pain. In this review, we analyze the potential adjuvant role of Capsaicin in the treatment of different pathological conditions either in internal medicine or dentistry. Moreover, we present our experience in five patients affected by oro-facial pain consequent to post-traumatic trigeminal neuropathy, not responsive to any remedy, and successfully treated with topical application of Capsaicin. The topical application of Capsaicin is safe, effective, and quite tolerated by patients. For these reasons, in addition to the already-proven beneficial actions in the internal field, it represents a promising method for the treatment of neuropathic oral diseases.
Collapse
Affiliation(s)
- Luciano Maria Catalfamo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Michele Basilicata
- UOSD Special Care Dentistry, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00100 Rome, Italy
| | - Ilaria Vivarini
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenza Paolino
- UOSD Special Care Dentistry, Department of Systems Medicine, University of Rome Tor Vergata, 00100 Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Francesco Saverio De Ponte
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Francesca Di Daniele
- School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
- UOSD of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Domenico Quattrone
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Danilo De Rinaldis
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Patrizio Bollero
- UOSD Special Care Dentistry, Department of Systems Medicine, University of Rome Tor Vergata, 00100 Rome, Italy
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
7
|
Capsaicin Prevents Contrast-Associated Acute Kidney Injury through Activation of Nrf2 in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1763922. [PMID: 35615576 PMCID: PMC9126664 DOI: 10.1155/2022/1763922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
Capsaicin, a transient receptor potential vanilloid 1 channel agonist, possesses antioxidative properties through activating nuclear factor-erythroid 2-related factor 2 (Nrf2). As oxidative stress is a major contributor to the development of contrast-associated acute kidney injury (CA-AKI), we investigated the protective effect of capsaicin against CA-AKI via Nrf2. C57BL/6J mice were treated with dehydration and iodixanol to establish the model of CA-AKI. For pretreatment, capsaicin (0.3 mg/kg) was given via intraperitoneal injection one hour before iodixanol injection. Nrf2-specific siRNA was given through the tail vein to knock down Nrf2. The CA-AKI mouse model had remarkable mitochondrial fragmentation and dysfunction and apoptosis of tubular cells, overproduction of superoxide in renal tubules, increased renal malondialdehyde, tubular epithelial cell injury, and renal dysfunction. Importantly, pretreatment with capsaicin significantly ameliorated tubular cell injury and renal dysfunction with decreased superoxide, renal malondialdehyde, and apoptotic tubular cells and improved mitochondrial morphology and function in the CA-AKI mouse model. The expression of Nrf2 was increased in the kidney from the CA-AKI mouse model and was further enhanced by capsaicin. Administration of siRNA through the tail vein successfully decreased Nrf2 expression in the kidney, and knockdown of Nrf2 by siRNA abolished the beneficial effects of capsaicin on CA-AKI. The present study demonstrated a protective effect of capsaicin pretreatment against CA-AKI via Nrf2.
Collapse
|
8
|
Wang F, Xue Y, Fu L, Wang Y, He M, Zhao L, Liao X. Extraction, purification, bioactivity and pharmacological effects of capsaicin: a review. Crit Rev Food Sci Nutr 2021; 62:5322-5348. [PMID: 33591238 DOI: 10.1080/10408398.2021.1884840] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), a well-known vanilloid, which is the main spicy component in chili peppers, showing several biological activities and the potential applications range from food flavorings to therapeutics. Traditional extraction of capsaicin by organic solvents was time-consuming, some new methods such as aqueous two-phase method and ionic liquid extraction method have been developed. During past few decades, an ample variety of biological effects of capsaicin have been evaluated. Capsaicin can be used in biofilms and antifouling coatings due to its antimicrobial activity, allowing it has a promising application in food packaging, food preservation, marine environment and dental therapy. Capsaicin also play a crucial role in metabolic disorders, including weight loss, pressure lowing and insulin reduction effects. In addition, capsaicin was identified effective on preventing human cancers, such as lung cancer, stomach cancer, colon cancer and breast cancer by inducing apoptosis and inhibiting cell proliferation of tumor cells. Previous research also suggest the positive effects of capsaicin on pain relief and cognitive impairment. Capsaicin, the agonist of transient receptor potential vanilloid type 1 (TRPV1), could selectively activate TRPV1, inducing Ca2+ influx and related signaling pathways. Recently, gut microbiota was also involved in some diseases therapeutics, but its influence on the effects of capsaicin still need to be deeply studied. In this review, different extraction and purification methods of capsaicin, its biological activities and pharmacological effects were systematically summarized, as well as the possible mechanisms were also deeply discussed. This article will give an updated and better understanding of capsaicin-related biological effects and provide theoretical basis for its further research and applications in human health and manufacture development.
Collapse
Affiliation(s)
- Fengzhang Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Yong Xue
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Lin Fu
- ACK Company, Urumqi, Xinjiang, China
| | - Yongtao Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Minxia He
- ACK Company, Urumqi, Xinjiang, China
| | - Liang Zhao
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu, China
| | - Xiaojun Liao
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Das M, Basu S, Banerjee B, Jana K, Sen A, Datta G. Renoprotective effect of Capsicum annum against ethanol-induced oxidative stress and renal apoptosis. J Food Biochem 2020; 45:e13325. [PMID: 32573796 DOI: 10.1111/jfbc.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/01/2022]
Abstract
The present study explored the ameliorative potency of aqueous extract of Capsicum annum (AqCA), against oxidative imbalance and renal toxicity induced by ethanol. Randomly grouped male Wistar rats (n = 6), were marked as ethanol-treated (2 g/kg bw, i.p.), CA125 (125 mg/kg bw, i.p.), CA250 (250 mg/kg bw, i.p.), ethanol pre-treated with CA (similar doses), and control (0.5 ml normal saline, i.p.), and treated for 30 consecutive days. Biochemical analysis of tissue and serum parameters was performed, along with histopathological and histochemical studies. Also, we performed TUNEL assay and western blotting for our experimental groups. Statistical analysis revealed significant (p ≤ .001) alteration in the levels of antioxidant enzymes, serum urea, creatinine, pro-inflammatory cytokines, and cleaved caspases, along with histopathological alterations in the ethanol-treated group. Prior treatment with AqCA prevented ethanol-induced alterations in tissue and serum parameters. These findings indicate that the extract of CA can protect renal cells from ethanol-induced damage by inhibiting oxidative stress, inflammatory response, and apoptosis. PRACTICAL APPLICATIONS: Chronic alcohol consumption is a major public health concern that leads to various diseases and social problems as well. It affects both the affluent and non-affluent society equally. Alcohol (ethanol) is a renowned hepato-toxicant and a well-documented risk factor for oxidative stress, with less known effect on the kidney. Thus, it is essential to investigate the effect of alcohol metabolism on the kidney to find a remedy to prevent it. The present investigation depicts the anti-oxidative and anti-inflammatory role of Capsicum annum against ethanol-induced renal damage. The outcome of this study can be utilized in the future for phytotherapeutic herbal drug formulation. Besides, the bioactive components identified in the study can be further explored by researchers or pharmaceutical corporates for potential therapeutic purpose against renal impairment.
Collapse
Affiliation(s)
- Moumita Das
- Department of Physiology, Rammohan College, Kolkata, India
| | - Subhashree Basu
- Department of Physiology, Tamralipta Mahavidyalaya, Tamluk, India
| | | | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Anurupa Sen
- Department of Physiology, City College, Kolkata, India
| | | |
Collapse
|
10
|
Shi Z, Zhang M, Liu J. Chili Intake Is Inversely Associated with Chronic Kidney Disease among Adults: A Population-Based Study. Nutrients 2019; 11:nu11122949. [PMID: 31817083 PMCID: PMC6949978 DOI: 10.3390/nu11122949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/10/2019] [Accepted: 11/26/2019] [Indexed: 01/02/2023] Open
Abstract
We aimed to assess the association between chili consumption and kidney function and chronic kidney disease (CKD). Data from 8429 adults attending the China Health and Nutrition Survey were used. Chili intake was assessed using a 3 day, 24 h food record in combination with household food inventory between 1991 and 2009. CKD was defined as an estimated glomerular filtration rate (eGFR) of <60 mL/min/1.73 m2, as measured in 2009. Logistic regression was used to assess the association. Of the 8429 participants, 1008 (12.0%) fit the definition of CKD. The prevalence of CKD was 13.1% in non-consumers of chili and 7.4% among those with chili intake above 50 g/day. After adjusting for demographics, lifestyle factors (i.e., smoking, alcohol drinking, physical activity), dietary patterns, and chronic conditions, the odds ratio (OR) (95% CI) for CKD across chili consumption levels of none, 1–20 g/day, 20.1–50 g/day, ≥50.1 g/day were 1.00 (reference), 0.82 (0.67–1.01), 0.83 (0.65–1.05), and 0.51 (0.35–0.75), respectively (p for trend 0.001). There was no interaction between chili intake with gender, income, urbanization, hypertension, obesity, or diabetes. This longitudinal large population-based study suggests that chili consumption is inversely associated with CKD, independent of lifestyle, hypertension, obesity, and overall dietary patterns.
Collapse
Affiliation(s)
- Zumin Shi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
- Correspondence: ; Tel.: +974-4403-6037
| | - Ming Zhang
- Department of Nutrition, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Jianghong Liu
- University of Pennsylvania School of Nursing, Philadelphia, PA 19104, USA;
| |
Collapse
|