1
|
Mousa SA, Abdallah H, Khairy SA. Low-cost photocatalytic membrane modified with green heterojunction TiO 2/ZnO nanoparticles prepared from waste. Sci Rep 2023; 13:22150. [PMID: 38092891 PMCID: PMC10719331 DOI: 10.1038/s41598-023-49516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
The combination of photocatalysis and membrane procedures represents a promising approach for water treatment. This study utilized green synthesis methods to produce TiO2 nanoparticles (NPs) using Pomegranate extract and ZnO nanoparticles using Tangerine extract. These nanoparticles were then incorporated into a polyvinyl chloride (PVC) nanocomposite photocatalytic membrane. Different devices were used to examine the properties of nanocomposite membranes. The prepared membranes' morphology was examined using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The hydrophilicity of the membrane surface was assessed through the measurement of contact angle, while the crystal structure and chemical bonding were analyzed using Raman and Fourier transform infrared spectroscopy (FT-IR). The study also encompassed an examination of the mechanical properties. The hydrophilicity of the modified membrane exhibited a significant improvement. Additionally, there was an observed increase in both the pure water flux and rejection values. The photocatalytic activity of the membrane was found to be enhanced when exposed to sunlight as compared to when kept in the dark. The TiO2/ZnO nanocomposites membrane exhibited the highest level of photocatalytic degradation, achieving a rejection rate of 98.7% compared to the unmodified membrane. Therefore, it was determined that the TiO2/ZnO nanocomposites membrane exhibited superior performance to the other membranes assessed. The potential utility of our research lies in its application within the water treatment industry, specifically as an effective technique for modifying PVC membranes.
Collapse
Affiliation(s)
- Sahar A Mousa
- Physics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Heba Abdallah
- Chemical Engineering and Pilot Plant Department, Engineering Research Division, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, PO Box 12622, Giza, Egypt
| | - S A Khairy
- Physics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Oboňová B, Habala L, Litecká M, Herich P, Bilková A, Bilka F, Horváth B. Antimicrobially Active Zn(II) Complexes of Reduced Schiff Bases Derived from Cyclohexane-1,2-diamine and Fluorinated Benzaldehydes-Synthesis, Crystal Structure and Bioactivity. Life (Basel) 2023; 13:1516. [PMID: 37511891 PMCID: PMC10381420 DOI: 10.3390/life13071516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
A series of Schiff base ligands obtained by the condensation of trans-cyclohexane-1,2-diamine and fluorinated benzaldehydes were prepared, followed by their reduction with NaBH4. The reduced ligands were employed in the synthesis of zinc complexes of the general formula [ZnCl2(L)]. The structures of both the original and the reduced Schiff bases, as well as of the zinc complexes, were characterized by single-crystal X-ray analysis, along with NMR and IR spectroscopy. The antimicrobial activities of the reduced Schiff bases and their zinc complexes were evaluated in vitro against E. coli, S. aureus, and C. albicans. The compounds containing the 4-(trifluoromethylphenyl) moiety showed marked antibacterial activity. Interestingly, the antimicrobial effect of the zinc complex with this moiety was significantly higher than that of the corresponding free reduced ligand, comparable with ciprofloxacin used as standard. Thus, a synergic effect upon the complexation with zinc can be inferred.
Collapse
Affiliation(s)
- Bianka Oboňová
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Ladislav Habala
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Miroslava Litecká
- Department of Materials Chemistry, Institute of Inorganic Chemistry of the CAS, Husinec-Řež č.p. 1001, 250 68 Řež, Czech Republic
| | - Peter Herich
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Andrea Bilková
- Department of Cellular and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - František Bilka
- Department of Cellular and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Branislav Horváth
- NMR Laboratory, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
3
|
Lou C, Jiang S, Zhou Y, Gu X, Zhang Y, Kong X. Preparation and Curing Mechanism of Modified Corn Straw by 3-Glycidyl Ether Oxypropyl Trimethoxysilane/Epoxy Resin Composites. Polymers (Basel) 2022; 14:polym14235233. [PMID: 36501623 PMCID: PMC9737919 DOI: 10.3390/polym14235233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
A modified corn straw (CS)/epoxy resin (EP) composite was prepared using bisphenol A EP (i.e., E-51) as matrix, 2-methylimidazole as curing agent, and CS modified by 3-glycidyl ether oxypropyl trimethoxysilane (KHCS) as filler. Its chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR). The dynamic thermodynamic properties, mechanical properties, flame retardant property, and fracture morphology were studied using dynamic mechanical analysis (DMA), a universal testing machine, a micro combustion calorimeter, and a scanning electron microscope (SEM), respectively. The effects of different contents of KHCS on various properties were discussed. The experimental result showed that the CS was bonded toKH560 by a covalent bond. The impact strength, tensile strength, and flexural strength of the composites were all improved compared with those of pure EP. When the content of KHCS was 15 wt%, the maximum impact strength of the composites was 3.31 kJ/m2, which was 1.43 times that of the pure EP. The p HRR and THR of MCSEC-20 were 512.44 W/g and 25.03 kJ/g, respectively, which were 40.71% and 27.76% lower than those of pure EP, when the content of KHCS was 20 wt%. Moreover, the mechanism of the curing composites was investigated.
Collapse
Affiliation(s)
- Chunhua Lou
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Guilin Institute of Aerospace Technology, School of Energy and Building Environment, Guilin 541004, China
- Correspondence: (C.L.); (X.K.)
| | - Siyu Jiang
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yongli Zhou
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Zibo Luray Fine Chemical Co., Ltd., Zibo 255000, China
| | - Xiaohua Gu
- Guilin Institute of Aerospace Technology, School of Energy and Building Environment, Guilin 541004, China
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Xianzhi Kong
- Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin 150040, China
- Correspondence: (C.L.); (X.K.)
| |
Collapse
|
4
|
El-Hiti GA, Ahmed DS, Yousif E, Al-Khazrajy OSA, Abdallh M, Alanazi SA. Modifications of Polymers through the Addition of Ultraviolet Absorbers to Reduce the Aging Effect of Accelerated and Natural Irradiation. Polymers (Basel) 2021; 14:20. [PMID: 35012042 PMCID: PMC8747282 DOI: 10.3390/polym14010020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
The photooxidative degradation process of plastics caused by ultraviolet irradiation leads to bond breaking, crosslinking, the elimination of volatiles, formation of free radicals, and decreases in weight and molecular weight. Photodegradation deteriorates both the mechanical and physical properties of plastics and affects their predicted life use, in particular for applications in harsh environments. Plastics have many benefits, while on the other hand, they have numerous disadvantages, such as photodegradation and photooxidation in harsh environments and the release of toxic substances due to the leaching of some components, which have a negative effect on living organisms. Therefore, attention is paid to the design and use of safe, plastic, ultraviolet stabilizers that do not pose a danger to the environment if released. Plastic ultraviolet photostabilizers act as efficient light screeners (absorbers or pigments), excited-state deactivators (quenchers), hydroperoxide decomposers, and radical scavengers. Ultraviolet absorbers are cheap to produce, can be used in low concentrations, mix well with polymers to produce a homogenous matrix, and do not alter the color of polymers. Recently, polyphosphates, Schiff bases, and organometallic complexes were synthesized and used as potential ultraviolet absorbers for polymeric materials. They reduced the damage caused by accelerated and natural ultraviolet aging, which was confirmed by inspecting the surface morphology of irradiated polymeric films. For example, atomic force microscopy revealed that the roughness factor of polymers' irradiated surfaces was improved significantly in the presence of ultraviolet absorbers. In addition, the investigation of the surface of irradiated polymers using scanning electron microscopy showed a high degree of homogeneity and the appearance of pores that were different in size and shape. The current work surveys for the first time the use of newly synthesized, ultraviolet absorbers as additives to enhance the photostability of polymeric materials and, in particular, polyvinyl chloride and polystyrene, based mainly on our own recent work in the field.
Collapse
Affiliation(s)
- Gamal A. El-Hiti
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| | - Dina S. Ahmed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 64021, Iraq;
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq; (E.Y.); (M.A.)
| | - Omar S. A. Al-Khazrajy
- Department of Chemistry, College of Education for Pure Science (Ibn Al-Haytham), University of Baghdad, Baghdad 64021, Iraq;
| | - Mustafa Abdallh
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq; (E.Y.); (M.A.)
| | - Saud A. Alanazi
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| |
Collapse
|
5
|
Hadi AG, Baqir SJ, Ahmed DS, El-Hiti GA, Hashim H, Ahmed A, Kariuki BM, Yousif E. Substituted Organotin Complexes of 4-Methoxybenzoic Acid for Reduction of Poly(vinyl Chloride) Photodegradation. Polymers (Basel) 2021; 13:polym13223946. [PMID: 34833244 PMCID: PMC8621606 DOI: 10.3390/polym13223946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(vinyl chloride) suffers from degradation through oxidation and decomposition when exposed to radiation and high temperatures. Stabilizers are added to polymeric materials to inhibit their degradation and enable their use for a longer duration in harsh environments. The design of new additives to stabilize poly(vinyl chloride) is therefore desirable. The current study includes the synthesis of new tin complexes of 4-methoxybenzoic acid and investigates their potential as photostabilizers for poly(vinyl chloride). The reaction of 4-methoxybenzoic acid and substituted tin chlorides gave the corresponding substituted tin complexes in good yields. The structures of the complexes were confirmed using analytical and spectroscopic methods. Poly(vinyl chloride) was doped with a small quantity (0.5%) of the tin complexes and homogenous thin films were made. The effects of the additives on the stability of the polymeric material on irradiation with ultraviolet light were assessed using different methods. Weight loss, production of small polymeric fragments, and drops in molecular weight were lower in the presence of the additives. The surface of poly(vinyl chloride), after irradiation, showed less damage in the films containing additives. The additives, in particular those containing aromatic (phenyl groups) substitutes, inhibited the photodegradation of polymeric films significantly. Such additives act as efficient ultraviolet absorbers, peroxide quenchers, and hydrogen chloride scavengers.
Collapse
Affiliation(s)
- Angham G. Hadi
- Department of Chemistry, College of Science, University of Babylon, Babylon 51002, Iraq;
| | - Sadiq J. Baqir
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon 51002, Iraq;
| | - Dina S. Ahmed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 64021, Iraq;
| | - Gamal A. El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Correspondence: ; Tel.: +966-11469-3778; Fax: +966-11469-3536
| | - Hassan Hashim
- Department of Physics, College of Science, Al-Nahrain University, Baghdad 10052, Iraq;
| | - Ahmed Ahmed
- Polymer Research Unit, College of Science, Al-Mustansiriyah University, Baghdad 10052, Iraq;
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK;
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq;
| |
Collapse
|
6
|
Yaseen AA, Al-Tikrity ETB, Yousif E, Ahmed DS, Kariuki BM, El-Hiti GA. Effect of Ultraviolet Irradiation on Polystyrene Containing Cephalexin Schiff Bases. Polymers (Basel) 2021; 13:polym13172982. [PMID: 34503022 PMCID: PMC8434342 DOI: 10.3390/polym13172982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
The scale of production of polystyrene has escalated in the recent past in order to meet growing demand. As a result, a large quantity of polystyrene waste continues to be generated along with associated health and environmental problems. One way to tackle such problems is to lengthen the lifetime of polystyrene, especially for outdoor applications. Our approach is the synthesis and application of new ultraviolet photostabilizers for polystyrene and this research is focused on four cephalexin Schiff bases. The reaction of cephalexin and 3-hydroxybenzaldehyde, 4-dimethylaminobenzaldehyde, 4-methoxybenzaldehyde, and 4-bromobanzaldehyde under acidic condition afforded the corresponding Schiff bases in high yields. The Schiff bases were characterized and their surfaces were examined. The Schiff bases were mixed with polystyrene to form homogenous blends and their effectiveness as photostabilizers was explored using different methods. The methods included monitoring the changes in the infrared spectra, weight loss, depression in molecular weight, and surface morphology on irradiation. In the presence of the Schiff bases, the formation of carbonyl group fragments, weight loss, and decrease in molecular weight of polystyrene were lower when compared with pure polystyrene. In addition, undesirable changes in the surface such as the appearance of dark spots, cracks, and roughness were minimal for irradiated polystyrene containing cephalexin Schiff bases. Mechanisms by which cephalexin Schiff bases stabilize polystyrene against photodegradation have also been suggested.
Collapse
Affiliation(s)
- Anaheed A. Yaseen
- Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq; (A.A.Y.); (E.T.B.A.-T.)
| | - Emaad T. B. Al-Tikrity
- Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq; (A.A.Y.); (E.T.B.A.-T.)
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq;
| | - Dina S. Ahmed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 64021, Iraq;
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK;
| | - Gamal A. El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
- Correspondence: ; Tel.: +966-11469-3778; Fax: +966-11469-3536
| |
Collapse
|
7
|
Tin Complexes of 4-(Benzylideneamino)benzenesulfonamide: Synthesis, Structure Elucidation and Their Efficiency as PVC Photostabilizers. Polymers (Basel) 2021; 13:polym13152434. [PMID: 34372037 PMCID: PMC8348574 DOI: 10.3390/polym13152434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/03/2022] Open
Abstract
Poly(vinyl chloride) (PVC) suffers from photo-oxidation and photodegradation when exposed to harsh conditions. Application of PVC thus relies on the development of ever more efficient photostabilizers. The current research reports the synthesis of new complexes of tin and their assessment as poly(vinyl chloride) photostabilizers. The three new complexes were obtained in high yields from reaction of 4-(benzylideneamino)benzenesulfonamide and tin chlorides. Their structures were elucidated using different tools. The complexes were mixed with poly(vinyl chloride) at a very low concentration and thin films were made from the blends. The effectiveness of the tin complexes as photostabilizers has been established using a variety of methods. The new tin complexes led to a decrease in weight loss, formation of small residues, molecular weight depression, and surface alteration of poly(vinyl chloride) after irradiation. The additives act by absorption of ultraviolet light, removal the active chlorine produced through a dehydrochlorination process, decomposition of peroxides, and coordination with the polymeric chains. The triphenyltin complex showed the greatest stabilizing effect against PVC photodegradation as a result of its high aromaticity.
Collapse
|
8
|
Schiff base-Cu2+ complex catalyzed and initiated ring opening polymerization of ɛ-Caprolactone: Synthesis and characterization. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02549-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Jasem H, Hadi AG, El-Hiti GA, Baashen MA, Hashim H, Ahmed AA, Ahmed DS, Yousif E. Tin-Naphthalene Sulfonic Acid Complexes as Photostabilizers for Poly(vinyl chloride). Molecules 2021; 26:molecules26123629. [PMID: 34198519 PMCID: PMC8231842 DOI: 10.3390/molecules26123629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(vinyl chloride) degrades when exposed to ultraviolet light for long durations; therefore, the photostability of polymeric materials should be enhanced through the application of additives. New organotin complexes containing 4-aminonaphthalene-1-sulfonic acid were synthesized and their role as poly(vinyl chloride) photostabilizers were evaluated. The reaction of 4-amino-3-hydroxynaphthalene-1-sulfonic acid and appropriate di- or trisubstituted tin chloride (triphenyltin chloride, tributyltin chloride, dibutyltin dichloride, and dimethyltin dichloride) in methanol under reflux gave the corresponding tin-naphthalene complexes with yields of 75%-95%. Elemental analyses and spectroscopic techniques including infrared and nuclear magnetic resonance (proton and tin) were used to confirm their structures. The tin complexes were added to poly(vinyl chloride) to produce thin films that irradiated with ultraviolet light. Various parameters were assessed, such as the weight loss, formation of specific functional groups, changes in the surface due to photoirradiation, and rate constant of photodegradation, to test the role played by the organotin complexes to reduce photodegradation in polymeric films. The results proved that organotin complexes acted as photostabilizers in these circumstances. The weight loss, formation of fragments containing specific functional groups, and undesirable changes in the surface of polymeric films were limited in the presence of organotin complexes. Organotin complexes containing three phenyl groups showed the most desirable stabilization effect. These act as efficient primary and secondary photostabilizers, and as decomposers for peroxides. In addition, such an additive inhibits the dehydrochlorination process, which is the main cause of poly(vinyl chloride) photodegradation.
Collapse
Affiliation(s)
- Hadeer Jasem
- Department of Chemistry, College of Science, University of Babylon, Babylon 51002, Iraq; (H.J.); (A.G.H.)
| | - Angham G. Hadi
- Department of Chemistry, College of Science, University of Babylon, Babylon 51002, Iraq; (H.J.); (A.G.H.)
| | - Gamal A. El-Hiti
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
- Correspondence: ; Tel.: +966-11469-3778; Fax: +966-11469-3536
| | - Mohammed A. Baashen
- Department of Chemistry, College of Science and Humanities, Shaqra University, Dawadmi 11911, Saudi Arabia;
| | - Hassan Hashim
- Department of Physics, College of Science, Al-Nahrain University, Baghdad 64021, Iraq;
| | - Ahmed A. Ahmed
- Polymer Research Unit, College of Science, Al-Mustansiriyah University, Baghdad 10052, Iraq;
| | - Dina S. Ahmed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 10067, Iraq;
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq;
| |
Collapse
|
10
|
Photostabilization of Poly(vinyl chloride) Films Blended with Organotin Complexes of Mefenamic Acid for Outdoor Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study develops a process for enhancing the photostabilization of PVC films blended with a low concentration of mefenamate–tin complex. One tri-substituted and three di-substituted organotin complexes containing mefenamate unit are synthesized, and their chemical structures are established. The reactions of mefenamic acid and a number of substituted tin chlorides gave the corresponding tin complexes in 70–77% yields. Tin complexes were blended with PVC and thin films. The effect of the addition of additives against long-term irradiation (290–400 nm, 300 h) is also tested. Changes in the infrared spectra, weight, and surface of the PVC blends due to irradiation are examined and analyzed. Any damage to the PVC surface and its chemical degradation level are noticeably low in the presence of additives. Minimal photodegradation levels and surface changes of the irradiated PVC films are observed when the triphenyltin complex is used. Such a complex is highly aromatic and can act as an ultraviolet irradiation absorber and a scavenger for hydrogen chloride and radicals produced due to the photooxidation and photoirradiation of PVC films.
Collapse
|
11
|
Omer RM, Al-Tikrity ETB, Yousif E, El-Hiti GA, Ahmed DS, Ahmed AA. Spectroscopic and Morphological Study of Irradiated PVC Films Doped with Polyphosphates Containing 4,4'-Methylenedianiline. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427220120113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Abstract
Tetra Schiff bases were used as thermal stabilizers to enhance the properties of polyvinyl chloride (PVC) when operated at high temperatures. The thermal stability of PVC films doped with Schiff bases was tested by the weight-loss method, Fourier transform infrared (FTIR) spectroscopy, thermal aging test, optical microscope, and atomic force microscope (AFM). Results showed that embedding these additives increased the stability time of the polymer, which decreased the degradation reaction tendency. Furthermore, the primary color of PVC was improved by adding the Schiff bases using oven-aging. In addition, these Schiff bases resulted in a significant reduction in PVC’s conjugated double bonds and, hence, the weight loss.
Collapse
|
13
|
Synthesis of Carvedilol-Organotin Complexes and Their Effects on Reducing Photodegradation of Poly(Vinyl Chloride). Polymers (Basel) 2021; 13:polym13040500. [PMID: 33561971 PMCID: PMC7915541 DOI: 10.3390/polym13040500] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Poly(vinyl chloride) (PVC) undergoes photodegradation induced by ultraviolet (UV) irradiation; therefore, for outdoor applications, its photostability should be enhanced through the use of additives. Several carvedilol tin complexes were synthesized, characterized and mixed with PVC to produce thin films. These films were irradiated at 25 °C with a UV light (λ = 313 nm) for up to 300 h. The reduction in weight and changes in chemical structure and surface morphology of the PVC films were monitored. The films containing synthesized complexes showed less undesirable changes than the pure PVC film. Organotin with a high content of aromatics was particularly efficient in inhibiting photodegradation of PVC. The carvedilol tin complexes both absorbed UV light and scavenged radicals, hydrochloride, and peroxides and, therefore, photostabilized PVC.
Collapse
|
14
|
A Process for the Synthesis and Use of Highly Aromatic Organosilanes as Additives for Poly(Vinyl Chloride) Films. Processes (Basel) 2021. [DOI: 10.3390/pr9010091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Three organosilanes were synthesized in good yields from the condensation of 4,4′,4″-((phenylsilanetriyl)tris(oxy))tribenzaldehyde and 4-substituted anilines under acidic conditions. The structure of the organosilanes was confirmed using a variety of techniques. Organosilanes were mixed with poly(vinyl chloride) (PVC) and homogenous films were produced. The effect of long-term irradiation on the films containing organosilanes was tested using various methods. Monitoring the infrared spectra of PVC films before, during and after irradiation processes showed the formation of side products comprising polyene, carbonyl and hydroxyl groups. The intensities of absorption bands due to these functional groups were much lower in the presence of organosilanes as compared to the blank film. Also, the decrease in the weight and molecular weight of PVC films after irradiation was lower in the presence of organosilanes. Additionally, there was a minimal surface change of irradiated PVC in the presence of organosilanes. Clearly, organosilanes act as inhibitors, particularly the one containing the hydroxyl group, for the photodegradation of PVC. Different mechanisms were proposed to speculate the role played by organosilanes in stabilizing PVC against long-term ultraviolet light exposure.
Collapse
|
15
|
Salam B, El-Hiti GA, Bufaroosha M, Ahmed DS, Ahmed A, Alotaibi MH, Yousif E. Tin Complexes Containing an Atenolol Moiety as Photostabilizers for Poly(Vinyl Chloride). Polymers (Basel) 2020; 12:polym12122923. [PMID: 33291282 PMCID: PMC7768508 DOI: 10.3390/polym12122923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022] Open
Abstract
The lifetime of poly(vinyl chloride) (PVC) can be increased through the addition of additives to provide protection against irradiation. Therefore, several new tin complexes containing atenolol moieties were synthesized and their photostabilizing effect on PVC was investigated. Reacting atenolol with a number of tin reagents in boiling methanol provided high yields of tin complexes. PVC was then mixed with the tin complexes at a low concentration, producing polymeric thins films. The films were irradiated with ultraviolet light and the resulting damage was assessed using different analytical and surface morphology techniques. Infrared spectroscopy and weight loss determination indicated that the films incorporating tin complexes incurred less damage and less surface changes compared to the blank film. In particular, the triphenyltin complex was very effective in enhancing the photostability of PVC, and this is due to its high aromaticity (three phenyl rings) compared to other complexes. Such an additive acts as a hydrogen chloride scavenger, radical absorber, and hydroperoxide decomposer.
Collapse
Affiliation(s)
- Baneen Salam
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq;
| | - Gamal A. El-Hiti
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
- Correspondence: (G.A.E.-H.); (M.H.A.); (E.Y.); Tel.: +966-11469-3778 (G.A.E.-H.); Fax: +966-11469-3536 (G.A.E.-H.)
| | - Muna Bufaroosha
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain 1818, UAE;
| | - Dina S. Ahmed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 64021, Iraq;
| | - Ahmed Ahmed
- Polymer Research Unit, College of Science, Al-Mustansiriyah University, Baghdad 10052, Iraq;
| | - Mohammad Hayal Alotaibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
- Correspondence: (G.A.E.-H.); (M.H.A.); (E.Y.); Tel.: +966-11469-3778 (G.A.E.-H.); Fax: +966-11469-3536 (G.A.E.-H.)
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq;
- Correspondence: (G.A.E.-H.); (M.H.A.); (E.Y.); Tel.: +966-11469-3778 (G.A.E.-H.); Fax: +966-11469-3536 (G.A.E.-H.)
| |
Collapse
|
16
|
Mahmood ZN, Yousif E, Alias M, El-Hiti GA, Ahmed DS. Synthesis, characterization, properties, and use of new fusidate organotin complexes as additives to inhibit poly(vinyl chloride) photodegradation. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02245-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Mohammed A, El-Hiti GA, Yousif E, Ahmed AA, Ahmed DS, Alotaibi MH. Protection of Poly(Vinyl Chloride) Films against Photodegradation Using Various Valsartan Tin Complexes. Polymers (Basel) 2020; 12:polym12040969. [PMID: 32326307 PMCID: PMC7240378 DOI: 10.3390/polym12040969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/02/2023] Open
Abstract
Poly(vinyl chloride) is a common plastic that is widely used in many industrial applications. Poly(vinyl chloride) is mixed with additives to improve its mechanical and physical properties and to enable its use in harsh environments. Herein, to protect poly(vinyl chloride) films against photoirradiation with ultraviolet light, a number of tin complexes containing valsartan were synthesized and their chemical structures were established. Fourier-transform infrared spectroscopy, weight loss, and molecular weight determination showed that the non-desirable changes were lower in the films containing the tin complexes than for the blank polymeric films. Analysis of the surface morphology of the irradiated polymeric materials showed that the films containing additives were less rough than the irradiated blank film. The tin complexes protected the poly(vinyl chloride) films against irradiation, where the complexes with high aromaticity were particularly effective. The additives act as primary and secondary stabilizers that absorb the incident radiation and slowly remit it to the polymeric chain as heat energy over time at a harmless level.
Collapse
Affiliation(s)
- Alaa Mohammed
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq;
| | - Gamal A. El-Hiti
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
- Correspondence: (G.A.E.-H.); (E.Y.); (M.H.A.); Tel.: +966-11469-3778 (G.A.E.-H.); Fax: +966-11469-3536 (G.A.E.-H.)
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq;
- Correspondence: (G.A.E.-H.); (E.Y.); (M.H.A.); Tel.: +966-11469-3778 (G.A.E.-H.); Fax: +966-11469-3536 (G.A.E.-H.)
| | - Ahmed A. Ahmed
- Polymer Research Unit, College of Science, Al-Mustansiriyah University, Baghdad 10052, Iraq;
| | - Dina S. Ahmed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 64021, Iraq;
| | - Mohammad Hayal Alotaibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
- Correspondence: (G.A.E.-H.); (E.Y.); (M.H.A.); Tel.: +966-11469-3778 (G.A.E.-H.); Fax: +966-11469-3536 (G.A.E.-H.)
| |
Collapse
|
18
|
Influence of Polyphosphates on the Physicochemical Properties of Poly (Vinyl Chloride) after Irradiation with Ultraviolet Light. Polymers (Basel) 2020; 12:polym12010193. [PMID: 31936894 PMCID: PMC7022887 DOI: 10.3390/polym12010193] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/24/2019] [Accepted: 01/08/2020] [Indexed: 11/23/2022] Open
Abstract
Three new polyphosphates were synthesized in good yields by reacting diethylenetriamine with the appropriate phosphate ester in ethanol under acidic conditions. The polyphosphate structures were determined using FT-IR and 1H-NMR spectroscopies, and their elemental compositions were confirmed by EDX spectroscopy. Polyphosphates were added to poly(vinyl chloride) (PVC) at low concentrations to fabricate thin films. The PVC films were irradiated with ultraviolet light for long periods, and the effect of polyphosphates as the photostabilizer was investigated by determining changes in the infrared spectra (intensity of specific functional group peaks), reduction in molecular weight, weight loss, and surface morphology. Minimal changes were seen for PVC films containing polyphosphate compared to that for the blank film. In addition, optical, scanning electron, and atomic force microscopies were used to inspect the surface morphology of films. Undesirable changes due to photodegradation were negligible in PVC films containing additives compared to films containing no additives. In addition, the surfaces were smoother and more homogeneous. Polyphosphates, and in particular ones that contain an ortho-geometry, act as efficient photostabilizers to reduce the rate of photodegradation. Polyphosphates absorb ultraviolet light, chelate with polymeric chains, scavenge radical moieties, and decompose peroxide residues.
Collapse
|
19
|
Porous Aromatic Melamine Schiff Bases as Highly Efficient Media for Carbon Dioxide Storage. Processes (Basel) 2019. [DOI: 10.3390/pr8010017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High energy demand has led to excessive fuel consumption and high-concentration CO2 production. CO2 release causes serious environmental problems such as the rise in the Earth’s temperature, leading to global warming. Thus, chemical industries are under severe pressure to provide a solution to the problems associated with fuel consumption and to reduce CO2 emission at the source. To this effect, herein, four highly porous aromatic Schiff bases derived from melamine were investigated as potential media for CO2 capture. Since these Schiff bases are highly aromatic, porous, and have a high content of heteroatoms (nitrogen and oxygen), they can serve as CO2 storage media. The surface morphology of the Schiff bases was investigated through field emission scanning electron microscopy, and their physical properties were determined by gas adsorption experiments. The Schiff bases had a pore volume of 0.005–0.036 cm3/g, an average pore diameter of 1.69–3.363 nm, and a small Brunauer–Emmett–Teller surface area (5.2–11.6 m2/g). The Schiff bases showed remarkable CO2 uptake (up to 2.33 mmol/g; 10.0 wt%) at 323 K and 40 bars. The Schiff base containing the 4-nitrophenyl substituent was the most efficient medium for CO2 adsorption and, therefore, can be used as a gas sorbent.
Collapse
|
20
|
Hadi AG, Jawad K, El-Hiti GA, Alotaibi MH, Ahmed AA, Ahmed DS, Yousif E. Photostabilization of Poly(vinyl chloride) by Organotin(IV) Compounds against Photodegradation. Molecules 2019; 24:molecules24193557. [PMID: 31581427 PMCID: PMC6804033 DOI: 10.3390/molecules24193557] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 11/18/2022] Open
Abstract
Poly(vinyl chloride) (PVC), a polymer widely used in common household and industrial materials, undergoes photodegradation upon ultraviolet irradiation, leading to undesirable physicochemical properties and a reduced lifetime. In this study, four telmisartan organotin(IV) compounds were tested as photostabilizers against photodegradation. PVC films (40-µm thickness) containing these compounds (0.5 wt%) were irradiated with ultraviolet light at room temperature for up to 300 h. Changes in various polymeric parameters, including the growth of hydroxyl, carbonyl, and alkene functional groups, weight loss, reduction in molecular weight, and appearance of surface irregularities, were investigated to test the efficiency of the photostabilizers. The changes were more noticeable in the blank PVC film than in the films containing the telmisartan organotin(IV) compounds. These results reflect that these compounds effectively inhibit the photodegradation of PVC, possibly by acting as hydrogen chloride and radical scavengers, peroxide decomposers, and primary photostabilizers. The synthesized organotin(IV) complexes could be used as PVC additives to enhance photostability.
Collapse
Affiliation(s)
- Angham G Hadi
- Department of Chemistry, College of Science, Babylon University, Babil 51002, Iraq.
| | - Khudheyer Jawad
- Department of Chemistry, College of Science, Babylon University, Babil 51002, Iraq.
| | - Gamal A El-Hiti
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Mohammad Hayal Alotaibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.
| | - Ahmed A Ahmed
- Polymer Research Unit, College of Science, Al-Mustansiriyah University, Baghdad 10052, Iraq.
| | - Dina S Ahmed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 64021, Iraq.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| |
Collapse
|
21
|
SEM morphological analysis of irradiated polystyrene film doped by a Schiff base containing a 1,2,4-triazole ring system. APPLIED PETROCHEMICAL RESEARCH 2019. [DOI: 10.1007/s13203-019-00235-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Abstract
A Schiff base containing the 1,2,4-triazole moiety was synthesized and added to polystyrene at low concentration for a homogenous blend. The polystyrene film was irradiated with ultraviolet light and the surface morphology was analyzed. Micrographs of the polystyrene/Schiff base blend after irradiation indicated the fabrication of a terrestrial crack-like material. This was ascribed to the presence of the Schiff base, relatively long irradiation time, and photostability induced by the base. After irradiation, the blank polystyrene film formed a cotton-like fibrous material.
Collapse
|
22
|
Hadi AG, Yousif E, El-Hiti GA, Ahmed DS, Jawad K, Alotaibi MH, Hashim H. Long-Term Effect of Ultraviolet Irradiation on Poly(vinyl chloride) Films Containing Naproxen Diorganotin(IV) Complexes. Molecules 2019; 24:molecules24132396. [PMID: 31261834 PMCID: PMC6650850 DOI: 10.3390/molecules24132396] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
As poly(vinyl chloride) (PVC) photodegrades with long-term exposure to ultraviolet radiation, it is desirable to develop methods that enhance the photostability of PVC. In this study, new aromatic-rich diorganotin(IV) complexes were tested as photostabilizers in PVC films. The diorganotin(IV) complexes were synthesized in 79-86% yields by reacting excess naproxen with tin(IV) chlorides. PVC films containing 0.5 wt % diorganotin(IV) complexes were irradiated with ultraviolet light for up to 300 h, and changes within the films were monitored using the weight loss and the formation of specific functional groups (hydroxyl, carbonyl, and polyene). In addition, changes in the surface morphologies of the films were investigated. The diorganotin(IV) complexes enhanced the photostability of PVC, as the weight loss and surface roughness were much lower in the films with additives than in the blank film. Notably, the dimethyltin(IV) complex was the most efficient photostabilizer. The polymeric film containing this complex exhibited a morphology of regularly distributed hexagonal pores, with a honeycomb-like structure-possibly due to cross-linking and interactions between the additive and the polymeric chains. Various mechanisms, including direct absorption of ultraviolet irradiation, radical or hydrogen chloride scavenging, and polymer chain coordination, could explain how the diorganotin(IV) complexes stabilize PVC against photodegradation.
Collapse
Affiliation(s)
- Angham G Hadi
- Department of Chemistry, College of Science, Babylon University, Babil 51002, Iraq
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Dina S Ahmed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 64021, Iraq
| | - Khudheyer Jawad
- Department of Chemistry, College of Science, Babylon University, Babil 51002, Iraq
| | - Mohammad Hayal Alotaibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.
| | - Hassan Hashim
- Department of Physics, College of Science, Al-Nahrain University, Baghdad 64021, Iraq
| |
Collapse
|
23
|
Hadi AG, Jawad K, Yousif E, El-Hiti GA, Alotaibi MH, Ahmed DS. Synthesis of Telmisartan Organotin(IV) Complexes and their use as Carbon Dioxide Capture Media. Molecules 2019; 24:E1631. [PMID: 31027205 PMCID: PMC6514663 DOI: 10.3390/molecules24081631] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/21/2022] Open
Abstract
Novel, porous, highly aromatic organotin(IV) frameworks were successfully synthesized by the condensation of telmisartan and an appropriate tin(IV) chloride. The structures of the synthesized organotin(IV) complexes were elucidated by elemental analysis, 1H-, 13C-, and 119Sn-NMR, and FTIR spectroscopy. The surface morphologies of the complexes were inspected by field emission scanning electron microscopy. The synthesized mesoporous organotin(IV) complexes have a Brunauer-Emmett-Teller (BET) surface area of 32.3-130.4 m2·g-1, pore volume of 0.046-0.162 cm3·g-1, and pore size of around 2.4 nm. The tin complexes containing a butyl substituent were more efficient as carbon dioxide storage media than the complexes containing a phenyl substituent. The dibutyltin(IV) complex had the highest BET surface area (SBET = 130.357 m2·g-1), the largest volume (0.162 cm3·g-1), and was the most efficient for carbon dioxide storage (7.1 wt%) at a controlled temperature (323 K) and pressure (50 bars).
Collapse
Affiliation(s)
- Angham G Hadi
- Department of Chemistry, College of Science, Babylon University, Babil 51002, Iraq.
| | - Khudheyer Jawad
- Department of Chemistry, College of Science, Babylon University, Babil 51002, Iraq.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Mohammad Hayal Alotaibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.
| | - Dina S Ahmed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 64021, Iraq.
| |
Collapse
|