1
|
Jain S, Murmu A, Patel S. Elucidating the therapeutic mechanism of betanin in Alzheimer's Disease treatment through network pharmacology and bioinformatics analysis. Metab Brain Dis 2024; 39:1175-1187. [PMID: 38995496 DOI: 10.1007/s11011-024-01385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Betanin, a natural compound with anti-inflammatory and antioxidant properties, has shown promise in mitigating Alzheimer's disease (AD) by reducing amyloid plaque production. Employing network pharmacology, this study aimed to elucidate betanin's therapeutic mechanism in AD treatment. Through integrated analyses utilizing SwissTargetPrediction, STITCH, BindingDB, Therapeutic Target Database (TTD), and OMIM databases, potential protein targets of betanin in AD were predicted. Gene ontology analysis facilitated the identification of 49 putative AD targets. Subsequent gene enrichment and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis revealed associations between these targets and AD. Network pharmacology techniques and molecular docking aided in prioritizing essential genes, with APP, CASP7, ITPR1, CASP8, CASP3, ITPR3, and NF-KB1 emerging as top candidates. The results provide novel insights into betanin's therapeutic efficacy, shedding light on its potential clinical application in AD treatment. By targeting key genes implicated in AD pathology, betanin demonstrates promise as a valuable addition to existing therapeutic strategies. This holistic approach emphasizes the relevance of network pharmacology and bioinformatics analysis in understanding natural chemical disease therapy processes.
Collapse
Affiliation(s)
- Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, India
| | - Ankita Murmu
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, India
| | - Saraswati Patel
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India.
| |
Collapse
|
2
|
Calleja-Gómez M, Roig P, Rimac Brnčić S, Barba FJ, Castagnini JM. Scanning Electron Microscopy and Triple TOF-LC-MS-MS Analysis of Polyphenols from PEF-Treated Edible Mushrooms ( L. edodes, A. brunnescens, and P. ostreatus). Antioxidants (Basel) 2023; 12:2080. [PMID: 38136201 PMCID: PMC10740608 DOI: 10.3390/antiox12122080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Pulsed electric fields (PEF) technology has been used as a sustainable method for extracting antioxidant bioactive compounds from different food matrices. In the present study, the optimal conditions of PEF extraction for mushrooms (2.5 kV/cm, 50 kJ/kg, 6 h) were applied to Lentinula edodes, Agaricus brunnescens, and Pleurotus ostreatus to evaluate the total antioxidant capacity of the extracts, followed by the Triple TOF-LC-MS-MS analysis of the phenolic profile compared to A. bisporus by high-performance liquid chromatography coupled to mass spectrophotometry. In addition, the microporation effect of the technology on the mushroom surface was evaluated using scanning electron microscopy. A comparison was made with a maceration extraction (aqueous stirring for 6 h). The results showed that PEF-assisted extraction enhanced the recovery of antioxidant compounds such as 3,5-dicaffeoylquinic and cinnamic acid with contents up to 236.85 µg/100 g dry weight and 2043.26 µg/100 g dry weight from A. bisporus, respectively. However, mixed results were obtained for certain phenolic compounds, including vanillic acid from L. edodes, ellagic acid from P. ostreatus, and thymol from all mushrooms. These results indicate that the application of PEF technology is effective for the extraction of antioxidant compounds in fungal matrices by creating micropores in cell membranes that allow great recovery in matrices with high content of bioactive compounds.
Collapse
Affiliation(s)
- Mara Calleja-Gómez
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 València, Spain; (M.C.-G.); (P.R.); (J.M.C.)
| | - Patricia Roig
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 València, Spain; (M.C.-G.); (P.R.); (J.M.C.)
| | - Suzana Rimac Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottiejva 6, 10000 Zagreb, Croatia;
| | - Francisco J. Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 València, Spain; (M.C.-G.); (P.R.); (J.M.C.)
| | - Juan Manuel Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 València, Spain; (M.C.-G.); (P.R.); (J.M.C.)
| |
Collapse
|
3
|
Bao N, Song J, Zhao X, Rashed MMA, Zhai K, Dong Z. Mechanochemical-Assisted Extraction and Biological Activity Research of Phenolic Compounds from Lotus Seedpod ( Receptaculum Nelumbinis). Molecules 2023; 28:7947. [PMID: 38138437 PMCID: PMC10745395 DOI: 10.3390/molecules28247947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
To explore the feasibility of the mechanochemical-assisted extraction (MCAE) of phenolic compounds from lotus seedpod (Receptaculum Nelumbinis), a single-factor experiment combined with response-surface methodology (RSM) was used to optimize the extraction process. The results showed the optimal extraction conditions as follows: Li2CO3 as a solid reagent (25%), an extraction time of 80 min, liquid/solid ratio of 42.8 mL/g, and extraction temperature of 80.7 °C; and the maximum value of total phenolic content (TPC) was 106.15 ± 1.44 gallic acid equivalents (GAE)/g dry weight (DW). Additionally, the 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) were 279.75 ± 18.71, 618.60 ± 2.70, and 634.14 ± 7.17 µmol TE/g, respectively. Ultra-high pressure liquid chromatography combined with triple-time-of-flight mass spectrophotometry (UPLC-Triple-TOF/MS) analysis identified eight phenolic compounds mainly consisting of polyphenols and flavonoids. Moreover, the phenolic compounds showed potent inhibitory effects on both α-amylase and α-glucosidase, with inhibition rates of over 80%. Furthermore, the results showed different degrees of inhibition activity against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli, among which the inhibitory effect on the growth of B. subtilis was the best. This paper shows that the phenolic compounds have good biological activities, which provides a reference for the further exploitation of LSP.
Collapse
Affiliation(s)
- Nina Bao
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (N.B.); (J.S.); (X.Z.); (M.M.A.R.); (Z.D.)
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
| | - Jiajia Song
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (N.B.); (J.S.); (X.Z.); (M.M.A.R.); (Z.D.)
- College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Xinyuan Zhao
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (N.B.); (J.S.); (X.Z.); (M.M.A.R.); (Z.D.)
| | - Marwan M. A. Rashed
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (N.B.); (J.S.); (X.Z.); (M.M.A.R.); (Z.D.)
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (N.B.); (J.S.); (X.Z.); (M.M.A.R.); (Z.D.)
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
| | - Zeng Dong
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China; (N.B.); (J.S.); (X.Z.); (M.M.A.R.); (Z.D.)
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
| |
Collapse
|
4
|
Optimization of the Extraction of Antioxidant Compounds from Roselle Hibiscus Calyxes (Hibiscus sabdariffa), as a Source of Nutraceutical Beverages. Molecules 2023; 28:molecules28062628. [PMID: 36985600 PMCID: PMC10051257 DOI: 10.3390/molecules28062628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Secondary metabolites from Hibiscus sabdariffa have been used to prevent different diseases. Roselle Hibiscus is known for being rich in phenolic bioactive compounds. The extraction conditions are directly related to the chemical composition and then to the overall bioactivity of the extract. In this study, a Box-Behnken experimental design has been used to optimize the antioxidant activity, considering four variables: ethanol:water ratio, temperature, extraction time, and solvent:solid ratio. The experiment comprises 27 experiments and 3 repetitions at the central point. The results are described by surface response analysis and a second-degree polynomial equation. The model explains 87% of the variation in the response. The maximum antioxidant activity is yielded when 1% solids are extracted in 35.5% ethanol at 60 °C for 33 min. Finally, a nutritional functional supplement of 495 µmol Trolox Equivalent (TE) antioxidant capacity was prepared with the optimized extract.
Collapse
|
5
|
Optimization of Major Extraction Variables to Improve Recovery of Anthocyanins from Elderberry by Response Surface Methodology. Processes (Basel) 2022. [DOI: 10.3390/pr11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Elderberry, which is well known for its richness in anthocyanin, is attracting attention in the bioindustry as a functional material with high antioxidant capacity. The aim of this study is to optimize extraction conditions to more effectively recover anthocyanins from elderberry. In a fundamental experiment to determine the suitable solvent, various GRAS reagents, such as acetone, ethanol, ethyl acetate, hexane, and isopropyl alcohol, were used, and total phenol and anthocyanin contents were detected as 9.0 mg/g-biomass and 5.1 mg/g-biomass, respectively, only in the extraction using ethanol. Therefore, ethanol was selected as the extraction solvent, and an experimental design was performed to derive a response surface model with temperature, time, and EtOH concentration as the main variables. The optimal conditions for maximal anthocyanin recovery were determined to be 20.0 °C, 15.0 min, and 40.9% ethanol, and the total anthocyanin content was 21.0 mg/g-biomass. In addition, the total phenol and flavonoid contents were detected as 67.4 mg/g-biomass and 43.8 mg/g-biomass, respectively. The very simple and economical extraction conditions suggested in this study contributed to improving the utilization potential of anthocyanin, a useful antioxidant derived from elderberry.
Collapse
|
6
|
Patel K, Patel DK. Therapeutic effectiveness of sinensetin against cancer and other human complications: A review of biological potential and pharmacological activities. Cardiovasc Hematol Disord Drug Targets 2022; 22:CHDDT-EPUB-128089. [PMID: 36503465 DOI: 10.2174/1871529x23666221207121955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/14/2022] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Plant and their active phytoproducts have been used in modern medicine and playing an important role in the health sectors since a very early age. Human beings need a considerable amount of these plant-based phytochemicals for their health. The flavonoidal class phytochemical is an important class of natural products in modern healthcare because of their different pharmacological activities and health benefits. Flavonoidal class phytochemicals have been used to treat diabetes and related secondary complications in humans. Flavonoids have anti-apoptotic, anti-hyperlipidemic, anti-inflammatory, and anti-oxidant potential in the health sectors. Sinensetin, also called 3',4',5,6,7-pentametoksiflavon is a colorless compound with a molecular weight 372.37g/mol and is found to be present in the Orthosiphon stamineus. METHODS In the present investigation, we aim to collect scientific information on sinensetin and analyze it for its biological potential and therapeutic benefits against various types of disorders and complications. Medicinal importance and pharmacological activities data have been collected and analyzed in the present work for sinensetin through literature data analysis of different research works. Google Science Direct, PubMed, Scopus, and Google Scholar were mainly searched to collect the scientific information in the present work. The present work analyzed sinensetin's biological potential, pharmacological activities, and analytical aspects. RESULTS Literature data analysis of different scientific research works revealed the biological potential of phytochemicals in medicine, including flavonoids. Sinensetin has anti-tumor, anti-inflammatory, anti-oxidant, anti-diabetic, and antibacterial activities through their testing in different in vitro and in vivo models. Sinensetin has physiological functions, including anti-oxidant, anti-inflammation, and anti-cancer potential in medicine. Scientific data analysis signified the biological importance of sinensetin against tumors, gastric cancer, colorectal cancer, breast cancer, diabetes, influenza H1N1 infection, obesity, inflammation, colitis, brain disorders, and microbial infections. Further biological potential of sinensetin on enzymes and angiogenesis has been analyzed in the present work. Sinensetin was isolated through different analytical and extraction techniques, including chromatographic techniques. CONCLUSION Literature data analysis signified sinensetin's biological potential and pharmacological activities in medicine.
Collapse
Affiliation(s)
- Kanika Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
7
|
HPLC-MS Methodology for R. carthamoides Extract Quality Evaluation: A Simultaneous Determination of Eight Bioactive Compounds. DIVERSITY 2022. [DOI: 10.3390/d14100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Classified as an adaptogen, Maral root (Rhaponticum carthamoides, Leuzea carthamoides) is a herb that has long been used in Siberian as well as Russian alternative medicine. With over 200 substances found, this plant is a great source of bioactive compounds which have significant beneficial effects on human health and physical enhancement. Simultaneous quantification of the eight most therapeutic and abundant substances, i.e., 20-hydroxyecdysone (20-HE), kaempferol, hesperetin, quercetin, chlorogenic acid, N-feruloyl serotonin, cynaropicrin, and tracheloside belonging to various groups, such as ecdysteroids, flavonoids, phenolics, sesquiterpenes, and lignans, was performed for the first time through validated HPLC-MS. The evaluated parameters for method validation showed excellent linearity with R2 higher than 0.996, stability under various environmental factors with % RSD ≤ 2%, and recovery between 97 and 103% for all the studied compounds. Other validation parameters including selectivity, sensitivity, and precision were found to be within the acceptance criteria. The results of the stability studies provide information on the best combination of conditions for sample handling and storage. Generally, for almost every compound, exposure to light and elevated temperature for 96 h led to degradation; nevertheless, the acidic environment was beneficial for most of them.
Collapse
|
8
|
Response Surface Methodology Applied to the Optimization of the Preparation of Antioxidant and Antidiabetic Extracts from Phragmanthera capitata (Spreng.) Balle: Effect of Particle Size, Powder-to-Solvent Ratio, and Temperature. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8397250. [PMID: 36091603 PMCID: PMC9458395 DOI: 10.1155/2022/8397250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Phragmanthera capitata is a medicinal plant used in traditional medicine to treat several diseases, including diabetes. Its antioxidant properties and inhibitory effects on enzyme-carbohydrate digestion activities have been demonstrated. The present study aimed to provide data that can contribute to rationalizing the preparation of antioxidant and antidiabetic extracts from this plant. P. capitata (whole plant) growing on Persea americana was harvested at the fruiting stage. A response surface design-type central composite was applied to maximize the extraction yield, phenolic contents, and antioxidant and antidiabetic properties of the ethyl acetate extract of P. capitata. The influencing extraction factors were temperature, powder particle size, and solvent-to-powder ratio. The total phenolic content, total antioxidant capacity (TAC), DPPH scavenging ability, ferric reducing antioxidant power (FRAP), and antidiabetic (α-amylase and α-glucosidase inhibitory) effects of the extracts were determined using conventional methods. A temperature above 55°C contributed to the degradation of the extract, which was reflected in the GC-MS profile by a significant reduction in the number of compounds it contained. The optimal conditions were defined as 24.42°C for temperature, 250 µm powder particle size, and 8.30 (v:w) solvent-to-powder ratio. This extraction protocol resulted in more than twice the extraction yield (3.05%), TTC (62.30 mg TAE/g), TAC (41.41 mg AAE/g), FRAP (186.56 mg AAE/g), and α-amylase (IC50 15.05 µg/mL) and α-glucosidase (IC50 21.14 µg/mL) inhibitory activities compared to our previous results. Additionally, these optimal conditions led experimentally to the extraction of higher phenolic content and to the attainment of higher antioxidant and antidiabetic activity, which closely matched the predicted values. Using these conditions, it is possible to prepare an antidiabetic phytomedicine from P. capitatathat can prevent oxidative stress complications. However, further complementary studies should be carried out considering other factors that influence the composition and pharmacological properties of the extract.
Collapse
|
9
|
Pelegrín CJ, Ramos M, Jiménez A, Garrigós MC. Chemical Composition and Bioactive Antioxidants Obtained by Microwave-Assisted Extraction of Cyperus esculentus L. By-products: A Valorization Approach. Front Nutr 2022; 9:944830. [PMID: 35873445 PMCID: PMC9305069 DOI: 10.3389/fnut.2022.944830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Tiger nut is highly appreciated in the Mediterranean basin by the large number of nutritional advantages offered by a beverage, called "horchata," which is directly obtained from the tuber of Cyperus esculentus L. However, the current tiger nut harvesting and processing practices generate a large number of residues, mainly a solid by-product after processing and the plant that remains spread out in the fields. In this work the plant residues have been fully characterized to get a clear picture of the possibilities for its valorization to generate products with high added value. Several analytical techniques have been applied to obtain data to assess the real possibilities of these residues in advanced applications in the food, packaging and nutrition sectors. Results on the compositional and elemental analysis, monosaccharide composition, phenolic concentration, and antioxidant capacity were obtained from the dry powder (DP). The high content of α-cellulose (47.2 ± 1.8%) in DP could open new possibilities for these residues as raw material in the production of cellulose nanoentities. Many essential minerals with nutritional interest (Na, Mg, Ca, Mn, Fe, Cu, and Zn) and free sugars (xylose, arabinose, glucose, and galacturonic acid) were identified in the DP making it an interesting source of valuable nutrients. The total carbohydrate content was 171 ± 31 mg gdm -1. In addition, microwave-assisted extraction (MAE) was used to obtain extracts rich in polyphenolic compounds. A Box-Behnken design (BBD) was used, and the optimal extraction conditions predicted by the model were 80°C, 18 min, ethanol concentration 40% (v/v), and solvent volume 77 mL, showing an extraction yield of 2.27 ± 0.09%, TPC value was 136 ± 3 mg GAE 100 gdm -1 and antioxidant capacity by the ABTS method was 8.41 ± 0.09 μmol trolox gdm -1. Other assays (FRAP and DPPH) were also tested, confirming the high antioxidant capacity of DP extracts. Some polyphenols were identified and quantified: p-coumaric (7.67 ± 0.16 mg 100 gdm -1), ferulic (4.07 ± 0.01 mg 100 gdm -1), sinapinic (0.50 ± 0.01 mg 100 gdm -1) and cinnamic acids (1.10 ± 0.03 mg 100 gdm -1), 4-hydroxybenzaldehyde (1.28 ± 0.06 mg 100 gdm -1), luteolin (1.03 ± 0.01 mg 100 gdm -1), and naringenin (0.60 ± 0.01 mg 100 gdm -1). It can be concluded that C. esculentus L. residues obtained from the tiger nut harvesting and horchata processing could be an important source of high value compounds with potential uses in different industrial sectors, while limiting the environmental hazards associated with the current agricultural practices.
Collapse
Affiliation(s)
| | | | | | - María Carmen Garrigós
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, San Vicente del Raspeig, Spain
| |
Collapse
|
10
|
Study on Extraction and Antioxidant Activity of Flavonoids from Hemerocallis fulva (Daylily) Leaves. Molecules 2022; 27:molecules27092916. [PMID: 35566266 PMCID: PMC9104616 DOI: 10.3390/molecules27092916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Hemerocallis fulva is a medical and edible plant. In this study, we optimized the ultrasound-assisted extraction (UAE) process of extracting flavonoids from Hemerocallis fulva leaves by single-factor experiments and response surface methodology (RSM). The optimum extraction conditions generating the maximal total flavonoids content was as follows: 70.6% ethanol concentration; 43.9:1 mL/g solvent to sample ratio; 61.7 °C extraction temperature. Under the optimized extraction conditions, the total flavonoid content (TFC) in eight Hemerocallis fulva varieties were determined, and H. fulva (L.) L. var. kwanso Regel had the highest TFC. The cytotoxicity of the extract was studied using the Cell Counting Kit-8 (CCK-8 assay). When the concentration was less than 1.25 mg/mL, the extract had no significant cytotoxicity to HaCaT cells. The antioxidant activity was measured via chemical antioxidant activity methods in vitro and via cellular antioxidant activity methods. The results indicated that the extract had a strong ABTS and •OH radical scavenging activity. Additionally, the extract had an excellent protective effect against H2O2-induced oxidative damage at a concentration of 1.25 mg/mL, which could effectively reduce the level of ROS to 106.681 ± 9.733% (p < 0.001), compared with the 163.995 ± 6.308% of the H2O2 group. We identified five flavonoids in the extracts using high-performance liquid chromatography (HPLC). Infrared spectroscopy indicated that the extract contained the structure of flavonoids. The results showed that the extract of Hemerocallis fulva leaves had excellent biocompatibility and antioxidant activity, and could be used as a cheap and potential source of antioxidants in the food, cosmetics, and medicine industries.
Collapse
|
11
|
TOUL F, DJENDAR A, SELADJİ M, BERROUKECHE F. Phytochemical profiling and evaluation of antioxidant activity of different solvent extracts from Algerian Bunium incrassatum seeds’. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1058060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Yu Y, Lu X, Zhang T, Zhao C, Guan S, Pu Y, Gao F. Tiger Nut ( Cyperus esculentus L.): Nutrition, Processing, Function and Applications. Foods 2022; 11:foods11040601. [PMID: 35206077 PMCID: PMC8871521 DOI: 10.3390/foods11040601] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
The tiger nut is the tuber of Cyperus esculentus L., which is a high-quality wholesome crop that contains lipids, protein, starch, fiber, vitamins, minerals and bioactive factors. This article systematically reviewed the nutritional composition of tiger nuts; the processing methods for extracting oil, starch and other edible components; the physiochemical and functional characteristics; as well as their applications in food industry. Different extraction methods can affect functional and nutritional properties to a certain extent. At present, mechanical compression, alkaline methods and alkali extraction-acid precipitation are the most suitable methods for the production of its oil, starch and protein in the food industry, respectively. Based on traditional extraction methods, combination of innovative techniques aimed at yield and physiochemical characteristics is essential for the comprehensive utilization of nutrients. In addition, tiger nut has the radical scavenging ability, in vitro inhibition of lipid peroxidation, anti-inflammatory and anti-apoptotic effects and displays medical properties. It has been made to milk, snacks, beverages and gluten-free bread. Despite their ancient use for food and feed and the many years of intense research, tiger nuts and their components still deserve further exploitation on the functional properties, modifications and intensive processing to make them suitable for industrial production.
Collapse
|
13
|
New Advances in the Phenolic Composition of Tiger Nut ( Cyperus esculentus L.) by-Products. Foods 2022; 11:foods11030343. [PMID: 35159494 PMCID: PMC8834407 DOI: 10.3390/foods11030343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
“Horchata” is a well-known Spanish beverage obtained from pressing tiger nuts. Its by-product is a potential source of sugar and fiber but also contains polyphenols; thus, it could be used as a new ingredient in the food industry. The aim of this work is to determine the phenolic compounds and compare the phenolic profile of two tiger nut by-products. A Box–Behnken design has been carried out to optimize the extraction of phenolic compounds from tiger nut by-products by ultrasound technology. The independent factors were time (min), ethanol/water (% v/v), and solvent/sample ratio (v/w). The model was validated and confirmed by ANOVA. A Protected Designation of Origin (PDO) of Valencia and a non-Protected Designation of Origin (n-PDO) tiger nut by-products were extracted under the optimal conditions and were characterized by HPLC-DAD-ESI-TOF-MS (High Performance Liquid Chropatography coupled to a photodiode array time-of-flight mass detector). Moreover, their antioxidant activities measured by three different methods (DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2′-Azinobis [3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt) and FRAP (ferric reducing antioxidant power)) were compared. A total of 45 polar compounds were identified, and the phenolic ones were quantified, some of them for the first time. PDO tiger nut by-product has been demonstrated to be richer in phenolic acids and other polyphenols and has higher antioxidant activity; meanwhile, n-PDO tiger nut by-product is richer in phenol precursors.
Collapse
|
14
|
Ozbek Yazici S, Ozmen İ. Ultrasound assisted extraction of phenolic compounds from
Capparis Ovata
var canescens fruit using deep eutectic solvents. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sercan Ozbek Yazici
- Faculty of Health Sciences Department of Nutrition and Dietetics Burdur Mehmet Akif Ersoy University Burdur Turkey
| | - İsmail Ozmen
- Art and Science Faculty Department of Chemistry Suleyman Demirel University Isparta Turkey
| |
Collapse
|
15
|
Lorini A, Damin FM, de Oliveira DN, Ramires T, Rombaldi CV, Zavareze EDR, Dias ÁRG, Godoy HT, da Silva WP, Galli V, Meinhart AD. Multivariate optimization results in an edible extract from Ilex paraguariensis unexplored residues with a high amount of phenolic compounds. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:23-38. [PMID: 34994288 DOI: 10.1080/03601234.2021.2020530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ilex paraguariensis A. St. Hil. plants are used for the preparation of food and drinks which are widely consumed worldwide. During the harvest season of these plants, 2-5 ton hec-1 of agricultural residue is generated, which remains underutilized. Therefore, this study aimed to obtain an edible extract with high content of bioactive compounds and antimicrobial properties from the agricultural residue of I. paraguariensis for industrial use in food applications. The extraction conditions were optimized through a multivariate experimental design using ethanol:water. The extracted compounds were characterized by HPLC-ESY-QTOF-MS. In the optimal extraction conditions, 55 compounds were extracted, including 8 compounds that were not previously reported in I. paraguariensis. The method proved to be simple, fast, economical and environmentally friendly, with the use of green solvents. This optimization allowed for the extraction of 15.07 g of phenolic compounds per 100 g of residue. The extract showed high antioxidant activity and the capacity to inhibit Staphylococcus aureus. Results indicate that it is possible to obtain an edible extract with a high content of bioactive compounds, particularly phenolic compounds, from the I. paraguariensis residue, which has high prospects for the valorization of unexplored natural resources.
Collapse
Affiliation(s)
- Alexandre Lorini
- Department of Food Science and Agrotechnology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Fernanda M Damin
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Diogo N de Oliveira
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tassiana Ramires
- Department of Food Science and Agrotechnology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Cesar V Rombaldi
- Department of Food Science and Agrotechnology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Elessandra da R Zavareze
- Department of Food Science and Agrotechnology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Álvaro R G Dias
- Department of Food Science and Agrotechnology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Helena T Godoy
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Wladimir P da Silva
- Department of Food Science and Agrotechnology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Vanessa Galli
- Department of Food Science and Agrotechnology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Adriana D Meinhart
- Department of Food Science and Agrotechnology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| |
Collapse
|
16
|
Gufe C, Ngenyoung A, Rattanarojpong T, Khunrae P. Investigation into the effects of CbXyn10C and Xyn11A on xylooligosaccharide profiles produced from sugarcane bagasse and rice straw and their impact on probiotic growth. BIORESOURCE TECHNOLOGY 2022; 344:126319. [PMID: 34775054 DOI: 10.1016/j.biortech.2021.126319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
This comparative study investigated the effects of CbXyn10C and Xyn11A on xylooligosaccharide profiles produced from sugarcane bagasse (SCB) and rice straw (RS) and their impact on probiotic growth. Generally, CbXyn10C produced more xylose and a higher total phenolic content than Xyn11A. Interestingly, XOS obtained from SCB with CbXyn10C contained significantly more gallic acid than that produced by Xn11A. All selected probiotics thrived in RS-derived XOS, regardless of the enzyme used. However, probiotics grew differently on SCB-derived XOS depending on the enzyme used. All probiotics thrived in Xyn11A-derived XOS from SCB. Only Lactobacillus plantarum thrived on CbXyn10C-derived XOS, while the other two were inhibited. Gallic acid in CbXyn10C-derived XOS from SCB has been linked to probiotic retardation, and gallic acid-enriched broth has been found to inhibit Bifidobacterium longum and Bacillus subtilis, but not L. plantarum. Consequently, the selection of enzymes and plant biomass is crucial for XOS properties and prebiotic effects.
Collapse
Affiliation(s)
- Claudious Gufe
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi, Thailand
| | - Apichet Ngenyoung
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi, Thailand.
| |
Collapse
|
17
|
Nutrizio M, Režek Jambrak A, Rezić T, Djekic I. Extraction of phenolic compounds from oregano using high voltage electrical discharges–sustainable perspective. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marinela Nutrizio
- Faculty of Food Technology and Biotechnology University of Zagreb 6 Pierotti Street Zagreb Croatia
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology University of Zagreb 6 Pierotti Street Zagreb Croatia
| | - Tonči Rezić
- Faculty of Food Technology and Biotechnology University of Zagreb 6 Pierotti Street Zagreb Croatia
| | - Ilija Djekic
- Faculty of Agriculture University of Belgrade 6 Nemanjina Street Zemun Serbia
| |
Collapse
|
18
|
Singh M, Thrimawithana T, Shukla R, Adhikari B. Extraction and characterization of polyphenolic compounds and potassium hydroxycitrate from Hibiscus sabdariffa. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
Seke F, Manhivi VE, Shoko T, Slabbert RM, Sultanbawa Y, Sivakumar D. Extraction optimisation, hydrolysis, antioxidant properties and bioaccessibility of phenolic compounds in Natal plum fruit (Carissa Macrocarpa). FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Silage Fermentation: A Potential Microbial Approach for the Forage Utilization of Cyperus esculentus L. By-Product. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyperus esculentus L. leaves (CLL) are agricultural by-products produced from Cyperus esculentus L. harvesting, and can be used as livestock feed despite their low economic value for human consumption. This study aims to develop a favorable approach to processing Cyperus esculentus L. by-product as coarse fodder. The chopped CLL was pretreated by (1) mixing with canola straw at a 4:1 ratio, or (2) wilting it for 8 h, then it ensiling with or without compounded lactic acid bacteria (LAB) additives for 60 days. Our results demonstrated that compounded LAB additives: improved CLL silage fermentation quality by increasing acetic acid and lactic acid contents and decreasing ethanol and ammonia-N contents; preserved nutrients by raising the level of crude protein and water soluble carbohydrates; modified the bacterial community by increasing the relative abundance of Lactobacillus while decreasing the relative abundance of undesirable Enterococcus; and also might improve animal health by increasing the relative concentrations of antioxidant substances (such as 7-galloylcatechin) and antibacterial compounds (such as ferulic acid). This study provides strong evidence that Cyperus esculentus L. by-product can be a potential livestock feed after being ensiled with compounded LAB additives.
Collapse
|
21
|
Fadjare Frempong T, Owusu Boadi N, Badu M. Optimization of extraction conditions for polyphenols from the stem bark of Funtumia elastica (Funtum) utilizing response surface methodology. AAS Open Res 2021; 4:46. [PMID: 34632271 DOI: 10.12688/aasopenres.13284.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The recovery of phenolic compounds is seen as an arduous task because phenolic compounds are available as free aglycones, as sugar or ester conjugates, or as polymers with several monomeric components. This study looks at the optimization of factors that affect the efficiency for the extraction of phenolic compounds from the stem-bark of Funtumia elastica. METHODS Five independent variables (solvent concentration, time, the temperature, solid-liquid ratio, and pH) of the extraction process were selected. Single factor analysis as well as the response surface method was used to evaluate the impact of the selected factors on the total phenolic content. The effect of the extraction factors on the phenolic content was tested for its statistical significant (p <0.05). For the response surface method, a five/factor, five/level central composite design was used, and a fitted second-order polynomial regression model equation was used to show how the extraction parameters affected the total phenolic recovery. RESULTS The predicted value (R² of 0.5917) agreed with the adjusted value (R² of 0.7707). The residuals for response predictions were less than 5%. The optimal factors for the extraction were ethanol concentration of 75.99% v/v, extraction time of 193.86 minutes, temperature of 63.66°C, pH of 5.62, and solid-liquid ratio of 1:21.12 g/mL. Actual overall content of the phenolic compounds was validated at 82.83 ± 3.335 mg gallic acid equivalent (GAE) /g weight of extract, which agreed with the predicted response of 89.467 mg GAE/g of the dried extract under the optimal factors. CONCLUSIONS The rich phenolic content of stem-bark of Funtumia elastica points to its potential as a functional medicinal product to alleviate diseases caused by oxidative stress such as asthma, breathing disorders, inflammation, and cardiovascular diseases. The results obtained indicate that, the studied optimal conditions support effective phenolics extraction of Funtumia elastica.
Collapse
Affiliation(s)
- Theophilus Fadjare Frempong
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, UPO PMB, Ghana
| | - Nathaniel Owusu Boadi
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, UPO PMB, Ghana
| | - Mercy Badu
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, UPO PMB, Ghana
| |
Collapse
|
22
|
Fadjare Frempong T, Owusu Boadi N, Badu M. Optimization of extraction conditions for polyphenols from the stem bark of Funtumia elastica (Funtum) utilizing response surface methodology. AAS Open Res 2021; 4:46. [PMID: 34632271 PMCID: PMC8479850 DOI: 10.12688/aasopenres.13284.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The recovery of phenolic compounds is seen as an arduous task because phenolic compounds are available as free aglycones, as sugar or ester conjugates, or as polymers with several monomeric components. This study looks at the optimization of factors that affect the efficiency for the extraction of phenolic compounds from the stem-bark of Funtumia elastica. Methods: Five independent variables (solvent concentration, time, the temperature, solid-liquid ratio, and pH) of the extraction process were selected. Single factor analysis as well as the response surface method was used to evaluate the impact of the selected factors on the total phenolic content. The effect of the extraction factors on the phenolic content was tested for its statistical significant (p <0.05). For the response surface method, a five/factor, five/level central composite design was used, and a fitted second-order polynomial regression model equation was used to show how the extraction parameters affected the total phenolic recovery. Results: The predicted value (R² of 0.5917) agreed with the adjusted value (R² of 0.7707). The residuals for response predictions were less than 5%. The optimal factors for the extraction were ethanol concentration of 75.99% v/v, extraction time of 193.86 minutes, temperature of 63.66°C, pH of 5.62, and solid-liquid ratio of 1:21.12 g/mL. Actual overall content of the phenolic compounds was validated at 82.83 ± 3.335 mg gallic acid equivalent (GAE) /g weight of extract, which agreed with the predicted response of 89.467 mg GAE/g of the dried extract under the optimal factors. Conclusions: The rich phenolic content of stem-bark of Funtumia elastica points to its potential as a functional medicinal product to alleviate diseases caused by oxidative stress such as asthma, breathing disorders, inflammation, and cardiovascular diseases. The results obtained indicate that, the studied optimal conditions support effective phenolics extraction of Funtumia elastica.
Collapse
Affiliation(s)
- Theophilus Fadjare Frempong
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, UPO PMB, Ghana
| | - Nathaniel Owusu Boadi
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, UPO PMB, Ghana
| | - Mercy Badu
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, UPO PMB, Ghana
| |
Collapse
|
23
|
Bao N, Rashed MMA, Jiang B, Zhai K, Luo Z. Green and Efficient Extraction Approach for Polyphenol Recovery from Lotus Seedpods (Receptaculum Nelumbinis): Gas-Assisted Combined with Glycerol. ACS OMEGA 2021; 6:26722-26731. [PMID: 34661026 PMCID: PMC8515820 DOI: 10.1021/acsomega.1c04190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/17/2021] [Indexed: 05/24/2023]
Abstract
In this paper, the gas-assisted combined with glycerol extraction (GAGE) for polyphenol recovery from lotus seedpods (LSPs) was modeled and optimized. Box-Behnken design was applied to optimize the total polyphenol content (TPC) of LSP along with enhancing antioxidant activities using response surface methodology based on the TPC extraction yield (%), which was affected by glycerol concentration, time, temperature, and glycerol-to-solid ratio. The optimal conditions for the LSP extract were glycerol-to-solid ratio, 42 mL/g; time, 50 min; concentration of glycerol, 45%; and temperature, 70 °C. Ultra-high-pressure liquid chromatography integrated with triple-time-of-flight mass spectrophotometry (UPLC-Triple-TOF/MS) analysis revealed nine biologically active polyphenols. Furthermore, Fourier-transform infrared spectroscopy and scanning electron microscopy results demonstrated the effect and influence during extraction. The findings suggested that GAGE is a potential, green, and high-efficiency alternative that could be used to recover polyphenols from plant source byproducts.
Collapse
Affiliation(s)
- Nina Bao
- Suzhou
Engineering and Technological Research Center of Natural Medicine
and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000 Anhui, China
- College
of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products
Postharvest Handling of Ministry of Agriculture and Rural Affairs,
Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint
Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Marwan M. A. Rashed
- Suzhou
Engineering and Technological Research Center of Natural Medicine
and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000 Anhui, China
| | - Bianling Jiang
- Suzhou
Engineering and Technological Research Center of Natural Medicine
and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000 Anhui, China
| | - Kefeng Zhai
- Suzhou
Engineering and Technological Research Center of Natural Medicine
and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000 Anhui, China
| | - Zisheng Luo
- College
of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products
Postharvest Handling of Ministry of Agriculture and Rural Affairs,
Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint
Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058 Zhejiang, China
- Ningbo
Research Institute, Zhejiang University, Ningbo 315000 Zhejiang, China
- Fuli
Institute of Food Science, Hangzhou 310058 Zhejiang, China
| |
Collapse
|
24
|
Lee HL, Kang CY, Kuo YJ, Tseng SN. Polydopamine and silica nanoparticles magnetic solid phase extraction coupled with liquid chromatography-tandem mass spectrometry to determine phenolic acids and flavonoids in fruit wine. J Food Drug Anal 2021; 29:391-401. [PMID: 35696245 PMCID: PMC9261790 DOI: 10.38212/2224-6614.3359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Magnetic solid phase extraction (MSPE) have been widely applied in a variety of sample preparation techniques. Herein, Fe3O4@pDA as the sorbents for MSPE, were developed for the determination of phenolic acids and flavonoids in fruit wine samples in combination with LC-MS/MS. The Fe3O4@pDA were characterized by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Superconducting Quantum Interference Device Magnetometer (SQUID) and thermogravimetric analysis (TGA) in detail. In the present study, a new, rapid, and efficient MSPE by LC-MS/MS was established for the extraction and sensitive detection of phenolic acids and flavonoids. Under the optimized condition of extraction procedure including the pH value of 4.0, 10 mg of Fe3O4@pDA, 60 s extraction time, and 600 μL desorption solvent volume, good responses were investigated. Results showed that the limits of detection (S/N = 3) for phenolic acids and flavonoids were in the range of 0.01-0.29 ng/ mL. The correlation coefficients of all analytes were more than 0.9985. The method was satisfactorily used for the detection of eleven analytes, and the recoveries of these targets for the two spiked wines (white grape wine and litchi wine) ranged from 80.03 to 116.68% and from 84.00 to 116.1%, respectively.
Collapse
Affiliation(s)
- Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City 24205,
Taiwan
| | - Chih-Yuan Kang
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City 24205,
Taiwan
| | - Yen-Jung Kuo
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City 24205,
Taiwan
| | - Shan-Ni Tseng
- Department of Textiles & Clothing, Fu Jen Catholic University, Xinzhuang District, New Taipei City 24205,
Taiwan
| |
Collapse
|
25
|
Giordano R, Saii Z, Fredsgaard M, Hulkko LSS, Poulsen TBG, Thomsen ME, Henneberg N, Zucolotto SM, Arendt-Nielsen L, Papenbrock J, Thomsen MH, Stensballe A. Pharmacological Insights into Halophyte Bioactive Extract Action on Anti-Inflammatory, Pain Relief and Antibiotics-Type Mechanisms. Molecules 2021; 26:3140. [PMID: 34073962 PMCID: PMC8197292 DOI: 10.3390/molecules26113140] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
The pharmacological activities in bioactive plant extracts play an increasing role in sustainable resources for valorization and biomedical applications. Bioactive phytochemicals, including natural compounds, secondary metabolites and their derivatives, have attracted significant attention for use in both medicinal products and cosmetic products. Our review highlights the pharmacological mode-of-action and current biomedical applications of key bioactive compounds applied as anti-inflammatory, bactericidal with antibiotics effects, and pain relief purposes in controlled clinical studies or preclinical studies. In this systematic review, the availability of bioactive compounds from several salt-tolerant plant species, mainly focusing on the three promising species Aster tripolium, Crithmum maritimum and Salicornia europaea, are summarized and discussed. All three of them have been widely used in natural folk medicines and are now in the focus for future nutraceutical and pharmacological applications.
Collapse
Affiliation(s)
- Rocco Giordano
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Zeinab Saii
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Malthe Fredsgaard
- Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; (M.F.); (L.S.S.H.); (M.H.T.)
| | - Laura Sini Sofia Hulkko
- Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; (M.F.); (L.S.S.H.); (M.H.T.)
| | - Thomas Bouet Guldbæk Poulsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Mikkel Eggert Thomsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Nanna Henneberg
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Silvana Maria Zucolotto
- Center of Health Sciences, Department of Pharmaceutical Science, Federal University of Santa Catarina, Campus Universitário, Trindade, 88040–970 Florianópolis, Brazil;
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, D-30419 Hannover, Germany;
| | - Mette Hedegaard Thomsen
- Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; (M.F.); (L.S.S.H.); (M.H.T.)
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| |
Collapse
|
26
|
Reche C, Rosselló C, Umaña MM, Eim V, Simal S. Mathematical Modelling of Ultrasound-Assisted Extraction Kinetics of Bioactive Compounds from Artichoke By-Products. Foods 2021; 10:foods10050931. [PMID: 33922734 PMCID: PMC8146431 DOI: 10.3390/foods10050931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 01/06/2023] Open
Abstract
Valorization of an artichoke by-product, rich in bioactive compounds, by ultrasound-assisted extraction, is proposed. The extraction yield curves of total phenolic content (TPC) and chlorogenic acid content (CAC) in 20% ethanol (v/v) with agitation (100 rpm) and ultrasound (200 and 335 W/L) were determined at 25, 40, and 60 °C. A mathematical model considering simultaneous diffusion and convection is proposed to simulate the extraction curves and to quantify both temperature and ultrasound power density effects in terms of the model parameters variation. The effective diffusion coefficient exhibited temperature dependence (72% increase for TPC from 25 °C to 60 °C), whereas the external mass transfer coefficient and the equilibrium extraction yield depended on both temperature (72% and 90% increases for TPC from 25 to 60 °C) and ultrasound power density (26 and 51% increases for TPC from 0 (agitation) to 335 W/L). The model allowed the accurate curves simulation, the average mean relative error being 5.3 ± 2.6%. Thus, the need of considering two resistances in series to satisfactorily simulate the extraction yield curves could be related to the diffusion of the bioactive compound from inside the vegetable cells toward the intercellular volume and from there, to the liquid phase.
Collapse
|
27
|
Ahmad R, Ahmad N, Alkhars S, Alkhars A, Alyousif M, Bukhamseen A, Abuthayn S, Aqeel M, Aljamea A. Green accelerated solvent extraction (ASE) with solvent and temperature effect and green UHPLC-DAD analysis of phenolics in pepper fruit (Capsicum annum L.). J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Rebollo-Hernanz M, Cañas S, Taladrid D, Benítez V, Bartolomé B, Aguilera Y, Martín-Cabrejas MA. Revalorization of Coffee Husk: Modeling and Optimizing the Green Sustainable Extraction of Phenolic Compounds. Foods 2021; 10:foods10030653. [PMID: 33808664 PMCID: PMC8003551 DOI: 10.3390/foods10030653] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
This study aimed to model and optimize a green sustainable extraction method of phenolic compounds from the coffee husk. Response surface methodology (RSM) and artificial neural networks (ANNs) were used to model the impact of extraction variables (temperature, time, acidity, and solid-to-liquid ratio) on the recovery of phenolic compounds. All responses were fitted to the RSM and ANN model, which revealed high estimation capabilities. The main factors affecting phenolic extraction were temperature, followed by solid-to-liquid ratio, and acidity. The optimal extraction conditions were 100 °C, 90 min, 0% citric acid, and 0.02 g coffee husk mL-1. Under these conditions, experimental values for total phenolic compounds, flavonoids, flavanols, proanthocyanidins, phenolic acids, o-diphenols, and in vitro antioxidant capacity matched with predicted ones, therefore, validating the model. The presence of chlorogenic, protocatechuic, caffeic, and gallic acids and kaemferol-3-O-galactoside was confirmed by UPLC-ESI-MS/MS. The phenolic aqueous extracts from the coffee husk could be used as sustainable food ingredients and nutraceutical products.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (S.C.); (V.B.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain; (D.T.); (B.B.)
| | - Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (S.C.); (V.B.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain; (D.T.); (B.B.)
| | - Diego Taladrid
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain; (D.T.); (B.B.)
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (S.C.); (V.B.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain; (D.T.); (B.B.)
| | - Begoña Bartolomé
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain; (D.T.); (B.B.)
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (S.C.); (V.B.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain; (D.T.); (B.B.)
- Correspondence:
| | - María A. Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (S.C.); (V.B.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain; (D.T.); (B.B.)
| |
Collapse
|
29
|
Sabry M, Nasser MEA, Kamel HEM, Abaza MA, Soltan YA. Effect of replacing corn grains with date palm kernels on ruminal fermentation, feed degradability, and methane production under different initial in vitro pH conditions. Anim Biotechnol 2021; 33:1268-1279. [PMID: 33620298 DOI: 10.1080/10495398.2021.1886941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Date kernels (DK) are cheap by-products rich in energy and phenolic compounds. It can be used as an alternative to the conventional sources of energy in ruminant diets while reducing methane (CH4) production. Using a semi-automated gas production (GP) system, the initial pH of buffered rumen liquor was adjusted to 5.5 and 6.8. Five experimental diets were evaluated, control (0% DK), and DK25, DK50, DK75, and DK100 presented 25, 50, 75, and 100% replacement of maize by DK, respectively. Of the 16 phenolic compounds detected in DK, protocatechuic, p-hydroxybenzoic and catechin were the most abundant. At pH 6.8, the control diet recorded higher (p < 0.05) GP values throughout the first 12 h incubation than all other DK diets, while at 5.5 pH, DK50 displayed the highest (p < 0.05) GP at 3 and 6 h compared to all other diets. At either pH conditions, all DK diets reduced (p < 0.05) CH4 compared to the control without affecting protozoal counts. At 5.5 pH, DK diets showed enhanced (p < 0.05) nutrients degradability compared to control. DK modified (P < 0.05) the fermentation patterns toward more propionate than the control under either pH conditions. Substitution of maize by 50% DK was highly recommended in ruminant diets.
Collapse
Affiliation(s)
- Mahmoud Sabry
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Mohamed E A Nasser
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Hossam E M Kamel
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Mohamed A Abaza
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Yosra A Soltan
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Vieira de Morais D, Rosalen PL, Ikegaki M, de Souza Silva AP, Massarioli AP, de Alencar SM. Active Antioxidant Phenolics from Brazilian Red Propolis: An Optimization Study for Their Recovery and Identification by LC-ESI-QTOF-MS/MS. Antioxidants (Basel) 2021; 10:antiox10020297. [PMID: 33669251 PMCID: PMC7919790 DOI: 10.3390/antiox10020297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 12/05/2022] Open
Abstract
Brazilian red propolis (BRP) is a natural product widely known for its phenolic composition and strong antioxidant properties. In this study, we used the Box–Behnken Design (BBD) with Surface Response Methodology to optimize the extraction conditions for total phenolic content (TPC) and Trolox equivalent antioxidant capacity(TEAC) of bioactive phenolics from BRP. The extraction time, ethanol/water concentration and temperature, were tested. All variables had significant effects (p ≤ 0.05), with a desirability coefficient of 0.88. Under optimized conditions (90% ethanol at 80 °C for 30 min), the BRP extract showed a TPC of 129.00 ± 2.16 mg GAE/g and a TEAC of 3471.76 ± 53.86 µmol TE/g. Moreover, FRAP and ORAC assays revealed that the optimized BRP extract had 1472.86 ± 72.37 µmol Fe2+/g and 4339.61 ± 114.65 µmol TE/gof dry weight, respectively. Thirty-two phenolic compounds were tentatively identified by LC-QTOF-ESI-MS/MS, of which thirteen were found for the first time in BRP, including four flavones, one flavanol, two flavanones, two chalcones, and four isoflavonoids. Thus, our results highlight the importance of BRP as a source of a wide variety of phenolic compounds with significant antioxidant properties.
Collapse
Affiliation(s)
- Daniel Vieira de Morais
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP 13416-000, Brazil;
| | - Pedro Luiz Rosalen
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil; (P.L.R.); (M.I.)
| | - Masaharu Ikegaki
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil; (P.L.R.); (M.I.)
| | - Anna Paula de Souza Silva
- Department of Agri-Food Industry, Food and Nutrition, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, SP 13416-000, Brazil; (A.P.d.S.S.); (A.P.M.)
| | - Adna Prado Massarioli
- Department of Agri-Food Industry, Food and Nutrition, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, SP 13416-000, Brazil; (A.P.d.S.S.); (A.P.M.)
| | - Severino Matias de Alencar
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP 13416-000, Brazil;
- Department of Agri-Food Industry, Food and Nutrition, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, SP 13416-000, Brazil; (A.P.d.S.S.); (A.P.M.)
- Correspondence:
| |
Collapse
|
31
|
Ultrasound Extraction Mediated Recovery of Nutrients and Antioxidant Bioactive Compounds from Phaeodactylum tricornutum Microalgae. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041701] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, a growing interest has been shown in the use of microalgae due to their interesting nutritional and bioactive profiles. Green innovative processing technologies such as ultrasound-assisted extraction (UAE) avoid the use of toxic solvents and high temperatures, being a sustainable alternative in comparison with traditional extraction methods. The present study aims to evaluate the recovery of high added-value compounds from Phaedoactylum tricornutum assisted by ultrasound. To optimize the UAE of proteins, carbohydrates, pigments and antioxidant compounds, a response surface methodology was used. Carbohydrate extraction was positively affected by the temperature. However, for the extraction of carotenoids, the most influential factor was the extraction time. The total polyphenols were only significantly affected by the extraction time. Finally, the antioxidant capacity, measured by 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), was strongly modulated by the extraction time, while for the oxygen radical antioxidant capacity (ORAC) assay, the most important parameter was the temperature, followed by the extraction time. The optimal conditions for the maximum extraction of nutrients, bioactive compounds and antioxidant capacity were 30 min, 50 ºC and a pH of 8.5. Finally, it has been seen that with these conditions, the extraction of fucoxanthin is allowed, although no differences were found between an ultrasound-assisted extraction and a shaking extraction (control).
Collapse
|
32
|
Zarghami Moghaddam P, Mohammadi A, Alesheikh P, Feyzi P, Haghbin A, Mollazadeh S, Sabeti Z, Nakhlband A, Kasaian J. Antibacterial, Antifungal, and Antioxidant Activity of Cleome coluteoides: An In Vitro Comparative Study Between Leaves, Stems, and Flowers. Turk J Pharm Sci 2021; 18:10-16. [PMID: 33631925 DOI: 10.4274/tjps.galenos.2019.59320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives Cleome coluteoides, which belongs to the Capparidaceae family, and has been used in folk medicine for a long time. Our research aims to measure the antioxidant, antibacterial, and antifungal activities of C. coluteoides. Materials and Methods Various solvents, such as ethyl acetate, methanol, and dichloromethane, were used to extract different plant parts. Antibacterial and antifungal activities were assayed by disk and well diffusion methods, and the antioxidant activity was screened by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing ability of plasma methods. Results Results showed that Gram-negative bacteria and fungus were resistant to various plant extracts. Against all Gram-positive bacteria tested, C. coluteoides' flower extract had the highest inhibition effects. Also, the most sensitive bacterium was Bacillus cereus, which had an 18-mm inhibition zone. Due to the solvent's physical and chemical properties, different C. coluteoides extracts exhibited various antioxidant activities in the antioxidant activity assay. To some extent, methanol extract of leaves showed the highest DPPH radical scavenging activity at various concentrations that ranged from 5 to 160 mg.mL-1. The methanol extract of flower was observed to have the highest level of phenolics among all tested extracts. Conclusion This study demonstrates that different extracts from various C. coluteoides parts are different in their properties, therefore, a proper solvent should be used to extract maximum amounts of antioxidant and antibacterial components from a typical plant material.
Collapse
Affiliation(s)
- Parastoo Zarghami Moghaddam
- North Khorasan University of Medical Sciences, Natural Products and Medicinal Plants Research Center, Bojnurd, Iran
| | - Ameneh Mohammadi
- North Khorasan University of Medical Sciences, Natural Products and Medicinal Plants Research Center, Bojnurd, Iran
| | - Paiman Alesheikh
- North Khorasan University of Medical Sciences, Natural Products and Medicinal Plants Research Center, Bojnurd, Iran
| | - Peyman Feyzi
- North Khorasan University of Medical Sciences, Natural Products and Medicinal Plants Research Center, Bojnurd, Iran
| | - Ali Haghbin
- North Khorasan University of Medical Sciences, Natural Products and Medicinal Plants Research Center, Bojnurd, Iran
| | - Samaneh Mollazadeh
- North Khorasan University of Medical Sciences, Natural Products and Medicinal Plants Research Center, Bojnurd, Iran
| | - Zahra Sabeti
- Mashhad University of Medical Sciences School of Pharmacy, Department of Microbiology and Virology, Mashhad, Iran
| | - Ailar Nakhlband
- North Khorasan University of Medical Sciences, Natural Products and Medicinal Plants Research Center, Bojnurd, Iran
| | - Jamal Kasaian
- North Khorasan University of Medical Sciences, Natural Products and Medicinal Plants Research Center, Bojnurd, Iran
| |
Collapse
|
33
|
de Alcântara BGV, Oliveira FPD, Katchborian-Neto A, Casoti R, Domingos ODS, Santos MFC, Oliveira RBD, Paula ACCD, Dias DF, Soares MG, Chagas-Paula DA. Confirmation of ethnopharmacological anti-inflammatory properties of Ocotea odorifera and determination of its main active compounds. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113378. [PMID: 32918995 DOI: 10.1016/j.jep.2020.113378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ocotea odorifera (Vell.) Rohwer has been used in traditional medicine in the south of Brazil for the treatment of inflammatory-related conditions, such as rheumatism. However, there is not any scientific evidence for popular use. AIMS OF THE STUDY To investigate the O. odorifera anti-inflammatory potential and identification of the main active compounds through metabolomic approaches. MATERIALS AND METHODS In order to in vivo evaluate the inhibition of the main inflammatory pathways, the leaf decoction, leaf extract, its fractions and the essential oils from leaves and branches were submitted to the ear oedema and the neutrophils recruitment assays. The samples were chemically investigated by UHPLC-HRMS or GC-MS. The multivariate statistical analysis (PLS-DA) was used to determine the substances correlated with the anti-inflammatory properties. RESULTS The in vivo studies indicated a promissory anti-inflammatory effect on both oedema and neutrophil recruitment for some samples including the decoction; hydroethanolic, ethyl acetate, and chloroform fractions; and the essential oils. According to the PLS-DA, the S-(+)-reticuline was evidenced as one of the three compounds of the plant most correlated with both anti-inflammatory mechanisms. Thus, S-(+)-reticuline was isolated and the anti-inflammatory activity was confirmed. Moreover, for the first time, the dual inhibition of oedema and neutrophil recruitment was uncovered and reported. Another compound positively correlated with the anti-inflammatory activity is likely to be a new compound since zero hit on the comprehensive mass database were encountered. The compounds found in the essential oils also showed significant anti-inflammatory activity, and thus indeed the plant has different classes of active substances. CONCLUSIONS The decoction of O. odorifera and different fractions from its ethanolic extract demonstrated anti-inflammatory activity through dual inhibition of oedema and neutrophil recruitment. Thus, corroborating the popular medicinal use of the decoction of leaves from O. odorifera as an anti-inflammatory medicine. Besides, reticuline, one of the main active compounds, was isolated and proved to display the dual mechanism of action, indicating the O. odorifera as a promising source of active compounds for the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Bianca Gonçalves Vasconcelos de Alcântara
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Felipe Policarpo de Oliveira
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Albert Katchborian-Neto
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Rosana Casoti
- AsterBioChem, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. Do Café S/nº, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Olívia da Silva Domingos
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Mário Ferreira Conceição Santos
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Rejane Barbosa de Oliveira
- Federal University of Technology - Parana (UTFPR), Rua Cerejeira, S/n°, 85892-000, Santa Helena, Paraná, Brazil
| | - Ana Cláudia Chagas de Paula
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, S/n, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Danielle Ferreira Dias
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Marisi Gomes Soares
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Daniela Aparecida Chagas-Paula
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
34
|
Selective Extraction of Sinapic Acid Derivatives from Mustard Seed Meal by Acting on pH: Toward a High Antioxidant Activity Rich Extract. Molecules 2021; 26:molecules26010212. [PMID: 33401641 PMCID: PMC7795640 DOI: 10.3390/molecules26010212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
The aim of this paper is to study the effect of the pH on the extraction of sinapic acid and its derivatives from mustard seed meal. Solutions of acidic pH (pH 2), basic pH (pH 12) and distilled water (uncontrolled pH ~ 4.5) were tested at different percentages of ethanol. The maximum extraction yield for sinapic acid (13.22 µmol/g of dry matter (DM)) was obtained with a buffered aqueous solution at pH 12. For ethyl sinapate, the maximum extraction yield reached 9.81 µmol/g DM with 70% ethanol/buffered aqueous solution at pH 12. The maximum extraction yield of sinapine (15.73 µmol/g DM) was achieved with 70% ethanol/buffered aqueous solution at pH 2. The antioxidant activity of each extract was assessed by DPPH assay; the results indicated that the extracts obtained at pH 12 and at low ethanol percentages (<50%) exhibit a higher antioxidant activity than extracts obtained at acidic conditions. Maximum antioxidant activity was reached at pH 12 with buffer solution (11.37 mg of Trolox Equivalent/g DM), which confirms that sinapic acid-rich fractions exhibit a higher antioxidant activity. Thus, to obtain rich antioxidant extracts, it is suggested to promote the presence of sinapic acid in the extracts.
Collapse
|
35
|
Gullón P, Gullón B, Astray G, Munekata PES, Pateiro M, Lorenzo JM. Value-Added Compound Recovery from Invasive Forest for Biofunctional Applications: Eucalyptus Species as a Case Study. Molecules 2020; 25:E4227. [PMID: 32942656 PMCID: PMC7570642 DOI: 10.3390/molecules25184227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
From ancient times, the medicinal properties of the different Eucalyptus species are well known. In fact, plants from this family have been used in folk medicine as antiseptics, and to treat different ailments of the upper respiratory tract such as sinus congestion, common cold, or influenza. Moreover, other biological activities were described for Eucalyptus species such as antioxidant and antimicrobial properties. In the last few decades, numerous investigations revealed that the compounds responsible for these properties are secondary metabolites that belonging to the group of phenolic compounds and are present in different parts of the plants such as leaves, bark, wood, fruits, and stumps. The increasing demand for natural compounds that can substitute synthetic antioxidants and the increase in resistance to traditional antibiotics have boosted the intense search for renewable natural sources containing substances with such bioactivities, as well as greener extraction technologies and avant-garde analytical methods for the identification of the target molecules. The literature data used in this paper were collected via Scopus (2001-2020) using the following search terms: Eucalyptus, extraction methods, phenolic compounds, and biological activities. This review collects the main studies related to the recovery of value-added compounds from different Eucalyptus species, as well as their biofunctional applications.
Collapse
Affiliation(s)
- Patricia Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain;
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain;
| | - Gonzalo Astray
- Department of Physical Chemistry, Faculty Science, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain;
- CITACA, Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, 32004 Ourense, Spain
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
36
|
Mottaghipisheh J, Iriti M. Sephadex ® LH-20, Isolation, and Purification of Flavonoids from Plant Species: A Comprehensive Review. Molecules 2020; 25:molecules25184146. [PMID: 32927822 PMCID: PMC7570886 DOI: 10.3390/molecules25184146] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/02/2022] Open
Abstract
Flavonoids are considered one of the most diverse phenolic compounds possessing several valuable health benefits. The present study aimed at gathering all correlated reports, in which Sephadex® LH-20 (SLH) has been utilized as the final step to isolate or purify of flavonoid derivatives among all plant families. Overall, 189 flavonoids have been documented, while the majority were identified from the Asteraceae, Moraceae, and Poaceae families. Application of SLH has led to isolate 79 flavonols, 63 flavones, and 18 flavanones. Homoisoflavanoids, and proanthocyanidins have only been isolated from the Asparagaceae and Lauraceae families, respectively, while the Asteraceae was the richest in flavones possessing 22 derivatives. Six flavones, four flavonols, three homoisoflavonoids, one flavanone, a flavanol, and an isoflavanol have been isolated as the new secondary metabolites. This technique has been able to isolate quercetin from 19 plant species, along with its 31 derivatives. Pure methanol and in combination with water, chloroform, and dichloromethane have generally been used as eluents. This comprehensive review provides significant information regarding to remarkably use of SLH in isolation and purification of flavonoids from all the plant families; thus, it might be considered an appreciable guideline for further phytochemical investigation of these compounds.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
- Correspondence: (J.M.); (M.I.); Tel.: +36-60702756066 (J.M.); +39-0250316766 (M.I.)
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy
- Correspondence: (J.M.); (M.I.); Tel.: +36-60702756066 (J.M.); +39-0250316766 (M.I.)
| |
Collapse
|
37
|
Barba FJ, Alcántara C, Abdelkebir R, Bäuerl C, Pérez-Martínez G, Lorenzo JM, Carmen Collado M, García-Pérez JV. Ultrasonically-Assisted and Conventional Extraction from Erodium Glaucophyllum Roots Using Ethanol:Water Mixtures: Phenolic Characterization, Antioxidant, and Anti-Inflammatory Activities. Molecules 2020; 25:E1759. [PMID: 32290312 PMCID: PMC7181019 DOI: 10.3390/molecules25071759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 01/30/2023] Open
Abstract
The paper presents experimental results concerning the ultrasonically-assisted extraction of bioactive compounds from Erodium glaucophyllum roots. A comparison with conventional methodology is presented, and thereby the phytochemical composition and the antioxidant and anti-inflammatory activities of extracts are evaluated. The phenolic profile of Erodium extracts was analyzed by TOF-LC-MS-MS. The identification of phenolic compounds revealed that the major component was (+)-gallocatechin in the aqueous extracts obtained for the different extraction methodologies. The highest quantity of phenolic compounds and antioxidant capacity was found in the hydroethanolic extract obtained by conventional extraction (29.22-25.50 mg GAE/g DM; 21.174 mM Trolox equivalent). The highest content of carotenoids, varying from 0.035 to 0.114 mg/g dry matter, was reached by ultrasonic-assisted extraction. Furthermore, Erodium extracts showed a potent inhibition of the inflammatory reaction by means of the inhibition of tumor necrosis factor-alpha (TNF-α). The extracts obtained when ultrasound extraction was combined with ethanol:water (50:50, v/v) presented the greatest inhibition (92%).
Collapse
Affiliation(s)
- Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain;
| | - Cristina Alcántara
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980 València, Spain; (C.A.); (C.B.)
| | - Radhia Abdelkebir
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain;
- Range Ecology Laboratory, Institute of Arid Regions (IRA), University of Gabès, Medenine 4100, Tunisia
| | - Christine Bäuerl
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980 València, Spain; (C.A.); (C.B.)
| | - Gaspar Pérez-Martínez
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980 València, Spain; (C.A.); (C.B.)
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n°4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980 València, Spain; (C.A.); (C.B.)
| | - Jose V. García-Pérez
- Grupo de Análisis y Simulación de Procesos Agroalimentarios (ASPA), Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Cami de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
38
|
Saifullah M, McCullum R, McCluskey A, Vuong Q. Comparison of conventional extraction technique with ultrasound assisted extraction on recovery of phenolic compounds from lemon scented tea tree ( Leptospermum petersonii) leaves. Heliyon 2020; 6:e03666. [PMID: 32258513 PMCID: PMC7125357 DOI: 10.1016/j.heliyon.2020.e03666] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/22/2020] [Accepted: 03/23/2020] [Indexed: 11/15/2022] Open
Abstract
Leptospermum petersonii is a native Australian medicinal and aromatic plant. This study was designed to evaluate the influence of solvents and ultrasound-assisted extraction (UAE) parameters including time, temperature, and sonication power on the yield of phenolic compounds and antioxidant capacity from lemon scented tea tree leaves. Extraction efficiency of the optimal UAE conditions were compared with that of shaking water bath technique. The results show that extraction solvents significantly affect extraction yield of phenolic compounds and antioxidant properties, and 50% acetone in water was found to be the most suitable solvent. The UAE optimal conditions were 60 min, 50 °C and sonication power of 200 W. Under these optimal conditions the yields of total phenolics, flavonoids, proanthocyanidins were 98.91 ± 1.20 (mg GAE/g DW), 76.12 ± 0.79 (mg CE/g DW), 117.71 ± 2.18 (mg CE/g DW), respectively. Antioxidant properties from four assays including FRAP, CUPRAC, ABTS and DPPH were 581.29 ± 14.23, 5534.87 ± 19.56, 1636.18 ± 4.11, and 889.29 ± 20.68 (mM TE/g DW) respectively. The UAE extraction technique was found to be more efficient in extraction of total phenolics and antioxidant capacity in comparison with conventional shaking water bath extraction. This study also observed a strong correlation between phenolic compounds and antioxidant capacities. All three phenolic compound groups (TPC, TFC, and Pro.A) were contributed to both free radical scavenging and ion reducing properties in the lemon scented tea tree leaves extract. However, the order of the phenolic groups was TPC > Pro.A > TFC for antioxidant properties.
Collapse
Affiliation(s)
- Md Saifullah
- Applied Sciences, School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Ourimbah, NWS, 2258, Australia.,Department of Agro Product Processing Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Rebecca McCullum
- Applied Sciences, School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Ourimbah, NWS, 2258, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Quan Vuong
- Applied Sciences, School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Ourimbah, NWS, 2258, Australia
| |
Collapse
|
39
|
Atif MJ, Ahanger MA, Amin B, Ghani MI, Ali M, Cheng Z. Mechanism of Allium Crops Bulb Enlargement in Response to Photoperiod: A Review. Int J Mol Sci 2020; 21:E1325. [PMID: 32079095 PMCID: PMC7072895 DOI: 10.3390/ijms21041325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
The photoperiod marks a varied set of behaviors in plants, including bulbing. Bulbing is controlled by inner signals, which can be stimulated or subdued by the ecological environment. It had been broadly stated that phytohormones control the plant development, and they are considered to play a significant part in the bulb formation. The past decade has witnessed significant progress in understanding and advancement about the photoperiodic initiation of bulbing in plants. A noticeable query is to what degree the mechanisms discovered in bulb crops are also shared by other species and what other qualities are also dependent on photoperiod. The FLOWERING LOCUS T (FT) protein has a role in flowering; however, the FT genes were afterward reported to play further functions in other biological developments (e.g., bulbing). This is predominantly applicable in photoperiodic regulation, where the FT genes seem to have experienced significant development at the practical level and play a novel part in the switch of bulb formation in Alliums. The neofunctionalization of FT homologs in the photoperiodic environments detects these proteins as a new class of primary signaling mechanisms that control the growth and organogenesis in these agronomic-related species. In the present review, we report the underlying mechanisms regulating the photoperiodic-mediated bulb enlargement in Allium species. Therefore, the present review aims to systematically review the published literature on the bulbing mechanism of Allium crops in response to photoperiod. We also provide evidence showing that the bulbing transitions are controlled by phytohormones signaling and FT-like paralogues that respond to independent environmental cues (photoperiod), and we also show that an autorelay mechanism involving FT modulates the expression of the bulbing-control gene. Although a large number of studies have been conducted, several limitations and research gaps have been identified that need to be addressed in future studies.
Collapse
Affiliation(s)
- Muhammad Jawaad Atif
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
- Vegetable Crops Program, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | | | - Bakht Amin
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| | - Muhammad Imran Ghani
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China
| | - Muhammad Ali
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| | - Zhihui Cheng
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| |
Collapse
|
40
|
Effect of Different Green Extraction Methods and Solvents on Bioactive Components of Chamomile ( Matricaria chamomilla L.) Flowers. Molecules 2020; 25:molecules25040810. [PMID: 32069890 PMCID: PMC7070460 DOI: 10.3390/molecules25040810] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Chamomile (Matricaria chamomilla L.) dried flowers contain a group of interesting biologically active compounds such as sesquiterpenes, flavonoids, coumarins, vitamins, phenolic acids and glucosides. Therefore, the aim of the present study was to characterize the composition in bioactive compounds (specialized metabolites) present in water and ethanol extracts of chamomile flowers, together with monitoring the impact of different extraction techniques (conventional vs. ultrasound-assisted extraction (UAE)) on the parameters under investigation. UAE treatment significantly decreased the extraction time of bioactive compounds from herbal material. Polyphenolic compounds content and antioxidant capacity were significantly higher in UAE extracts. Moreover, solvent type had a significant impact on the specialized metabolites content, while the highest vitamin C and polyphenols content were recorded in 50% ethanol (v/v) extracts. Optimization of basic extraction factors: solvent type, temperature and technique is crucial for obtaining the extracts with the highest content of specialized metabolites and antioxidant capacity.
Collapse
|
41
|
Foujdar R, Bera MB, Chopra HK. Optimization of process variables of probe ultrasonic‐assisted extraction of phenolic compounds from the peel of
Punica granatum
Var. Bhagwa and it's chemical and bioactivity characterization. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14317] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rimpi Foujdar
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology, Longowal Sangrur India
| | - Manab Bandhu Bera
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology, Longowal Sangrur India
| | - Harish Kumar Chopra
- Department of Chemistry Sant Longowal Institute of Engineering and Technology, Longowal Sangrur India
| |
Collapse
|
42
|
Munekata PES, Alcántara C, Collado MC, Garcia-Perez JV, Saraiva JA, Lopes RP, Barba FJ, do Prado Silva L, Sant'Ana AS, Fierro EM, Lorenzo JM. Ethnopharmacology, phytochemistry and biological activity of Erodium species: A review. Food Res Int 2019; 126:108659. [PMID: 31732027 DOI: 10.1016/j.foodres.2019.108659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
Erodium spp. is a genus that can be found in all continents that has been traditionally used in folk medicine to treat many diseases such as hemorrhage, dermatological disorders, indigestion, and inflammatory diseases. Moreover, Erodium leaves have been used for the preparation of salads, omelets, sandwiches, sauces and soups, among other food products. The objective of this review was to show the recent and relevant studies about extraction of bioactive compounds, the phytochemical characterization, the potential biological activities and toxicological evidence reported in both in vitro and in vivo studies from Erodium spp. In addition, the use of Erodium spp. as natural compounds against the development of diseases were also showed. This review highlights the traditional use of Erodium species in several countries as a therapeutic agent to treat several diseases (such as constipation, dermatological disorders, diabetes, indigestion, urinary inflammations, and as carminative agent), the factors influencing the extraction of bioactive compounds (mainly species and solvent composition on phenolic compounds) and phytochemical profile (presence of essential oils and alkaloids), the scientific evidence about its anti-inflammatory, antimicrobial (against both spoilage and pathogenic microorganisms), antiviral and other health-related activities (anti-protozoal and anti-viral activity) as well as the toxicological evidence. Erodium spp. is a relevant source of compounds with antioxidant, antimicrobial, and biological activity, which support its potential exploration in pharmacological and food area. Major efforts are necessary to advance the knowledge about Erodium genus regarding the relation between traditional use and scientific evidence, optimization of extraction conditions, the influence on biological mechanisms at animal and clinical levels, and bioaccessibility and bioavailability of bioactive compounds.
Collapse
Affiliation(s)
- Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Cristina Alcántara
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain
| | - Jose V Garcia-Perez
- Grupo de Análisis y Simulación de Procesos Agroalimentarios (ASPA), Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia 46022, Spain
| | - Jorge A Saraiva
- QOPNA & LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rita P Lopes
- QOPNA & LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Francisco J Barba
- Universitat de València, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Leonardo do Prado Silva
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain.
| |
Collapse
|