1
|
Dalpati N, Rai SK, Dash SP, Kumar P, Singh D, Sarangi PP. Integrins α5β1 and αvβ3 Differentially Participate in the Recruitment and Reprogramming of Tumor-associated Macrophages in the In Vitro and In Vivo Models of Breast Tumor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1553-1568. [PMID: 39330703 DOI: 10.4049/jimmunol.2400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Tumor-associated macrophages (TAMs) drive the protumorigenic responses and facilitate tumor progression via matrix remodeling, angiogenesis, and immunosuppression by interacting with extracellular matrix proteins via integrins. However, the expression dynamics of integrin and its correlation with TAM functional programming in the tumors remain unexplored. In this study, we examined surface integrins' role in TAM recruitment and phenotypic programming in a 4T1-induced murine breast tumor model. Our findings show that integrin α5β1 is upregulated in CD11b+Ly6Chi monocytes in the bone marrow and blood by day 10 after tumor induction. Subsequent analysis revealed elevated integrin α5β1 expression on tumor-infiltrating monocytes (Ly6ChiMHC class II [MHCII]low) and M1 TAMs (F4/80+Ly6ClowMHCIIhi), whereas integrin αvβ3 was predominantly expressed on M2 TAMs (F4/80+Ly6ClowMHCIIlow), correlating with higher CD206 and MERTK expression. Gene profiling of cells sorted from murine tumors showed that CD11b+Ly6G-F4/80+α5+ TAMs had elevated inflammatory genes (IL-6, TNF-α, and STAT1/2), whereas CD11b+Ly6G-F4/80+αv+ TAMs exhibited a protumorigenic phenotype (IL-10, Arg1, TGF-β, and STAT3/6). In vitro studies demonstrated that blocking integrin α5 and αv during macrophage differentiation from human peripheral blood monocytes reduced cell spreading and expression of CD206 and CD163 in the presence of specific matrix proteins, fibronectin, and vitronectin. Furthermore, RNA sequencing data analysis (GEO dataset: GSE195857) from bone marrow-derived monocytes and TAMs in 4T1 mammary tumors revealed differential integrin α5 and αv expression and their association with FAK and SRC kinase. In line with this, FAK inhibition during TAM polarization reduced SRC, STAT1, and STAT6 phosphorylation. In conclusion, these findings underscore the crucial role of integrins in TAM recruitment, polarization, and reprogramming in tumors.
Collapse
Affiliation(s)
- Nibedita Dalpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shiba Prasad Dash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Puneet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Divya Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
2
|
Xu Z, Zhang R, Chen H, Zhang L, Yan X, Qin Z, Cong S, Tan Z, Li T, Du M. Characterization and preparation of food-derived peptides on improving osteoporosis: A review. Food Chem X 2024; 23:101530. [PMID: 38933991 PMCID: PMC11200288 DOI: 10.1016/j.fochx.2024.101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis is a systemic bone disease characterized by reduced bone mass and deterioration of the microstructure of bone tissue, leading to an increased risk of fragility fractures and affecting human health worldwide. Food-derived peptides are widely used in functional foods due to their low toxicity, ease of digestion and absorption, and potential to improve osteoporosis. This review summarized and discussed methods of diagnosing osteoporosis, treatment approaches, specific peptides as alternatives to conventional drugs, and the laboratory preparation and identification methods of peptides. It was found that peptides interacting with RGD (arginine-glycine-aspartic acid)-binding active sites in integrin could alleviate osteoporosis, analyzed the interaction sites between these osteogenic peptides and integrin, and further discussed their effects on improving osteoporosis. These may provide new insights for rapid screening of osteogenic peptides, and provide a theoretical basis for their application in bone materials and functional foods.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Rui Zhang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Hongrui Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu, Sichuan 611130, China
| | - Lijuan Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Xu Yan
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Zijin Qin
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, GA 30602, USA
| | - Shuang Cong
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Tingting Li
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Ming Du
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Rodríguez-González D, García-González M, Gómez-Bernal F, Quevedo-Abeledo JC, González-Rivero AF, Jiménez-Sosa A, González-López E, Heras-Recuero E, Ocejo-Vinyals JG, González-Gay MÁ, Ferraz-Amaro I. Relationship between the complement system and serum lipid profile in patients with rheumatoid arthritis. Front Immunol 2024; 15:1420292. [PMID: 39072319 PMCID: PMC11272461 DOI: 10.3389/fimmu.2024.1420292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Background The complement system has been linked to the etiopathogenesis of rheumatoid arthritis (RA). Patients with RA exhibit a dysregulated profile of lipid molecules, which has been attributed to the inflammation present in the disease. In this study, we aimed to evaluate the association between a comprehensive assessment of the complement system and the lipid profile of patients with RA. Methods 430 patients with RA were recruited. New-generation techniques were employed to conduct functional assays of the three pathways of the complement system. Serum levels of various complement components such as C1q, factor D, properdin, lectin, C1-inhibitor, C2, C4, C4b, C3, C3a, C5, C5a, and C9 were assessed. Furthermore, a complete pattern of lipid molecules was measured including high (HDL), low-density lipoproteins (LDL), and lipoprotein (a). Multivariable linear regression analysis was conducted to investigate the association between the complement system and lipid profile in RA patients. Results After multivariable analysis, several noteworthy associations emerged between the complement system and lipid molecules. Notably, complement components most strongly linked to the lipid profile were C1q and properdin, representing the upstream classical and alternative pathways, along with C3 from the common cascade. These associations demonstrated significance and positivity concerning total cholesterol, LDL, atherogenic index, apolipoprotein B, and lipoprotein(a), suggesting a connection with an unfavorable lipid profile. Interestingly, complement functional assays of the three pathways and activated products such as C3a and C5a showed no correlation with the lipid pattern. Conclusion The correlation between the complement system and lipid molecule patterns is pronounced in patients with RA. This relationship is predominantly positive and primarily associated with upstream complement components rather than activated ones.
Collapse
Affiliation(s)
- Dara Rodríguez-González
- Division of Central Laboratory, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - María García-González
- Division of Rheumatology , Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Fuensanta Gómez-Bernal
- Division of Central Laboratory, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | | | | | | | - Elena González-López
- Division of Immunology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación sanitaria Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Elena Heras-Recuero
- Division of Rheumatology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
| | - J. Gonzalo Ocejo-Vinyals
- Division of Immunology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación sanitaria Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Miguel Á. González-Gay
- Division of Rheumatology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
- Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
| | - Iván Ferraz-Amaro
- Division of Rheumatology , Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
- Department of Internal Medicine, University of La Laguna (ULL), Santa Cruz de Tenerife, Spain
| |
Collapse
|
4
|
Ali M, Benfante V, Di Raimondo D, Laudicella R, Tuttolomondo A, Comelli A. A Review of Advances in Molecular Imaging of Rheumatoid Arthritis: From In Vitro to Clinic Applications Using Radiolabeled Targeting Vectors with Technetium-99m. Life (Basel) 2024; 14:751. [PMID: 38929734 PMCID: PMC11204982 DOI: 10.3390/life14060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder caused by inflammation of cartilaginous diarthrodial joints that destroys joints and cartilage, resulting in synovitis and pannus formation. Timely detection and effective management of RA are pivotal for mitigating inflammatory arthritis consequences, potentially influencing disease progression. Nuclear medicine using radiolabeled targeted vectors presents a promising avenue for RA diagnosis and response to treatment assessment. Radiopharmaceutical such as technetium-99m (99mTc), combined with single photon emission computed tomography (SPECT) combined with CT (SPECT/CT), introduces a more refined diagnostic approach, enhancing accuracy through precise anatomical localization, representing a notable advancement in hybrid molecular imaging for RA evaluation. This comprehensive review discusses existing research, encompassing in vitro, in vivo, and clinical studies to explore the application of 99mTc radiolabeled targeting vectors with SPECT imaging for RA diagnosis. The purpose of this review is to highlight the potential of this strategy to enhance patient outcomes by improving the early detection and management of RA.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Messina University, 98124 Messina, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
5
|
Osteopontin: A Bone-Derived Protein Involved in Rheumatoid Arthritis and Osteoarthritis Immunopathology. Biomolecules 2023; 13:biom13030502. [PMID: 36979437 PMCID: PMC10046882 DOI: 10.3390/biom13030502] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Osteopontin (OPN) is a bone-derived phosphoglycoprotein related to physiological and pathological mechanisms that nowadays has gained relevance due to its role in the immune system response to chronic degenerative diseases, including rheumatoid arthritis (RA) and osteoarthritis (OA). OPN is an extracellular matrix (ECM) glycoprotein that plays a critical role in bone remodeling. Therefore, it is an effector molecule that promotes joint and cartilage destruction observed in clinical studies, in vitro assays, and animal models of RA and OA. Since OPN undergoes multiple modifications, including posttranslational changes, proteolytic cleavage, and binding to a wide range of receptors, the mechanisms by which it produces its effects, in some cases, remain unclear. Although there is strong evidence that OPN contributes significantly to the immunopathology of RA and OA when considering it as a common denominator molecule, some experimental trial results argue for its protective role in rheumatic diseases. Elucidating in detail OPN involvement in bone and cartilage degeneration is of interest to the field of rheumatology. This review aims to provide evidence of the OPN’s multifaceted role in promoting joint and cartilage destruction and propose it as a common denominator of AR and OA immunopathology.
Collapse
|
6
|
Cegarra C, Cameron B, Chaves C, Dabdoubi T, Do TM, Genêt B, Roudières V, Shi Y, Tchepikoff P, Lesuisse D. An innovative strategy to identify new targets for delivering antibodies to the brain has led to the exploration of the integrin family. PLoS One 2022; 17:e0274667. [PMID: 36108060 PMCID: PMC9477330 DOI: 10.1371/journal.pone.0274667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Increasing brain exposure of biotherapeutics is key to success in central nervous system disease drug discovery. Accessing the brain parenchyma is especially difficult for large polar molecules such as biotherapeutics and antibodies because of the blood-brain barrier. We investigated a new immunization strategy to identify novel receptors mediating transcytosis across the blood-brain barrier.
Method
We immunized mice with primary non-human primate brain microvascular endothelial cells to obtain antibodies. These antibodies were screened for their capacity to bind and to be internalized by primary non-human primate brain microvascular endothelial cells and Human Cerebral Microvascular Endothelial Cell clone D3. They were further evaluated for their transcytosis capabilities in three in vitro blood-brain barrier models. In parallel, their targets were identified by two different methods and their pattern of binding to human tissue was investigated using immunohistochemistry.
Results
12 antibodies with unique sequence and internalization capacities were selected amongst more than six hundred. Aside from one antibody targeting Activated Leukocyte Cell Adhesion Molecule and one targeting Striatin3, most of the other antibodies recognized β1 integrin and its heterodimers. The antibody with the best transcytosis capabilities in all blood-brain barrier in vitro models and with the best binding capacity was an anti-αnβ1 integrin. In comparison, commercial anti-integrin antibodies performed poorly in transcytosis assays, emphasizing the originality of the antibodies derived here. Immunohistochemistry studies showed specific vascular staining on human and non-human primate tissues.
Conclusions
This transcytotic behavior has not previously been reported for anti-integrin antibodies. Further studies should be undertaken to validate this new mechanism in vivo and to evaluate its potential in brain delivery.
Collapse
Affiliation(s)
- Céline Cegarra
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
- * E-mail:
| | | | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | | | - Tuan-Minh Do
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Bruno Genêt
- Integrated Drug Discovery, Sanofi, Vitry-Sur-Seine, France
| | - Valérie Roudières
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Yi Shi
- Histology, Translational Sciences, Sanofi, Vitry-Sur-Seine, France
| | | | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| |
Collapse
|
7
|
Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23137071. [PMID: 35806074 PMCID: PMC9267012 DOI: 10.3390/ijms23137071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022] Open
Abstract
Extensive angiogenesis is a characteristic feature in the synovial tissue of rheumatoid arthritis (RA) from a very early stage of the disease onward and constitutes a crucial event for the development of the proliferative synovium. This process is markedly intensified in patients with prolonged disease duration, high disease activity, disease severity, and significant inflammatory cell infiltration. Angiogenesis is therefore an interesting target for the development of new therapeutic approaches as well as disease monitoring strategies in RA. To this end, nuclear imaging modalities represent valuable non-invasive tools that can selectively target molecular markers of angiogenesis and accurately and quantitatively track molecular changes in multiple joints simultaneously. This systematic review summarizes the imaging markers used for single photon emission computed tomography (SPECT) and/or positron emission tomography (PET) approaches, targeting pathways and mediators involved in synovial neo-angiogenesis in RA.
Collapse
|
8
|
Evaluation of Liposome-Loaded Microbubbles as a Theranostic Tool in a Murine Collagen-Induced Arthritis Model. Sci Pharm 2022. [DOI: 10.3390/scipharm90010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by severe inflammation of the synovial tissue. Here, we assess the feasibility of liposome-loaded microbubbles as theranostic agents in a murine arthritis model. First, contrast-enhanced ultrasound (CEUS) was used to quantify neovascularization in this model since CEUS is well-established for RA diagnosis in humans. Next, the potential of liposome-loaded microbubbles and ultrasound (US) to selectively enhance liposome delivery to the synovium was evaluated with in vivo fluorescence imaging. This procedure is made very challenging by the presence of hard joints and by the limited lifetime of the microbubbles. The inflamed knee joints were exposed to therapeutic US after intravenous injection of liposome-loaded microbubbles. Loaded microbubbles were found to be quickly captured by the liver. This resulted in fast clearance of attached liposomes while free and long-circulating liposomes were able to accumulate over time in the inflamed joints. Our observations show that murine arthritis models are not well-suited for evaluating the potential of microbubble-mediated drug delivery in joints given: (i) restricted microbubble passage in murine synovial vasculature and (ii) limited control over the exact ultrasound conditions in situ given the much shorter length scale of the murine joints as compared to the therapeutic wavelength.
Collapse
|
9
|
José Alcaraz M. New potential therapeutic approaches targeting synovial fibroblasts in rheumatoid arthritis. Biochem Pharmacol 2021; 194:114815. [PMID: 34715065 DOI: 10.1016/j.bcp.2021.114815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Synovial cells play a key role in joint destruction during chronic inflammation. In particular, activated synovial fibroblasts (SFs) undergo intrinsic alterations leading to an aggressive phenotype mediating cartilage destruction and bone erosion in rheumatoid arthritis (RA). Recent research has revealed a number of targets to control arthritogenic changes in SFs. Therefore, identification of SF phenotypes, control of epigenetic changes, modulation of cellular functions, or regulation of the activity of cation channels and different signaling pathways has been investigated. Although many of these approaches have shown efficacy in vitro and in animal models of RA, further research is needed to select the most relevant targets for drug development. This review is focused on the role of SFs as a potential strategy to discover novel therapeutic targets in RA aimed at preserving joint architecture and function.
Collapse
Affiliation(s)
- María José Alcaraz
- Department of Pharmacology, University of Valencia, and Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
10
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
11
|
Jin H, Jiang S, Wang R, Zhang Y, Dong J, Li Y. Mechanistic Insight Into the Roles of Integrins in Osteoarthritis. Front Cell Dev Biol 2021; 9:693484. [PMID: 34222261 PMCID: PMC8250141 DOI: 10.3389/fcell.2021.693484] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/19/2021] [Indexed: 01/13/2023] Open
Abstract
Osteoarthritis (OA), one of the most common degenerative diseases, is characterized by progressive degeneration of the articular cartilage and subchondral bone, as well as the synovium. Integrins, comprising a family of heterodimeric transmembrane proteins containing α subunit and β subunit, play essential roles in various physiological functions of cells, such as cell attachment, movement, growth, differentiation, and mechanical signal conduction. Previous studies have shown that integrin dysfunction is involved in OA pathogenesis. This review article focuses on the roles of integrins in OA, especially in OA cartilage, subchondral bone and the synovium. A clear understanding of these roles may influence the future development of treatments for OA.
Collapse
Affiliation(s)
- Hongfu Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shigang Jiang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruomei Wang
- Department of Endocrinology and Metabolic Diseases, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiangtao Dong
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Halpert G, Halperin Sheinfeld M, Monteran L, Sharif K, Volkov A, Nadler R, Schlesinger A, Barshak I, Kalechman Y, Blank M, Shoenfeld Y, Amital H. The tellurium-based immunomodulator, AS101 ameliorates adjuvant-induced arthritis in rats. Clin Exp Immunol 2021; 203:375-384. [PMID: 33205391 PMCID: PMC7874835 DOI: 10.1111/cei.13553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022] Open
Abstract
Despite undeniable improvement in the management of rheumatoid arthritis (RA), the discovery of more effective, less toxic and, ideally, less immune suppressive drugs are much needed. In the current study, we set to explore the potential anti-rheumatic activity of the non-toxic, tellurium-based immunomodulator, AS101 in an experimental animal model of RA. The effect of AS101 was assessed on adjuvant-induced arthritis (AIA) rats. Clinical signs of arthritis were assessed. Histopathological examination was used to assess inflammation, synovial changes and tissue lesions. Very late antigen-4 (VLA-4)+ cellular infiltration was detected using immunohistochemical staining. Enzyme-linked immunosorbent assay (ELISA) was used to measure circulating anti-cyclic citrullinated-peptide autoantibody (ACPA) and real-time polymerase chain reaction (PCR) was used to measure the in-vitro effect of AS101 on interleukin (IL)-6 and IL-1β expression in activated primary human fibroblasts. Prophylactic treatment with intraperitoneal AS101 reduced clinical arthritis scores in AIA rats (P < 0·01). AS101 abrogated the migration of active chronic inflammatory immune cells, particularly VLA-4+ cells, into joint cartilage and synovium, reduced the extent of joint damage and preserved joint architecture. Compared to phosphate-buffered saline (PBS)-treated AIA rats, histopathological inflammatory scores were significantly reduced (P < 0·05). Furthermore, AS101 resulted in a marked reduction of circulating ACPA in comparison to PBS-treated rats (P < 0·05). Importantly, AS101 significantly reduced mRNA levels of proinflammatory mediators such as IL-6 (P < 0·05) and IL-1β (P < 0·01) in activated primary human fibroblasts. Taken together, we report the first demonstration of the anti-rheumatic/inflammatory activity of AS101 in experimental RA model, thereby supporting an alternative early therapeutic intervention and identifying a promising agent for therapeutic intervention.
Collapse
Affiliation(s)
- G. Halpert
- Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine,Tel Aviv UniversityTel AvivIsrael
| | - M. Halperin Sheinfeld
- The Safdié Institute for Cancer, AIDS and Immunology Research; Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - L. Monteran
- The Safdié Institute for Cancer, AIDS and Immunology Research; Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
- Present address:
Department of Pathology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - K. Sharif
- Internal Medicine B and Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - A. Volkov
- Institute of PathologySheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| | - R. Nadler
- The Academic Center of Law and ScienceHod HasharonIsrael
| | - A. Schlesinger
- Department of GeriatricsRabin Medical Center (Beilinson Campus)Petah TikvaIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - I. Barshak
- Institute of PathologySheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Y. Kalechman
- The Safdié Institute for Cancer, AIDS and Immunology Research; Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - M. Blank
- Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine,Tel Aviv UniversityTel AvivIsrael
| | - Y. Shoenfeld
- Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine,Tel Aviv UniversityTel AvivIsrael
- Laboratory of the Mosaics of AutoimmunitySaint Petersburg UniversitySaint PetersburgRussian Federation
| | - H. Amital
- Internal Medicine B and Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|
13
|
Li W, Mao X, Wu H, Guo M, Su X, Lu J, Guo Q, Li T, Wang X, Su W, Zhang Y, Lin N. Deciphering the chemical profile and pharmacological mechanisms of Baihu-Guizhi decoction using ultra-fast liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry coupled with network pharmacology-based investigation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153156. [PMID: 31901568 DOI: 10.1016/j.phymed.2019.153156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/26/2019] [Accepted: 12/21/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Baihu-Guizhi decoction (BHGZD) has been extensively used for the treatment of rheumatoid arthritis (RA) with a satisfying therapeutic effect. However, the material basis and the underlying mechanisms of BHGZD against RA have not been fully elucidated. PURPOSE To investigate the chemical profile and the pharmacological mechanisms of BHGZD against RA. METHODS The chemical constituents containing in BHGZD were identified using UFLC-Q-TOF-MS/MS system, and the corresponding putative targets were predicted. Then, the differentially expressed genes (DEGs) between adjuvant-induced arthritis (AIA) and normal control groups were identified using microarray analysis. After constructing the interaction network of "RA-related gene-BHGZD putative target", BHGZD candidate targets against RA were screened by topological analysis and further experimentally validated based on AIA rat model. RESULTS A total of 41 chemical constituents were identified in the water extract of BHGZD, which were predicted to hit 1312 putative targets. Additionally, 26 DEGs between the AIA and normal control groups were defined as "RA-related genes", which were functionally involved into the imbalance of "inflammation-immune" system during RA progression. On the basis of the topological importance in the network of "RA-related gene-BHGZD putative target", 177 BHGZD candidate targets against RA were identified. Among them, TLR4, c-Fos/AP-1, IL2 and TNF had direct interactions with each other and also function as crucial components of toll-like receptor and T cell receptor signaling pathways, which may play important roles in maintaining the balance of "inflammation-immune" system. Experimentally, we verified that BHGZD dose-dependently attenuated the severity, pathological changes, as well as mechanical, cold, and heat hypersensitivities during RA progression based on the AIA rat model. Further western blot analysis demonstrated that BHGZD significantly reduced the protein levels of TLR4, c-Fos/AP-1, IL2 and TNF, which were induced by RA modeling, in the inflamed joints of AIA rats (all p<0.05). CONCLUSION This study combining the chemical and transcriptomic profilings, target prediction, network calculation and experimental validations identifies the chemical constituents containing in BHGZD and offers the convincing evidence that BHGZD may ameliorate RA partially by restoring the balance of "inflammation-immune" system and subsequently reversing the pathological events during RA progression through regulating the TLR4-c-Fos-IL2-TNF axis.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Chromatography, Liquid/methods
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/analysis
- Drugs, Chinese Herbal/pharmacology
- Gene Expression Regulation/drug effects
- Inflammation/drug therapy
- Inflammation/genetics
- Inflammation/immunology
- Male
- Rats, Inbred Lew
- Tandem Mass Spectrometry/methods
Collapse
Affiliation(s)
- Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xia Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Minqun Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jianqiu Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Qiuyan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Taixian Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyue Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
14
|
Noh ASM, Ismail CAN. A Review on Chronic Pain in Rheumatoid Arthritis: A Focus on Activation of NR2B Subunit of N-Methyl-D-Aspartate Receptors. Malays J Med Sci 2020; 27:6-21. [PMID: 32158341 PMCID: PMC7053548 DOI: 10.21315/mjms2020.27.1.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is a debilitating condition that occurs after tissue damage, which substantially affects the patient's emotional state and physical activity. The chronic pain in rheumatoid arthritis (RA) is the result of various autoimmune-induced inflammatory reactions in the joints. Both types of peripheral and central pain processing can lead to sensitisation. Non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying anti-rheumatic drugs (DMARDs) can result in potent anti-inflammatory effect. However, these drugs are not able to suppress the pain from RA for a prolonged period. For years, researchers have examined the role of the N-methyl-D-aspartic acid receptor 2B (NR2B) subunit of N-methyl-D-aspartate receptors (NMDAR) in chronic and neuropathic pain models. This NMDAR subtype can be found in at the peripheral and central nervous system and it represents an effective therapy for RA pain management. This review focuses on the NR2B subunit of NMDAR and the different pathways leading to its activation. Furthermore, specific attention is given to the possible involvement of NR2B subunit in the peripheral and central pathogenesis of RA.
Collapse
Affiliation(s)
- Ain' Sabreena Mohd Noh
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | |
Collapse
|