1
|
Andrades U, Gaikar S, Nathani K, Sawarkar S, Omri A. Harnessing nanofibers for targeted delivery of phytoconstituents in age-related macular degeneration. Drug Deliv 2025; 32:2489491. [PMID: 40192800 PMCID: PMC11980246 DOI: 10.1080/10717544.2025.2489491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Age-related macular degeneration is a degenerative eye condition that affects the macula and results in central vision loss. Phytoconstituents show great promise in the treatment of AMD. AMD therapy can benefit from the advantages of phytoconstituents loaded nanofibers. There are opportunities to improve the effectiveness of phytoconstituents in the treatment of age-related macular degeneration (AMD) through the use of nanofiber-based delivery methods. These novel platforms encapsulate and distribute plant-derived bioactives by making use of the special qualities of nanofibers. These qualities include their high surface area-to-volume ratio, variable porosity, and biocompatibility. Exploring the use of nanofiber-based delivery methods to provide phytoconstituents in AMD treatment is a great choice for enhancing patient adherence, safety, and efficacy in managing this condition. This article explores the potential of nanofiber-based delivery methods to revolutionize AMD treatment, providing an innovative and effective approach to treat this condition.
Collapse
Affiliation(s)
- Ulia Andrades
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sahil Gaikar
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Khushali Nathani
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
2
|
Li X, Zhang X, Su F, Zhao H, Qu Z, Ge C, Fang J. Electrospun freestanding anodes for metal-ion batteries: structural design and application. NANOSCALE 2025; 17:8999-9020. [PMID: 40116878 DOI: 10.1039/d5nr00372e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
With the rapid development of flexible electronic devices, flexible metal-ion batteries have attracted considerable interest. One-dimensional (1D) nanofiber materials fabricated through electrospinning are regarded as excellent candidates for flexible freestanding anodes due to their high specific surface area, short electron transport paths, and excellent flexibility. They demonstrate impressive application potential in meeting the demand for deformation and outstanding electrochemical performance. This comprehensive review delves into their structural design, such as porous, core-shell, hollow, and composite structures, with particular detail on the approaches, polymer combination, and post-treatment methods. We focus on the contribution of different structures to stability, reversible capacity, long-term cycling, and rate performance during the charge/discharge process of the freestanding nanofibrous anodes. We introduce the combination of commonly used silicon-based materials, alloys, metal oxides, and metal sulfides with multi-structure nanofibers used in anodes. The paper explains how this combination overcomes the difficulties encountered by active materials in different types of metal-ion batteries. Finally, the paper concludes and discusses the challenges and prospects of electrospinning for enhancing freestanding anode and flexible metal-ion batteries.
Collapse
Affiliation(s)
- Xinyu Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Xunlong Zhang
- Institute of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Fangqin Su
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Haoyue Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Zhan Qu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Can Ge
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
3
|
Liu Z, Liu L, Liu J, Wu J, Tang R, Wolfram J. Electrospun meshes for abdominal wall hernia repair: Potential and challenges. Acta Biomater 2025; 195:52-72. [PMID: 39826853 DOI: 10.1016/j.actbio.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Surgical meshes are widely used in abdominal wall hernia repairs. However, consensus on mesh treatment remains elusive due to varying repair outcomes, especially with the introduction of new meshes, posing a substantial challenge for surgeons. Addressing these issues requires communicating the features of emerging candidates with a focus on clinical considerations. Electrospinning is a versatile technique for producing meshes with biomechanical architectures that closely mimic the extracellular matrix and enable incorporation of bioactive and therapeutic agents into the interconnective porous network, providing a favorable milieu for tissue integration and remodeling. Although this promising technique has drawn considerable interest in mesh fabrication and functionalization, currently developed electrospun meshes have limitations in meeting clinical requirements for hernia repair. This review summarizes the advantages and limitations of meshes prepared through electrospinning based on biomechanical, biocompatible, and bioactive properties/functions, offering interdisciplinary insights into challenges and future directions toward clinical mesh-aided hernia repair. STATEMENT OF SIGNIFICANCE: Consensus for hernia treatments using surgical meshes remains elusive based on varying repair outcomes, presenting significant challenges for researchers and surgeons. Differences in understanding mesh between specialists, particularly regarding material characteristics and clinical requirements, contribute to this issue. Electrospinning has been increasingly applied in mesh preparation through various approaches and strategies, aiming to improve abdominal wall hernia by restoring mechanical, morphological and functional integrity. However, there is no comprehensive overview of these emerging meshes regarding their features, functions, and clinical potentials, emphasizing the necessity of interdisciplinary discussions on this topic that build upon recent developments in electrospun mesh and provide insights from clinically practical prospectives.
Collapse
Affiliation(s)
- Zhengni Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia; Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China.
| | - Lei Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
4
|
Firuzeh M, Labbaf S, Enayati MH, Dinari M, Mirhaj M. Enhanced wound healing with a bilayered multifunctional quaternized chitosan-dextran-curcumin construct. Carbohydr Polym 2025; 352:123195. [PMID: 39843097 DOI: 10.1016/j.carbpol.2024.123195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
This study introduces a novel bilayer wound dressing that integrates a quaternized chitosan-polyacrylic acid (QCs-PAA) sponge as the top layer with electrospun nanofibers containing curcumin as the bottom layer. For the first time, QCs and PAA were combined in an 80:20 ratio through freeze-drying to form a porous sponge layer with ideal structural properties, including 83 ± 6 % porosity and pore diameters of 290 ± 12.5 μm. For the bottom layer, five groups of nanofibers containing PAA, dextran, and curcumin were electrospun onto the porous sponge. All wound dressings were non-toxic and exhibited exceptional antibacterial activity against S. aureus and E. coli. All groups, particularly the QP/PD0.25Cur bilayer dressing, showed significant HaCaT cell adhesion. Angiogenesis assays confirmed a remarkable increase in blood vessel number and thickness in samples containing 0.25 w/w% curcumin, with vascular density increasing from 0.32 in the single-layer sponge to 0.54 in the QP/PD0.25Cur sample, representing a 68 % enhancement. In vivo studies demonstrated that within 14 days, wound healing was accelerated with the QP/PD0.25Cur bilayer dressing, achieving 96 % closure compared to other groups. The findings revealed that all fabricated bilayer sponge-nanofiber wound dressings, particularly the 0.25 w/w% curcumin sample, can be a suitable candidate for wound management.
Collapse
Affiliation(s)
- Mahboubeh Firuzeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammad Hossein Enayati
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
5
|
Wang H, Tian Z, Wang L, Wang H, Zhang Y, Shi Z. Advancements, functionalization techniques, and multifunctional applications in biomedical and industrial fields of electrospun pectin nanofibers: A review. Int J Biol Macromol 2025; 307:141964. [PMID: 40074113 DOI: 10.1016/j.ijbiomac.2025.141964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Electrospun pectin nanofibers have emerged as a transformative advancement in biomaterials, offering remarkable potential across diverse biomedical and industrial applications. This review explores the synthesis, optimization, and versatile applications of electrospun pectin nanofibers, highlighting their unique properties, including biocompatibility, biodegradability, and adaptability for functionalization. Pectin's structural diversity, coupled with its ability to form hydrogels and interact with biological systems, makes it a promising candidate for wound healing, drug delivery, tissue engineering, and smart packaging. Electrospinning has enabled the fabrication of pectin nanofibers with tunable morphology and functionality, overcoming traditional limitations such as poor mechanical strength. Advances in blending pectin with other polymers and incorporating bioactive agents have further enhanced their mechanical, biological, and therapeutic properties. In wound healing, pectin nanofibers mimic the extracellular matrix, promote angiogenesis, and deliver bioactive compounds to accelerate tissue regeneration. Challenges such as scalability, regulatory compliance, and mechanical limitations remain barriers to widespread adoption. This review underscores the need for interdisciplinary research to address these challenges and advance the clinical and commercial translation of pectin nanofibers. By critically analyzing recent advancements and outlining future directions, this review highlights the transformative potential of electrospun pectin nanofibers as sustainable, high-performance biomaterials for modern biomedical and industrial applications.
Collapse
Affiliation(s)
- Haoyu Wang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China; Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zenan Tian
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Long Wang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China
| | - Haifan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yuxing Zhang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China.
| | - Zhibin Shi
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
6
|
Kim Y, Lim J, Kim HS, Lee J, Chun Y, Cho DH, Kang CS, Choi S. Transient Viscosity Adjustment Using a Coaxial Nozzle for Electrospinning Nanofibers from Non-Spinnable Pure m-Poly(hydroxyamide). Polymers (Basel) 2024; 16:3414. [PMID: 39684159 DOI: 10.3390/polym16233414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, a transient viscosity adjustment method using a coaxial nozzle was explored to fabricate nanofibers from non-spinnable m-poly(hydroxyamide) (m-PHA). Unlike conventional electrospinning methods that often require additives to induce fiber formation, this approach relies on a sheath-core configuration, introducing tetrahydrofuran (THF) to the sheath to temporarily adjust solution viscosity. The diffusion of THF into the core m-PHA solution resulted in momentary solidification at the interface, promoting nanofiber formation without compromising polymer solubility. SEM and rheological analyses confirmed that optimized sheath-to-core flow ratios yielded nanofibers with significantly reduced particle formation. Notably, increasing the THF flow rate facilitated a faster solidification rate, enhancing jet elongation and resulting in uniform nanofibers with diameters of approximately 180-190 nm. Although complete nanofibers without beads were not achieved in this study, this coaxial electrospinning approach presents a possible pathway for fabricating nanofibers from polymers with limited spinnability, potentially expanding the application scope of electro-spun materials in high-performance fields.
Collapse
Affiliation(s)
- Yerim Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jihwan Lim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Han Seong Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Institute of Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jaejun Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Youngsang Chun
- Department of Advanced Materials Engineering, Shinhan University, 95 Hoam-ro, Uijeongbu-si 11644, Republic of Korea
| | - Dong-Hyun Cho
- Department of Aerospace Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chan Sol Kang
- Department of Advanced Materials Engineering, Shinhan University, 95 Hoam-ro, Uijeongbu-si 11644, Republic of Korea
| | - Sejin Choi
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Institute of Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Bakare A, Mohanadas HP, Tucker N, Ahmed W, Manikandan A, Faudzi AAM, Mohamaddan S, Jaganathan SK. Advancements in textile techniques for cardiovascular tissue replacement and repair. APL Bioeng 2024; 8:041503. [PMID: 39431050 PMCID: PMC11488978 DOI: 10.1063/5.0231856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
In cardiovascular therapeutics, procedures such as heart transplants and coronary artery bypass graft are pivotal. However, an acute shortage of organ donors increases waiting times of patients, which is reflected in negative effects on the outcome for the patient. Post-procedural complications such as thrombotic events and atherosclerotic developments may also have grave clinical implications. To address these challenges, tissue engineering is emerging as a solution, using textile technologies to synthesize biomimetic scaffolds resembling natural tissues. This comprehensive analysis explains methodologies including electrospinning, electrostatic flocking, and advanced textile techniques developed from weaving, knitting, and braiding. These techniques are evaluated in the context of fabricating cardiac patches, vascular graft constructs, stent designs, and state-of-the-art wearable sensors. We also closely examine the interaction of distinct process parameters with the biomechanical and morphological attributes of the resultant scaffolds. The research concludes by combining current findings and recommendations for subsequent investigation.
Collapse
Affiliation(s)
- Abiola Bakare
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | | | - Nick Tucker
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - Waqar Ahmed
- School of Mathematics and Physics, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - A. Manikandan
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Ahmad Athif Mohd Faudzi
- School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Shahrol Mohamaddan
- Innovative Global Program College of Engineering, Shibaura Institute of Technology, Saitama, Japan
| | | |
Collapse
|
8
|
Ndlovu SP, Motaung KSCM, Adeyemi SA, Ubanako P, Ngema L, Fonkui TY, Ndinteh DT, Kumar P, Choonara YE, Aderibigbe BA. Sodium alginate-based nanofibers loaded with Capparis Sepiaria plant extract for wound healing. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2380-2401. [PMID: 39037962 DOI: 10.1080/09205063.2024.2381375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Burn wounds are associated with infections, drug resistance, allergic reactions, odour, bleeding, excess exudates, and scars, requiring prolonged hospital stay. It is crucial to develop wound dressings that can effectively combat allergic reactions and drug resistance, inhibit infections, and absorb excess exudates to accelerate wound healing. To overcome the above-mentioned problems associated with burn wounds, SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers incorporated with Capparis sepiaria plant extract were prepared using an electrospinning technique. Fourier-transform infrared spectroscopy confirmed the successful incorporation of the extract into the nanofibers without any interaction between the extract and the polymers. The nanofibers displayed porous morphology and a rough surface suitable for cellular adhesion and proliferation. SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers demonstrated significant antibacterial effects against wound infection-associated bacterial strains: Pseudomonas aeruginosa, Enterococcus faecalis, Mycobaterium smegmatis, Escherichia coli, Enterobacter cloacae, Proteus vulgaris, and Staphylococcus aureus. Cytocompatibility studies using HaCaT cells revealed the non-toxicity of the nanofibers. SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers exhibited hemostatic properties, resulting from the synergistic effect of the plant extract and polymers. The in vitro scratch wound healing assay showed that the SA/PVA/Capparis sepiaria nanofiber wound-healing capability is more than the plant extract and a commercially available wound dressing. The wound-healing potential of SA/PVA/Capparis sepiaria nanofiber is attributed to the synergistic effect of the phytochemicals present in the extract, their porosity, and the ECM-mimicking structure of the nanofibers. The findings suggest that the electrospun nanofibers loaded with Capparis sepiaria extract are promising wound dressings that should be explored for burn wounds.
Collapse
Affiliation(s)
- Sindi P Ndlovu
- Department of Chemistry, University of Fort Hare, Alice, Eastern Cape, South Africa
| | | | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lindokuhle Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thierry Y Fonkui
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Derek T Ndinteh
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
9
|
Rajabifar N, Rostami A, Afshar S, Mosallanezhad P, Zarrintaj P, Shahrousvand M, Nazockdast H. Wound Dressing with Electrospun Core-Shell Nanofibers: From Material Selection to Synthesis. Polymers (Basel) 2024; 16:2526. [PMID: 39274158 PMCID: PMC11398146 DOI: 10.3390/polym16172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Skin, the largest organ of the human body, accounts for protecting against external injuries and pathogens. Despite possessing inherent self-regeneration capabilities, the repair of skin lesions is a complex and time-consuming process yet vital to preserving its critical physiological functions. The dominant treatment involves the application of a dressing to protect the wound, mitigate the risk of infection, and decrease the likelihood of secondary injuries. Pursuing solutions for accelerating wound healing has resulted in groundbreaking advancements in materials science, from hydrogels and hydrocolloids to foams and micro-/nanofibers. Noting the convenience and flexibility in design, nanofibers merit a high surface-area-to-volume ratio, controlled release of therapeutics, mimicking of the extracellular matrix, and excellent mechanical properties. Core-shell nanofibers bring even further prospects to the realm of wound dressings upon separate compartments with independent functionality, adapted release profiles of bioactive agents, and better moisture management. In this review, we highlight core-shell nanofibers for wound dressing applications featuring a survey on common materials and synthesis methods. Our discussion embodies the wound healing process, optimal wound dressing characteristics, the current organic and inorganic material repertoire for multifunctional core-shell nanofibers, and common techniques to fabricate proper coaxial structures. We also provide an overview of antibacterial nanomaterials with an emphasis on their crystalline structures, properties, and functions. We conclude with an outlook for the potential offered by core-shell nanofibers toward a more advanced design for effective wound healing.
Collapse
Affiliation(s)
- Nariman Rajabifar
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran
| | - Shahnoosh Afshar
- Department of Polymer Engineering, Islamic Azad University-Mahshahr Campus, Mahshahr P.O. Box 63511-41111, Iran
| | - Pezhman Mosallanezhad
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rasht P.O. Box 43841-119, Iran
| | - Hossein Nazockdast
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| |
Collapse
|
10
|
Ding Y, Zhu Z, Zhang X, Wang J. Novel Functional Dressing Materials for Intraoral Wound Care. Adv Healthc Mater 2024; 13:e2400912. [PMID: 38716872 DOI: 10.1002/adhm.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.
Collapse
Affiliation(s)
- Yutang Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
11
|
Anastasova I, Ignatova M, Manolova N, Rashkov I, Markova N, Toshkova R, Georgieva A, Kamenova-Nacheva M, Trendafilova A, Ivanova V, Doncheva T. Chitosan/Hyaluronate Complex-Coated Electrospun Poly(3-hydroxybutyrate) Materials Containing Extracts from Melissa officinalis and/or Hypericum perforatum with Various Biological Activities: Antioxidant, Antibacterial and In Vitro Anticancer Effects. Polymers (Basel) 2024; 16:2105. [PMID: 39125132 PMCID: PMC11313976 DOI: 10.3390/polym16152105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
The present study aimed to fabricate innovative fibrous materials with various biological activities from poly(3-hydroxybutyrate), sodium hyaluronate (HA), chitosan (Ch), Melissa officinalis (MO), Hypericum perforatum (HP) extract, or a combination of both extracts. Electrospinning or electrospinning followed by dip coating and the subsequent formation of a polyelectrolyte complex were the methods used to prepare these materials. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) were applied for investigating the morphology of materials, their thermal characteristics, and their surface chemical composition. The composition and design of the mats had an influence on the in vitro release behavior of the main bioactive compounds present in the MO and HP extracts incorporated in the materials. It was found that as-created materials comprising a combination of both extracts and a Ch/HA complex exerted higher antioxidant activity than that of (non-)coated MO-containing mats and Ch/HA-coated mats containing HP. The novel materials manifested antibacterial efficacy towards the pathogenic bacteria S. aureus and E. coli, as evidenced by the performed microbiological screening. Furthermore, the mats possessed a great growth inhibitory effect on HeLa cancer cells but had a less pronounced effect on the growth of normal mouse BALB/3T3 fibroblasts. The loading of both extracts in the mats and the formation of coating led to the enhancement of the in vitro anticancer and antibacterial activities of the materials. Thus, the novel materials have potential for use in local cancer therapy as well as for use as wound dressings.
Collapse
Affiliation(s)
- Ina Anastasova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 103A, BG-1113 Sofia, Bulgaria; (I.A.); (N.M.); (I.R.)
| | - Milena Ignatova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 103A, BG-1113 Sofia, Bulgaria; (I.A.); (N.M.); (I.R.)
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 103A, BG-1113 Sofia, Bulgaria; (I.A.); (N.M.); (I.R.)
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 103A, BG-1113 Sofia, Bulgaria; (I.A.); (N.M.); (I.R.)
| | - Nadya Markova
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 26, BG-1113 Sofia, Bulgaria;
| | - Reneta Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 25, BG-1113 Sofia, Bulgaria; (R.T.); (A.G.)
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 25, BG-1113 Sofia, Bulgaria; (R.T.); (A.G.)
| | - Mariana Kamenova-Nacheva
- Laboratory for Extraction of Natural Products and Synthesis of Bioactive Compounds, Research and Development and Innovation Consortium, Sofia Tech Park JSC, 111 Tsarigradsko Shose blvd., BG-1784 Sofia, Bulgaria;
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 9, BG-1113 Sofia, Bulgaria; (A.T.); (V.I.); (T.D.)
| | - Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 9, BG-1113 Sofia, Bulgaria; (A.T.); (V.I.); (T.D.)
| | - Viktoria Ivanova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 9, BG-1113 Sofia, Bulgaria; (A.T.); (V.I.); (T.D.)
| | - Tsvetelina Doncheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 9, BG-1113 Sofia, Bulgaria; (A.T.); (V.I.); (T.D.)
| |
Collapse
|
12
|
Mottola S, Viscusi G, Belvedere R, Petrella A, De Marco I, Gorrasi G. Production of mono and bilayer devices for wound dressing by coupling of electrospinning and supercritical impregnation techniques. Int J Pharm 2024; 660:124308. [PMID: 38848800 DOI: 10.1016/j.ijpharm.2024.124308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
In this paper, electrospinning and supercritical impregnation were coupled to produce polyurethane fibrous membranes loaded with mesoglycan and lactoferrin. The proposed methodology allowed the production of three skin wound healing bilayer systems: a first system containing mesoglycan loaded through electrospinning and lactoferrin loaded by supercritical impregnation, a second system where the use of the two techniques was reversed, and a third sample where the drugs were both encapsulated through a one-step process. SEM analysis demonstrated the formation of microfibers with a homogeneous drug distribution. The highest loadings were 0.062 g/g for mesoglycan and 0.013 g/g for lactoferrin. Then, hydrophilicity and liquid retention analyses were carried out to evaluate the possibility of using the manufacturers as active patches. The kinetic profiles, obtained through in vitro tests conducted using a Franz diffusion cell, proved that the diffusion of the active drugs followed a double-step release before attaining the equilibrium after about 30 h. When the electrospun membranes were placed in contact with HUVEC, HaCaT, and BJ cell lines, as human endothelial cells, keratinocytes, and fibroblasts, respectively, no cytotoxic events were assessed. Finally, the capacity of the most promising system to promote the healing process was performed by carrying out scratch tests on HaCat cells.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
13
|
Zhang W, Chen X, Chen Y, Li HY, Liu H. Construction of semiconductor nanocomposites for room-temperature gas sensors. NANOSCALE 2024; 16:12883-12908. [PMID: 38919996 DOI: 10.1039/d4nr00441h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Gas sensors are essential for ensuring public safety and improving quality of life. Room-temperature gas sensors are notable for their potential economic benefits and low energy consumption, and their expected integration with wearable electronics, making them a focal point of contemporary research. Advances in nanomaterials and low-dimensional semiconductors have significantly contributed to the enhancement of room-temperature gas sensors. These advancements have focused on improving sensitivity, selectivity, and response/recovery times, with nanocomposites offering distinct advantages. The discussion here focuses on the use of semiconductor nanocomposites for gas sensing at room temperature, and provides a review of the latest synthesis techniques for these materials. This involves the precise adjustment of chemical compositions, microstructures, and morphologies. In addition, the design principles and potential functional mechanisms are examined. This is crucial for deepening the understanding and enhancing the operational capabilities of sensors. We also highlight the challenges faced in scaling up the production of nanocomposite materials. Looking ahead, semiconductor nanocomposites are expected to drive innovation in gas sensor technology due to their carefully crafted design and construction, paving the way for their extensive use in various sectors.
Collapse
Affiliation(s)
- Wenjian Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
| | - Xinyi Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
| | - Yuexi Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
| | - Hua-Yao Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
- Wenzhou Key Laboratory of Optoelectronic Materials and Devices Application, Wenzhou Advanced Manufacturing Institute of HUST, 1085 Meiquan Road, Wenzhou, Zhejiang 325035, P. R. China
| | - Huan Liu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
| |
Collapse
|
14
|
Wasyłeczko M, Wojciechowski C, Chwojnowski A. Polyethersulfone Polymer for Biomedical Applications and Biotechnology. Int J Mol Sci 2024; 25:4233. [PMID: 38673817 PMCID: PMC11049998 DOI: 10.3390/ijms25084233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Polymers stand out as promising materials extensively employed in biomedicine and biotechnology. Their versatile applications owe much to the field of tissue engineering, which seamlessly integrates materials engineering with medical science. In medicine, biomaterials serve as prototypes for organ development and as implants or scaffolds to facilitate body regeneration. With the growing demand for innovative solutions, synthetic and hybrid polymer materials, such as polyethersulfone, are gaining traction. This article offers a concise characterization of polyethersulfone followed by an exploration of its diverse applications in medical and biotechnological realms. It concludes by summarizing the significant roles of polyethersulfone in advancing both medicine and biotechnology, as outlined in the accompanying table.
Collapse
Affiliation(s)
- Monika Wasyłeczko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ksiecia Trojdena 4, 02-109 Warsaw, Poland; (C.W.); (A.C.)
| | | | | |
Collapse
|
15
|
Lian S, Lamprou D, Zhao M. Electrospinning technologies for the delivery of Biopharmaceuticals: Current status and future trends. Int J Pharm 2024; 651:123641. [PMID: 38029864 DOI: 10.1016/j.ijpharm.2023.123641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
This review provides an in-depth exploration of electrospinning techniques employed to produce micro- or nanofibres of biopharmaceuticals using polymeric solutions or melts with high-voltage electricity. Distinct from prior reviews, the current work narrows its focus on the recent developments and advanced applications in biopharmaceutical formulations. It begins with an overview of electrospinning principles, covering both solution and melt modes. Various methods for incorporating biopharmaceuticals into electrospun fibres, such as surface adsorption, blending, emulsion, co-axial, and high-throughput electrospinning, are elaborated. The review also surveys a wide array of biopharmaceuticals formulated through electrospinning, thereby identifying both opportunities and challenges in this emerging field. Moreover, it outlines the analytical techniques for characterizing electrospun fibres and discusses the legal and regulatory requirements for their production. This work aims to offer valuable insights into the evolving realm of electrospun biopharmaceutical delivery systems.
Collapse
Affiliation(s)
- Shangjie Lian
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | - Min Zhao
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; China Medical University- Queen's University Belfast Joint College (CQC), China Medical University, Shenyang 110000, China
| |
Collapse
|
16
|
Altundag Ö, Öteyaka MÖ, Çelebi-Saltik B. Co- and Triaxial Electrospinning for Stem Cell-based Bone Regeneration. Curr Stem Cell Res Ther 2024; 19:865-878. [PMID: 37594104 DOI: 10.2174/1574888x18666230818094216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Bone tissue is composed of organic minerals and cells. It has the capacity to heal for certain minor damages, but when the bone defects surpass the critical threshold, they need fixing. Bone regeneration through natural and synthetic biodegradable materials requires various steps, such as manufacturing methods and materials selection. A successful biodegradable bone graft should have a high surface area/ volume ratio, strength, and a biocompatible, porous structure capable of promoting cell adhesion, proliferation, and differentiation. Considering these requirements, the electrospinning technique is promising for creating functional nano-sized scaffolds. The multi-axial methods, such as coaxial and triaxial electrospinning, are the most popular techniques to produce double or tri-layered scaffolds, respectively. Recently, stem cell culture on scaffolds and the application of osteogenic differentiation protocols on these scaffolds have opened new possibilities in the field of biomaterials research. This review discusses an overview of the progress in coaxial and triaxial technology through biodegradable composite bone materials. The review also carefully elaborates the osteogenic differentiation using stem cells and their performance with nano-sized scaffolds.
Collapse
Affiliation(s)
- Özlem Altundag
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Mustafa Özgür Öteyaka
- Department of Electronic and Automation, Mechatronic Program, Eskisehir Vocational School, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
17
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. Current issues and potential solutions for the electrospinning of major polysaccharides and proteins: A review. Int J Biol Macromol 2023; 253:126735. [PMID: 37690643 DOI: 10.1016/j.ijbiomac.2023.126735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Biopolymers, especially polysaccharides and proteins, are the promising green replacement for petroleum based polymers. Due to their innate properties, they are effectively used in biomedical applications, especially tissue engineering, wound healing, and drug delivery. The fibrous morphology of biopolymers is essentially required for the effectiveness in these biomedical applications. Electrospinning (ES) is the most advanced and robust method to fabricate nanofibers (NFs) and provides a complete solution to the conventional methods issues. However, the major issues regarding fabricating polysaccharides and protein nanofibers using ES include poor electrospinnability, lack of desired fundamental properties for a specific application by a single biopolymer, and insolubility among common solvents. The current review provides the main strategies for effective electrospinning of the major biopolymers. The key strategies include blending major biopolymers with suitable biopolymers and optimizing the solvent system. A systematic literature review was done to provide the optimized solvent system of the major biopolymers along with their best possible biopolymeric blend for ES. The review also highlights the fundamental issues with the commercialization of ES based biomedical products and provides future directions to improve the fabrication of biopolymeric nanofibers.
Collapse
Affiliation(s)
- Murtaza Haider Syed
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia
| | - Md Maksudur Rahman Khan
- Petroleum and Chemical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong BE1410, Brunei
| | - Mior Ahmad Khushairi Mohd Zahari
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| | | | - Norhayati Abdullah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| |
Collapse
|
18
|
Pooja, Dwivedi Y. Comparative spectroscopic study of Tb:Ce(Sal) 3Phen complex inhibited PVA nanofibres for flexible moisture sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123078. [PMID: 37418903 DOI: 10.1016/j.saa.2023.123078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
In the present work, we report a systematic study on optical alteration in Tb:Ce(Sal)3Phen, Tb(Sal)3Phen complexes, and TbCl3·6H2O inhibited in polyvinyl alcohol (PVA) polymeric nanofibres. We also report the feasibility of Tb:Ce(Sal)3Phen complex dispersed electrospun nanofibres for opto-humidity sensor. Structural, morphological, and spectroscopic properties of the synthesized nanofibres were systematically compared using Fourier transform infrared spectroscopy, scanning electron microscopy, and Photoluminescence analysis. Synthesized Tb(Sal)3Phen complex inhibited in nanofibres yields characteristic bright green photoluminescence of Tb3+ under UV excitations, which is at least two manifolds enhanced on the addition of Ce3+ ions in the same complex. The presence of Ce3+ ions, the salicylate ligand, and the Tb3+ ion help to expand the absorption range (290 nm-400 nm) and, subsequently, the photoluminescence in blue and green regions. Our analysis revealed the linear enhancement of photoluminescence intensity with the addition of Ce3+ ions. Upon exposing the flexible Tb:Ce(Sal)3Phen complex dispersed nanofibres mat in different humidity environments, photoluminescence intensity shows a linear variation. The prepared nanofibres film shows good reversibility, small hysteresis, cyclic stability, and acceptable response and recovery times i.e. 35 and 45 s. The humidity sensing mechanism was proposed on the basis of infrared absorption analysis of dry and humid nanofibres.
Collapse
Affiliation(s)
- Pooja
- Department of Physics, National Institute of Technology Kurukshetra, Haryana 136119, India
| | - Y Dwivedi
- Department of Physics, National Institute of Technology Kurukshetra, Haryana 136119, India.
| |
Collapse
|
19
|
Kim D, Youn J, Lee J, Kim H, Kim DS. Recent Progress in Fabrication of Electrospun Nanofiber Membranes for Developing Physiological In Vitro Organ/Tissue Models. Macromol Biosci 2023; 23:e2300244. [PMID: 37590903 DOI: 10.1002/mabi.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Nanofiber membranes (NFMs), which have an extracellular matrix-mimicking structure and unique physical properties, have garnered great attention as biomimetic materials for developing physiologically relevant in vitro organ/tissue models. Recent progress in NFM fabrication techniques immensely contributes to the development of NFM-based cell culture platforms for constructing physiological organ/tissue models. However, despite the significance of the NFM fabrication technique, an in-depth discussion of the fabrication technique and its future aspect is insufficient. This review provides an overview of the current state-of-the-art of NFM fabrication techniques from electrospinning techniques to postprocessing techniques for the fabrication of various types of NFM-based cell culture platforms. Moreover, the advantages of the NFM-based culture platforms in the construction of organ/tissue models are discussed especially for tissue barrier models, spheroids/organoids, and biomimetic organ/tissue constructs. Finally, the review concludes with perspectives on challenges and future directions for fabrication and utilization of NFMs.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jisang Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
20
|
Rahmani Del Bakhshayesh A, Saghebasl S, Asadi N, Kashani E, Mehdipour A, Nezami Asl A, Akbarzadeh A. Recent advances in nano-scaffolds for tissue engineering applications: Toward natural therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1882. [PMID: 36815236 DOI: 10.1002/wnan.1882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
Among the promising methods for repairing or replacing tissue defects in the human body and the hottest research topics in medical science today are regenerative medicine and tissue engineering. On the other hand, nanotechnology has been expanded into different areas of regenerative medicine and tissue engineering due to its essential benefits in improving performance in various fields. Nanotechnology, a helpful strategy in tissue engineering, offers new solutions to unsolved problems. Especially considering the excellent physicochemical properties of nanoscale structures, their application in regenerative medicine has been gradually developed, and a lot of research has been conducted in this field. In this regard, various nanoscale structures, including nanofibers, nanosheets, nanofilms, nano-clays, hollow spheres, and different nanoparticles, have been developed to advance nanotechnology strategies with tissue repair goals. Here, we comprehensively review the application of the mentioned nanostructures in constructing nanocomposite scaffolds for regenerative medicine and tissue engineering. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Kashani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Nguyen TD, Roh S, Nguyen MTN, Lee JS. Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications. MICROMACHINES 2023; 14:2022. [PMID: 38004879 PMCID: PMC10673317 DOI: 10.3390/mi14112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
Nanofibers have gained much attention because of the large surface area they can provide. Thus, many fabrication methods that produce nanofiber materials have been proposed. Electrospinning is a spinning technique that can use an electric field to continuously and uniformly generate polymer and composite nanofibers. The structure of the electrospinning system can be modified, thus making changes to the structure, and also the alignment of nanofibers. Moreover, the nanofibers can also be treated, modifying the nanofiber structure. This paper thoroughly reviews the efforts to change the configuration of the electrospinning system and the effects of these configurations on the nanofibers. Excellent works in different fields of application that use electrospun nanofibers are also introduced. The studied materials functioned effectively in their application, thereby proving the potential for the future development of electrospinning nanofiber materials.
Collapse
Affiliation(s)
| | | | | | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si 13120, Gyeonggi-Do, Republic of Korea; (T.D.N.); (S.R.); (M.T.N.N.)
| |
Collapse
|
22
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. A review on current trends and future prospectives of electrospun biopolymeric nanofibers for biomedical applications. Eur Polym J 2023; 197:112352. [DOI: 10.1016/j.eurpolymj.2023.112352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Filatova K, Domincova Bergerova E, Kazantseva N, Masar M, Suly P, Sopik T, Cisar J, Durpekova S, Sedlarik V. Design and Fabrication of Electrospun PLA-Based Silica-Modified Composite Nanofibers with Antibacterial Properties for Perspective Wound Treatment. Polymers (Basel) 2023; 15:3500. [PMID: 37688125 PMCID: PMC10490196 DOI: 10.3390/polym15173500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to develop a novel amikacin (AMI) delivery system with prolonged release based on composite electrospun nanofibers of PLA supplemented with AMI-loaded Si nanoparticles of different morphology. The resultant materials were characterized in terms of their physical properties (scanning electron microscopy, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, water contact angle). High-Performance Liquid Chromatography was used to determine the AMI content in the liquid fractions obtained from the release study. The results show that nanofibers of fumed silica exhibited an aggregated, highly porous structure, whereas nanofibers of mesoporous silica had a spherical morphology. Both silica nanoparticles had a significant effect on the hydrophilic properties of PLA nanofiber surfaces. The liquid fractions were investigated to gauge the encapsulation efficiency (EE) and loading efficiency (LE) of AMI, demonstrating 66% EE and 52% LE for nanofibers of fumed silica compared to nanofibers of mesoporous silica nanoparticles (52% EE and 12.7% LE). The antibacterial activity of the AMI-loaded nanofibers was determined by the Kirby-Bauer Method. These results demonstrated that the PLA-based silica nanofibers effectively enhanced the antibacterial properties against the Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Kateryna Filatova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
- Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 76001 Zlin, Czech Republic
| | - Eva Domincova Bergerova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Natalia Kazantseva
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Milan Masar
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Pavol Suly
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Tomas Sopik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Jaroslav Cisar
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Silvie Durpekova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| |
Collapse
|
24
|
Ignatova M, Manolova N, Rashkov I, Georgieva A, Toshkova R, Markova N. 5-Amino-8-hydroxyquinoline-containing Electrospun Materials Based on Poly(vinyl alcohol) and Carboxymethyl Cellulose and Their Cu 2+ and Fe 3+ Complexes with Diverse Biological Properties: Antibacterial, Antifungal and Anticancer. Polymers (Basel) 2023; 15:3140. [PMID: 37514529 PMCID: PMC10383330 DOI: 10.3390/polym15143140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Novel fibrous materials with diverse biological properties containing a model drug of the 8-hydroxyquinoline group-5-amino-8-hydroxyquinoline (5A8Q)-were fabricated using a one-pot method by electrospinning poly(vinyl alcohol) (PVA)/carboxymethyl cellulose (CMC)/5A8Q solutions. Experiments were performed to prepare Cu2+ (Fe3+) complexes of the crosslinked PVA/CMC/5A8Q materials. The formation of complexes was proven by using scanning electron microscopy (SEM), attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The release of 5A8Q and 5A8Q.Cu2+ (Fe3+) was studied and their in vitro release profiles were mostly impacted by the hydrophilic/hydrophobic properties of the materials. The performed microbiological assays revealed that fibrous materials containing 5A8Q and their complexes exhibited good antibacterial and antifungal efficacy. Their activity was stronger against bacteria S. aureus than against bacteria E. coli and fungi C. albicans. Cell viability tests using MTT showed that the presence of 5A8Q and its complexes in the fibrous materials resulted in a significant decrease in the HeLa and MCF-7 cancer cell viability for the various times of cell incubation. Moreover, the observed cytotoxicity of the mats against cancer cells was greater than that against non-cancer HaCaT keratinocytes. All these properties make the novel materials potential candidates for the design of wound healing materials and as drug delivery systems for local therapy of cervical and breast cancer.
Collapse
Affiliation(s)
- Milena Ignatova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 103A, BG-1113 Sofia, Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 103A, BG-1113 Sofia, Bulgaria
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 25, BG-1113 Sofia, Bulgaria
| | - Reneta Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 25, BG-1113 Sofia, Bulgaria
| | - Nadya Markova
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 26, BG-1113 Sofia, Bulgaria
| |
Collapse
|
25
|
Xie Y, Fang Q, Zhao H, Li Y, Lin Z, Chen J. Effects of Six Processing Parameters on the Size of PCL Fibers Prepared by Melt Electrospinning Writing. MICROMACHINES 2023; 14:1437. [PMID: 37512748 PMCID: PMC10385759 DOI: 10.3390/mi14071437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Melt electrospinning writing is a new and promising method for fabricating micro/nanofibers, which has shown great prospects in the biomedical fields such as 3D printing of porous scaffolds. The diameter of the melt electrospinning writing fiber can determine the resolution of the microstructure; thus, the controllability of the fiber diameter is of great significance to the whole fabrication process. In this paper, an orthogonal design experiment (six factors, three levels) was used to explore the impacts of six melt electrospinning parameters (melt temperature, collector speed, tip-to-collector distance, melt flow rate, voltage, and needle gauge) on the fiber diameter. In this experiment, the diameter of fibers obtained with the designed experimental parameters and conditions varied from 10.30 μm to 20.02 μm. The range analysis of orthogonal test results showed that the melt flow rate was the most important factor influencing the diameter of melt electrospinning writing fiber, while the voltage was the least influential factor. The variance analysis of orthogonal test results showed that melt temperature, collector velocity, tip-to-collector distance and melt flow rate had a significant influence on the diameter of melt electrospinning writing fiber. On the basis of the first-order regression equation, the fiber diameter of poly-ε-caprolactone can be accurately controlled, thus improving the engineering applications of poly-ε-caprolactone.
Collapse
Affiliation(s)
- Yu Xie
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350100, China
| | - Qi Fang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350100, China
| | - Han Zhao
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350100, China
| | - Yang Li
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350100, China
| | - Zhihai Lin
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350100, China
| | - Jianxiong Chen
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350100, China
| |
Collapse
|
26
|
Soltanolzakerin-Sorkhabi T, Fallahi-Samberan M, Kumaravel V. Antimicrobial Activities of Polyethylene Terephthalate-Waste-Derived Nanofibrous Membranes Decorated with Green Synthesized Ag Nanoparticles. Molecules 2023; 28:5439. [PMID: 37513311 PMCID: PMC10383445 DOI: 10.3390/molecules28145439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Thermoplastic polymers are one of the synthetic materials produced with high tonnage in the world and are so omnipresent in industries and everyday life. One of the most important polymeric wastes is polyethylene terephthalate (PET), and the disposal of used PET bottles is an unsolved environmental problem, and many efforts have been made to find practical solutions to solve it. In this present work, nanofibrous membranes were produced from waste PET bottles using the electrospinning process. The surface of membranes was modified using NaOH and then decorated with green synthesized Ag nanoparticles (10 ± 2 nm) using an in situ chemical reduction method. The morphology, size, and diameter of the Ag nanoparticles decorating the nanofibers were characterized through transmission electron microscopy (TEM), a field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-visible spectroscopy techniques. Finally, the antimicrobial activity of the nanofibrous membranes was tested against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus using disc diffusion and colony-forming count methods. The growth of bacteria was not affected by the pure nanofibrous membranes, while the Ag-decorated samples showed inhibition zones of 17 ± 1, 16 ± 1, and 14 ± 1 mm for Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, respectively. The planktonic culture results of Pseudomonas aeruginosa showed that the membranes had a relatively low inhibitory effect on its growth. The obtained results showed that Pseudomonas aeruginosa has a relatively low ability to form biofilms on the nanostructured membranes too. A good agreement was observed between the data of biofilm formation and the planktonic cultures of bacteria. The plastic-waste-derived PET/Ag nanocomposite membranes can be used for wound dressings, air filters, and water purification applications.
Collapse
Affiliation(s)
- Tannaz Soltanolzakerin-Sorkhabi
- Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar P.O. Box 5451116714, Iran
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Mehrab Fallahi-Samberan
- Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar P.O. Box 5451116714, Iran
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
27
|
He X, Wang S, Yu X, Zhou X. Bone marrow mesenchymal stem cells response on collagen/hyaluronan/chondroitin scaffold enriched with gentamicin -loaded gelatin microparticles for skin tissue engineering. J Biomater Appl 2023:8853282231180714. [PMID: 37276487 DOI: 10.1177/08853282231180714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The repair and functional reconstruction of large skin defects caused by burn remains an intractable clinical problem. Collagen type I (ColI) was extracted from carp scales and confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis ultraviolet adsorption spectra and automatic amino acid analyzer. Then the scaffolds containing the purified ColI, hyaluronic acid (HA) and chondroitin sulfate (CS) were constructed and examined. The results showed that the scaffold (ColI:CS:HA=9:1:1) had larger pore diameter, porosity, water absorption, degradation rate and tensile strength. gentamycin sulphate (GS) - gelatin microspheres (GMSs) were prepared by emulsion cross-linking method. The drug release study of the ColI-CS-HA-GS/GMSs scaffold with antibacterial property showed a prolonged, continuous, and sustained release of GS. The bone marrow mesenchymal stem cells (BMSCs) were extracted from rat and inoculated into the ColI-HA-CS-GS/GMSs scaffold. The results performed that the scaffold could accelerate proliferation of the BMSCs and wound healing.
Collapse
Affiliation(s)
- Xiaoliang He
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Shuai Wang
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Xinran Yu
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiaohui Zhou
- Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
28
|
Molco M, Keilin A, Lunken A, Ziv Sharabani S, Chkhaidze M, Edelstein-Pardo N, Reuveni T, Sitt A. Controlling Nano-to-Microscale Multilevel Architecture in Polymeric Microfibers through Polymerization-Induced Spontaneous Phase Separation. Polymers (Basel) 2023; 15:polym15112537. [PMID: 37299336 DOI: 10.3390/polym15112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Hierarchically structured polymeric fibers, composed of structural nanoscale motifs that assemble into a microscale fiber are frequently found in natural fibers including cellulose and silk. The creation of synthetic fibers with nano-to-microscale hierarchical structures represents a promising avenue for the development of novel fabrics with distinctive physical, chemical, and mechanical characteristics. In this work, we introduce a novel approach for creating polyamine-based core-sheath microfibers with controlled hierarchical architectures. This approach involves a polymerization-induced spontaneous phase separation and subsequent chemical fixation. Through the use of various polyamines, the phase separation process can be manipulated to produce fibers with diverse porous core architectures, ranging from densely packed nanospheres to segmented "bamboo-stem" morphology. Moreover, the nitrogen-rich surface of the core enables both the chemisorption of heavy metals and the physisorption of proteins and enzymes. Our method offers a new set of tools for the production of polymeric fibers with novel hierarchical morphologies, which has a high potential for a wide range of applications such as filtering, separation, and catalysis.
Collapse
Affiliation(s)
- Maya Molco
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Keilin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adira Lunken
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shiran Ziv Sharabani
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mark Chkhaidze
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nicole Edelstein-Pardo
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tomer Reuveni
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amit Sitt
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
29
|
Chen X, Li H, Xu Z, Lu L, Pan Z, Mao Y. Electrospun Nanofiber-Based Bioinspired Artificial Skins for Healthcare Monitoring and Human-Machine Interaction. Biomimetics (Basel) 2023; 8:223. [PMID: 37366818 DOI: 10.3390/biomimetics8020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Artificial skin, also known as bioinspired electronic skin (e-skin), refers to intelligent wearable electronics that imitate the tactile sensory function of human skin and identify the detected changes in external information through different electrical signals. Flexible e-skin can achieve a wide range of functions such as accurate detection and identification of pressure, strain, and temperature, which has greatly extended their application potential in the field of healthcare monitoring and human-machine interaction (HMI). During recent years, the exploration and development of the design, construction, and performance of artificial skin has received extensive attention from researchers. With the advantages of high permeability, great ratio surface of area, and easy functional modification, electrospun nanofibers are suitable for the construction of electronic skin and further demonstrate broad application prospects in the fields of medical monitoring and HMI. Therefore, the critical review is provided to comprehensively summarize the recent advances in substrate materials, optimized fabrication techniques, response mechanisms, and related applications of the flexible electrospun nanofiber-based bio-inspired artificial skin. Finally, some current challenges and future prospects are outlined and discussed, and we hope that this review will help researchers to better understand the whole field and take it to the next level.
Collapse
Affiliation(s)
- Xingwei Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Han Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Ziteng Xu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lijun Lu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Pan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
30
|
Mottola S, Viscusi G, Iannone G, Belvedere R, Petrella A, De Marco I, Gorrasi G. Supercritical Impregnation of Mesoglycan and Lactoferrin on Polyurethane Electrospun Fibers for Wound Healing Applications. Int J Mol Sci 2023; 24:ijms24119269. [PMID: 37298221 DOI: 10.3390/ijms24119269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Fibrous membranes of thermoplastic polyurethane (TPU) were fabricated through a uni-axial electrospinning process. Fibers were then separately charged with two pharmacological agents, mesoglycan (MSG) and lactoferrin (LF), by supercritical CO2 impregnation. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) analysis proved the formation of a micrometric structure with a homogeneous distribution of mesoglycan and lactoferrin. Besides, the degree of retention is calculated in four liquid media with different pHs. At the same time, angle contact analysis proved the formation of a hydrophobic membrane loaded with MSG and a hydrophilic LF-loaded one. The impregnation kinetics demonstrated a maximum loaded amount equal to 0.18 ± 0.20% and 0.07 ± 0.05% for MSG and LT, respectively. In vitro tests were performed using a Franz diffusion cell to simulate the contact with the human skin. The release of MSG reaches a plateau after about 28 h while LF release leveled off after 15 h. The in vitro compatibility of electrospun membranes has been evaluated on HaCaT and BJ cell lines, as human keratinocytes and fibroblasts, respectively. The reported data proved the potential application of fabricated membranes for wound healing.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giovanna Iannone
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
31
|
Ganesh SS, Anushikaa R, Swetha Victoria VS, Lavanya K, Shanmugavadivu A, Selvamurugan N. Recent Advancements in Electrospun Chitin and Chitosan Nanofibers for Bone Tissue Engineering Applications. J Funct Biomater 2023; 14:jfb14050288. [PMID: 37233398 DOI: 10.3390/jfb14050288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Treatment of large segmental bone loss caused by fractures, osteomyelitis, and non-union results in expenses of around USD 300,000 per case. Moreover, the worst-case scenario results in amputation in 10% to 14.5% of cases. Biomaterials, cells, and regulatory elements are employed in bone tissue engineering (BTE) to create biosynthetic bone grafts with effective functionalization that can aid in the restoration of such fractured bones, preventing amputation and alleviating expenses. Chitin (CT) and chitosan (CS) are two of the most prevalent natural biopolymers utilized in the fields of biomaterials and BTE. To offer the structural and biochemical cues for augmenting bone formation, CT and CS can be employed alone or in combination with other biomaterials in the form of nanofibers (NFs). When compared with several fabrication methods available to produce scaffolds, electrospinning is regarded as superior since it enables the development of nanostructured scaffolds utilizing biopolymers. Electrospun nanofibers (ENFs) offer unique characteristics, including morphological resemblance to the extracellular matrix, high surface-area-to-volume ratio, permeability, porosity, and stability. This review elaborates on the recent strategies employed utilizing CT and CS ENFs and their biocomposites in BTE. We also summarize their implementation in supporting and delivering an osteogenic response to treat critical bone defects and their perspectives on rejuvenation. The CT- and CS-based ENF composite biomaterials show promise as potential constructions for bone tissue creation.
Collapse
Affiliation(s)
- S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Ramprasad Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Venkadesan Sri Swetha Victoria
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Krishnaraj Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
32
|
Hobzova R, Sirc J, Shrestha K, Mudrova B, Bosakova Z, Slouf M, Munzarova M, Hrabeta J, Feglarova T, Cocarta AI. Multilayered Polyurethane/Poly(vinyl alcohol) Nanofibrous Mats for Local Topotecan Delivery as a Potential Retinoblastoma Treatment. Pharmaceutics 2023; 15:pharmaceutics15051398. [PMID: 37242640 DOI: 10.3390/pharmaceutics15051398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Local chemotherapy using polymer drug delivery systems has the potential to treat some cancers, including intraocular retinoblastoma, which is difficult to treat with systemically delivered drugs. Well-designed carriers can provide the required drug concentration at the target site over a prolonged time, reduce the overall drug dose needed, and suppress severe side effects. Herein, nanofibrous carriers of the anticancer agent topotecan (TPT) with a multilayered structure composed of a TPT-loaded inner layer of poly(vinyl alcohol) (PVA) and outer covering layers of polyurethane (PUR) are proposed. Scanning electron microscopy showed homogeneous incorporation of TPT into the PVA nanofibers. HPLC-FLD proved the good loading efficiency of TPT (≥85%) with a content of the pharmacologically active lactone TPT of more than 97%. In vitro release experiments demonstrated that the PUR cover layers effectively reduced the initial burst release of hydrophilic TPT. In a 3-round experiment with human retinoblastoma cells (Y-79), TPT showed prolonged release from the sandwich-structured nanofibers compared with that from a PVA monolayer, with significantly enhanced cytotoxic effects as a result of an increase in the PUR layer thickness. The presented PUR-PVA/TPT-PUR nanofibers appear to be promising carriers of active TPT lactone that could be useful for local cancer therapy.
Collapse
Affiliation(s)
- Radka Hobzova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Jakub Sirc
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Kusum Shrestha
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Barbora Mudrova
- Department of Analytical Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Zuzana Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Miroslav Slouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | | | - Jan Hrabeta
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Tereza Feglarova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Ana-Irina Cocarta
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| |
Collapse
|
33
|
Kumar M, Hilles AR, Ge Y, Bhatia A, Mahmood S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int J Biol Macromol 2023; 234:123696. [PMID: 36801273 DOI: 10.1016/j.ijbiomac.2023.123696] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The current treatment strategies for diabetic wound care provide only moderate degree of effectiveness; hence new and improved therapeutic techniques are in great demand. Diabetic wound healing is a complex physiological process that involves synchronisation of various biological events such as haemostasis, inflammation, and remodelling. Nanomaterials like polymeric nanofibers (NFs) offer a promising approach for the treatment of diabetic wounds and have emerged as viable options for wound management. Electrospinning is a powerful and cost-effective method to fabricate versatile NFs with a wide array of raw materials for different biological applications. The electrospun NFs have unique advantages in the development of wound dressings due to their high specific surface area and porosity. The electrospun NFs possess a unique porous structure and biological function similar to the natural extracellular matrix (ECM), and are known to accelerate wound healing. Compared to traditional dressings, the electrospun NFs are more effective in healing wounds owing to their distinct characteristics, good surface functionalisation, better biocompatibility and biodegradability. This review provides a comprehensive overview of the electrospinning procedure and its operating principle, with special emphasis on the role of electrospun NFs in the treatment of diabetic wounds. This review discusses the present techniques applied in the fabrication of NF dressings, and highlights the future prospects of electrospun NFs in medicinal applications.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Ayah R Hilles
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Yi Ge
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Selangor, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Ye P, Guo Q, Zhang Z, Xu Q. High-Speed Centrifugal Spinning Polymer Slip Mechanism and PEO/PVA Composite Fiber Preparation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1277. [PMID: 37049370 PMCID: PMC10096941 DOI: 10.3390/nano13071277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Composite nanofibers with excellent physical and chemical properties are widely used in new energy, biomedical, environmental, electronic, and other fields. Their preparation methods have been investigated extensively by many experts. High-speed centrifugal spinning is a novel method used to fabricate composite nanofibers. The slip mechanism of polymer solution flows is an important factor affecting the morphology and quality of composite nanofibers prepared by high-speed centrifugal spinning. As the polymer solution flows, the liquid wall slip occurs inside the nozzle, followed by liquid-liquid interface slip and gas-liquid interface slip. The factors affecting polymer slip were investigated by developing a mathematical model in the nozzle. This suggests that the magnitude of the velocity is an important factor that affects polymer slip and determines fiber quality and morphology. Under the same rotational speed, the smaller the nozzle diameter, the greater the concentration of velocity distribution and the smaller the diameter of the produced composite nanofibers. Finally, PEO/PVA composite nanofibers were prepared using high-speed centrifugal spinning equipment at 900-5000 rpm and nozzle diameters of 0.2 mm, 0.4 mm, 0.6 mm, and 0.8 mm. The morphology and quality of the collected PEO/PVA composite nanofibers were analyzed using scanning electron microscopy (SEM) and TG experiments. Then, the optimal parameters for the preparation of PEO/PVA composite nanofibers by high-speed centrifugal spinning were obtained by combining the external environmental factors in the preparation process. Theoretical evaluation and experimental data were provided for the centrifugal composite spinning slip mechanism and for the preparation of composite nanofibers.
Collapse
Affiliation(s)
- Peiyan Ye
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430200, China
| | - Qinghua Guo
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430200, China
| | - Zhiming Zhang
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430200, China
| | - Qiao Xu
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
35
|
Uzel E, Durgun ME, Esentürk-Güzel İ, Güngör S, Özsoy Y. Nanofibers in Ocular Drug Targeting and Tissue Engineering: Their Importance, Advantages, Advances, and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15041062. [PMID: 37111550 PMCID: PMC10145046 DOI: 10.3390/pharmaceutics15041062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Nanofibers are frequently encountered in daily life as a modern material with a wide range of applications. The important advantages of production techniques, such as being easy, cost effective, and industrially applicable are important factors in the preference for nanofibers. Nanofibers, which have a broad scope of use in the field of health, are preferred both in drug delivery systems and tissue engineering. Due to the biocompatible materials used in their construction, they are also frequently preferred in ocular applications. The fact that they have a long drug release time as a drug delivery system and have been used in corneal tissue studies, which have been successfully developed in tissue engineering, stand out as important advantages of nanofibers. This review examines nanofibers, their production techniques and general information, nanofiber-based ocular drug delivery systems, and tissue engineering concepts in detail.
Collapse
Affiliation(s)
- Egemen Uzel
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul 34010, Türkiye
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34126, Türkiye
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34126, Türkiye
| | - İmren Esentürk-Güzel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Türkiye
| | - Sevgi Güngör
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34126, Türkiye
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34126, Türkiye
- Correspondence: ; Tel.: +90-212-4400000 (ext. 13498)
| |
Collapse
|
36
|
Electrospun Polycaprolactone/Chitosan Nanofibers Containing Cordia myxa Fruit Extract as Potential Biocompatible Antibacterial Wound Dressings. Molecules 2023; 28:molecules28062501. [PMID: 36985473 PMCID: PMC10059813 DOI: 10.3390/molecules28062501] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
The goal of the current work was to create an antibacterial agent by using polycaprolactone/chitosan (PCL/CH) nanofibers loaded with Cordia myxa fruit extract (CMFE) as an antimicrobial agent for wound dressing. Several characteristics, including morphological, physicomechanical, and mechanical characteristics, surface wettability, antibacterial activity, cell viability, and in vitro drug release, were investigated. The inclusion of CMFE in PCL/CH led to increased swelling capability and maximum weight loss. The SEM images of the PCL/CH/CMFE mat showed a uniform topology free of beads and an average fiber diameter of 195.378 nm. Excellent antimicrobial activity was shown towards Escherichia coli (31.34 ± 0.42 mm), Salmonella enterica (30.27 ± 0.57 mm), Staphylococcus aureus (21.31 ± 0.17 mm), Bacillus subtilis (27.53 ± 1.53 mm), and Pseudomonas aeruginosa (22.17 ± 0.12 mm) based on the inhibition zone assay. The sample containing 5 wt% CMFE had a lower water contact angle (47 ± 3.7°), high porosity, and high swelling compared to the neat mat. The release of the 5% CMFE-loaded mat was proven to be based on anomalous non-Fickian diffusion using the Korsmeyer–Peppas model. Compared to the pure PCL membrane, the PCL-CH/CMFE membrane exhibited suitable cytocompatibility on L929 cells. In conclusion, the fabricated antimicrobial nanofibrous films demonstrated high bioavailability, with suitable properties that can be used in wound dressings.
Collapse
|
37
|
Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023; 15:pharmaceutics15020695. [PMID: 36840018 PMCID: PMC9967372 DOI: 10.3390/pharmaceutics15020695] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Modern drug discovery methods led to evolving new agents with significant therapeutic potential. However, their properties, such as solubility and administration-related challenges, may hinder their benefits. Moreover, advances in biotechnology resulted in the development of a new generation of molecules with a short half-life that necessitates frequent administration. In this context, controlled release systems are required to enhance treatment efficacy and improve patient compliance. Innovative drug delivery systems are promising tools that protect therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. The present review provides an overview of different approaches used for drug delivery.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maya Romani
- Department of Family Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | | | - Betul Rahman
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| | - Elise Verron
- CNRS, CEISAM, UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Zahi Badran
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
38
|
Kahdim QS, Abdelmoula N, Al-Karagoly H, Albukhaty S, Al-Saaidi J. Fabrication of a Polycaprolactone/Chitosan Nanofibrous Scaffold Loaded with Nigella sativa Extract for Biomedical Applications. BIOTECH 2023; 12:biotech12010019. [PMID: 36810446 PMCID: PMC9944449 DOI: 10.3390/biotech12010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
In this study, biocompatible electrospun nanofiber scaffolds were produced using poly(-caprolactone (PCL)/chitosan (CS) and Nigella sativa (NS) seed extract, and their potential for biomedical applications was investigated. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), total porosity measurements, and water contact angle measurements were used to evaluate the electrospun nanofibrous mats. Additionally, the antibacterial activities of Escherichia coli and Staphylococcus aureus were investigated, as well as cell cytotoxicity and antioxidant activity, using MTT and DPPH assays, respectively. The obtained PCL/CS/NS nanofiber mat was observed by SEM to have a homogeneous and bead-free morphology, with average diameters of 81.19 ± 4.38 nm. Contact angle measurements showed that the wettability of the electrospun PCL/Cs fiber mats decreased with the incorporation of NS when compared to the PCL/CS nanofiber mats. Efficient antibacterial activity against S. aureus and E. coli was displayed, and an in vitro cytotoxic assay demonstrated that the normal murine fibroblast cell line (L929 cells) remained viable after 24, 48, and 72 h following direct contact with the produced electrospun fiber mats. The results suggest that the PCL/CS/NS hydrophilic structure and the densely interconnected porous design are biocompatible materials, with the potential to treat and prevent microbial wound infections.
Collapse
Affiliation(s)
- Qasim Shakir Kahdim
- College of Basic Education, University of Babylon, Babylon 51002, Iraq
- Laboratory of Multifunctional Materials and Applications (LaMMA), LR16ES18, Faculty of Sciences of Sfax, University of Sfax, BP 1171, Sfax 3000, Tunisia
- Correspondence: (Q.S.K.); (H.A.-K.)
| | - Najmeddine Abdelmoula
- Laboratory of Multifunctional Materials and Applications (LaMMA), LR16ES18, Faculty of Sciences of Sfax, University of Sfax, BP 1171, Sfax 3000, Tunisia
| | - Hassan Al-Karagoly
- College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq
- Correspondence: (Q.S.K.); (H.A.-K.)
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Jabbar Al-Saaidi
- College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq
| |
Collapse
|
39
|
Duan Q, Peng W, He J, Zhang Z, Wu Z, Zhang Y, Wang S, Nie S. Rational Design of Advanced Triboelectric Materials for Energy Harvesting and Emerging Applications. SMALL METHODS 2023; 7:e2201251. [PMID: 36563114 DOI: 10.1002/smtd.202201251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 06/17/2023]
Abstract
The properties of materials play a significant role in triboelectric nanogenerators (TENGs). Advanced triboelectric materials for TENGs have attracted tremendous attention because of their superior advantages (e.g., high specific surface area, high porosity, and customizable macrostructure). These advanced materials can be extensively applied in numerous fields, including energy harvester, wearable electronics, filtration, and self-powered sensors. Hence, designing triboelectric materials as advanced functional materials is important for the development of TENGs. Herein, the structural modification methods based on electrospinning to improve the triboelectric properties and the latest research progress in this kind of TENGs are systematically summarized. Preparation methods and design trends of nanofibers, microspheres, hierarchical structures, and doping nanomaterials are highlighted. The factors influencing the formation and properties of triboelectric materials are considered. Furthermore, the latest progress on the applications of TENGs is systematically elaborated. Finally, the challenges in the development of triboelectric materials are discussed, thereby guiding researchers in the large-scale application of TENGs.
Collapse
Affiliation(s)
- Qingshan Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Weiqing Peng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Juanxia He
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhijun Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Zecheng Wu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ye Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
40
|
Preda MD, Popa ML, Neacșu IA, Grumezescu AM, Ginghină O. Antimicrobial Clothing Based on Electrospun Fibers with ZnO Nanoparticles. Int J Mol Sci 2023; 24:ijms24021629. [PMID: 36675140 PMCID: PMC9862659 DOI: 10.3390/ijms24021629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
There has been a surge in interest in developing protective textiles and clothes to protect wearers from risks such as chemical, biological, heat, UV, pollution, and other environmental factors. Traditional protective textiles have strong water resistance but lack breathability and have a limited capacity to remove water vapor and moisture. Electrospun fibers and membranes have shown enormous promise in developing protective materials and garments. Textiles made up of electrospun fibers and membranes can provide thermal comfort and protection against a wide range of environmental threats. Because of their multifunctional properties, such as semi-conductivity, ultraviolet absorption, optical transparency, and photoluminescence, their low toxicity, biodegradability, low cost, and versatility in achieving diverse shapes, ZnO-based nanomaterials are a subject of increasing interest in the current review. The growing uses of electrospinning in the development of breathable and protective textiles are highlighted in this review.
Collapse
Affiliation(s)
- Manuela Daniela Preda
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Maria Leila Popa
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Correspondence:
| | - Octav Ginghină
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila from Bucharest, 37 Dionisie Lupu Street, District 2, 020021 Bucharest, Romania
| |
Collapse
|
41
|
Xu X, Lv H, Zhang M, Wang M, Zhou Y, Liu Y, Yu DG. Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2245-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Patel R, Yadav BK, Patel G. Progresses in Nano-Enabled Platforms for the Treatment of Vaginal Disorders. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:208-227. [PMID: 35762539 DOI: 10.2174/1872210516666220628150447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The most common vaginal disorders are within the uterus. According to the latest statistics, vaginal disorders occur in 50% to 60% of females. Although curative treatments rely on surgical therapy, still first-line treatment is a non invasive drug. Conventional therapies are available in the oral and parenteral route, leading to nonspecific targeting, which can cause dose-related side effects. Vaginal disorders are localized uterine disorders in which intrauterine delivery via the vaginal site is deemed the preferable route to mitigate clinical drug delivery limitations. OBJECTIVE This study emphasizes the progress of site-specific and controlled delivery of therapeutics in the treatment of vaginal disorders and systemic adverse effects as well as the therapeutic efficacy. METHODS Related research reports and patents associated with topics are collected, utilized, and summarized the key findings. RESULTS The comprehensive literature study and patents like (US 9393216 B2), (JP6672370B2), and (WO2018041268A1) indicated that nanocarriers are effective above traditional treatments and have some significant efficacy with novelty. CONCLUSION Nowadays, site-specific and controlled delivery of therapeutics for the treatment of vaginal disorders is essential to prevent systemic adverse effects and therapeutic efficacy would be more effective. Nanocarriers have therefore been used to bypass the problems associated with traditional delivery systems for the vaginal disorder.
Collapse
Affiliation(s)
- Riya Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Bindu Kumari Yadav
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Gayatri Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| |
Collapse
|
43
|
Analysis of gelatin secondary structure in gelatin/keratin-based biomaterials. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Evaluation of mechanical properties and biocompatibility of three-layer PCL/PLLA small-diameter vascular graft with pore diameter gradient. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
45
|
Mirbagheri MS, Akhavan-Mahdavi S, Hasan A, Kharazmi MS, Jafari SM. Chitosan-based electrospun nanofibers for diabetic foot ulcer management; recent advances. Carbohydr Polym 2023; 313:120512. [PMID: 37182929 DOI: 10.1016/j.carbpol.2022.120512] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
Diabetic foot ulcer (DFU) healing has long been a major medical challenge. The type of dressing is an essential factor in wound healing, prevention of local infection, and scar formation. Today, smart wound dressings or wound healing patches can precisely control drug delivery to the target tissue and prevent this significant complication. Nanofiber (NF) wound dressings are effective in reducing wound scarring and helping to speed up the healing process for DFU. The electrospun NFs have a suitable surface topography, density, and three-dimensional structure, which can be considered an efficient method to produce a substrate for tissue engineering and wound healing. Chitosan (CS) is one of the most well-known biopolymers in wound healing tissue engineering and drug delivery systems. The unique properties of CS make it suitable for biomedical applications. Based on new studies in the field of hemostatic and antimicrobial effects of CS in controlling bleeding and wound healing and application of NF wound dressings, the purpose of this study is a review relevant works on CS-based NFs to improve the DFU.
Collapse
|
46
|
Korbut A, Ortyl E, Zielinska S, Barillé R. Large photo-actuated surface change of an electrospun nanofibrous membrane. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Abadi B, Goshtasbi N, Bolourian S, Tahsili J, Adeli-Sardou M, Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front Bioeng Biotechnol 2022; 10:986975. [PMID: 36561047 PMCID: PMC9764016 DOI: 10.3389/fbioe.2022.986975] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotechnology is one of the most promising technologies available today, holding tremendous potential for biomedical and healthcare applications. In this field, there is an increasing interest in the use of polymeric micro/nanofibers for the construction of biomedical structures. Due to its potential applications in various fields like pharmaceutics and biomedicine, the electrospinning process has gained considerable attention for producing nano-sized fibers. Electrospun nanofiber membranes have been used in drug delivery, controlled drug release, regenerative medicine, tissue engineering, biosensing, stent coating, implants, cosmetics, facial masks, and theranostics. Various natural and synthetic polymers have been successfully electrospun into ultrafine fibers. Although biopolymers demonstrate exciting properties such as good biocompatibility, non-toxicity, and biodegradability, they possess poor mechanical properties. Hybrid nanofibers from bio and synthetic nanofibers combine the characteristics of biopolymers with those of synthetic polymers, such as high mechanical strength and stability. In addition, a variety of functional agents, such as nanoparticles and biomolecules, can be incorporated into nanofibers to create multifunctional hybrid nanofibers. Due to the remarkable properties of hybrid nanofibers, the latest research on the unique properties of hybrid nanofibers is highlighted in this study. Moreover, various established hybrid nanofiber fabrication techniques, especially the electrospinning-based methods, as well as emerging strategies for the characterization of hybrid nanofibers, are summarized. Finally, the development and application of electrospun hybrid nanofibers in biomedical applications are discussed.
Collapse
Affiliation(s)
- Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran,Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Bolourian
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran
| | - Jaleh Tahsili
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| |
Collapse
|
48
|
Fareed F, Saeed F, Afzaal M, Imran A, Ahmad A, Mahmood K, Shah YA, Hussain M, Ateeq H. Fabrication of electrospun gum Arabic-polyvinyl alcohol blend nanofibers for improved viability of the probiotic. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4812-4821. [PMID: 36276519 PMCID: PMC9579235 DOI: 10.1007/s13197-022-05567-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/01/2023]
Abstract
In the current study, the probiotic (Lactobacillus acidophilus) was encapsulated using Gum Arabic and polyvinyl alcohol blended nanofibers by electrospinning. Obtained nanofibers were characterized in terms of particle size, diameter, mechanical strength, and encapsulation efficiency. The molecular and internal structure characterization was carried out using Fourier transform infrared spectroscopy and X-ray diffraction respectively. Thermo Gravimetric (TGA) analysis was conducted to determine the thermal features of PVA/GA/probiotics nanofibers. Free and encapsulated probiotics were also subjected to in vitro assay under different detrimental conditions. Images obtained using SEM indicated that probiotics were successfully encapsulated in blends by a nano-spider. FTIR and XRD spectra showed bonding interactions between the wall and core materials. In-vitro assay indicated that probiotics with encapsulated showed significantly (P < 0.05) viability compared to free cells. Free cells lost their viability under simulated gastrointestinal conditions while encapsulated cells retained viability count above the therapeutic number (107 cfu).
Collapse
Affiliation(s)
- Faisal Fareed
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aftab Ahmad
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Yasir Abbas Shah
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzammal Hussain
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Huda Ateeq
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
49
|
Khanna A, Oropeza BP, Huang NF. Engineering Spatiotemporal Control in Vascularized Tissues. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100555. [PMID: 36290523 PMCID: PMC9598830 DOI: 10.3390/bioengineering9100555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
A major challenge in engineering scalable three-dimensional tissues is the generation of a functional and developed microvascular network for adequate perfusion of oxygen and growth factors. Current biological approaches to creating vascularized tissues include the use of vascular cells, soluble factors, and instructive biomaterials. Angiogenesis and the subsequent generation of a functional vascular bed within engineered tissues has gained attention and is actively being studied through combinations of physical and chemical signals, specifically through the presentation of topographical growth factor signals. The spatiotemporal control of angiogenic signals can generate vascular networks in large and dense engineered tissues. This review highlights the developments and studies in the spatiotemporal control of these biological approaches through the coordinated orchestration of angiogenic factors, differentiation of vascular cells, and microfabrication of complex vascular networks. Fabrication strategies to achieve spatiotemporal control of vascularization involves the incorporation or encapsulation of growth factors, topographical engineering approaches, and 3D bioprinting techniques. In this article, we highlight the vascularization of engineered tissues, with a focus on vascularized cardiac patches that are clinically scalable for myocardial repair. Finally, we discuss the present challenges for successful clinical translation of engineered tissues and biomaterials.
Collapse
Affiliation(s)
| | - Beu P. Oropeza
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ngan F. Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
50
|
Abdul Hameed MM, Mohamed Khan SAP, Thamer BM, Rajkumar N, El‐Hamshary H, El‐Newehy M. Electrospun nanofibers for drug delivery applications: Methods and mechanism. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Syed Ali Padusha Mohamed Khan
- PG and Research Department of Chemistry Jamal Mohamed College (Affiliated to Bharathidasan University) Tiruchirappalli India
| | - Badr M. Thamer
- Department of Chemistry College of Science, King Saud University Saudi Arabia
| | - Nirmala Rajkumar
- Department of Biotechnology Hindustan College of Arts and Science (Affiliated to University of Madras) Chennai India
| | - Hany El‐Hamshary
- Department of Chemistry College of Science, King Saud University Saudi Arabia
- Department of Chemistry, Faculty of Science Tanta University Egypt
| | - Mohamed El‐Newehy
- Department of Chemistry College of Science, King Saud University Saudi Arabia
- Department of Chemistry, Faculty of Science Tanta University Egypt
| |
Collapse
|