1
|
Grabarczyk M, Duda-Madej A, Romanenko F, Maciejewska G, Mączka W, Białońska A, Wińska K. New Hydroxylactones and Chloro-Hydroxylactones Obtained by Biotransformation of Bicyclic Halolactones and Their Antibacterial Activity. Molecules 2024; 29:2820. [PMID: 38930886 PMCID: PMC11206757 DOI: 10.3390/molecules29122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study was to obtain new halolactones with a gem-dimethyl group in the cyclohexane ring (at the C-3 or C-5 carbon) and a methyl group in the lactone ring and then subject them to biotransformations using filamentous fungi. Halolactones in the form of mixtures of two diasteroisomers were subjected to screening biotransformations, which showed that only compounds with a gem-dimethyl group located at the C-5 carbon were transformed. Strains from the genus Fusarium carried out hydrolytic dehalogenation, while strains from the genus Absidia carried out hydroxylation of the C-7 carbon. Both substrates and biotransformation products were then tested for antimicrobial activity against multidrug-resistant strains of both bacteria and yeast-like fungi. The highest antifungal activity against C. dubliniensis and C. albicans strains was obtained for compound 5b, while antimicrobial activity against S. aureus MRSA was obtained for compound 4a.
Collapse
Affiliation(s)
- Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (F.R.); (W.M.); (K.W.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Fedor Romanenko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (F.R.); (W.M.); (K.W.)
| | - Gabriela Maciejewska
- Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (F.R.); (W.M.); (K.W.)
| | - Agata Białońska
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland;
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (F.R.); (W.M.); (K.W.)
| |
Collapse
|
2
|
Mazur M, Zych KM, Obmińska-Mrukowicz B, Pawlak A. Microbial Transformations of Halolactones and Evaluation of Their Antiproliferative Activity. Int J Mol Sci 2023; 24:ijms24087587. [PMID: 37108750 PMCID: PMC10144491 DOI: 10.3390/ijms24087587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The microbial transformations of lactones with a halogenoethylocyclohexane moiety were performed in a filamentous fungi culture. The selected, effective biocatalyst for this process was the Absidia glauca AM177 strain. The lactones were transformed into the hydroxy derivative, regardless of the type of halogen atom in the substrate structure. For all lactones, the antiproliferative activity was determined toward several cancer cell lines. The antiproliferative potential of halolactones was much broader than that observed for the hydroxyderivative. According to the presented results, the most potent was chlorolactone, which exhibited significant activity toward the T-cell lymphoma line (CL-1) cell line. The hydroxyderivative obtained through biotransformation was not previously described in the literature.
Collapse
Affiliation(s)
- Marcelina Mazur
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Karolina Maria Zych
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland
| |
Collapse
|
3
|
Narayanan VHB, Lewandowski A, Durai R, Gonciarz W, Wawrzyniak P, Brzezinski M. Spray-dried tenofovir alafenamide-chitosan nanoparticles loaded oleogels as a long-acting injectable depot system of anti-HIV drug. Int J Biol Macromol 2022; 222:473-486. [DOI: 10.1016/j.ijbiomac.2022.09.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
|
4
|
Krzemińska M, Owczarek A, Gonciarz W, Chmiela M, Olszewska MA, Grzegorczyk-Karolak I. The Antioxidant, Cytotoxic and Antimicrobial Potential of Phenolic Acids-Enriched Extract of Elicited Hairy Roots of Salvia bulleyana. Molecules 2022; 27:992. [PMID: 35164257 PMCID: PMC8839693 DOI: 10.3390/molecules27030992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022] Open
Abstract
Hairy root cultures are valuable sources of a range of phytochemicals. Among them, Salvia bulleyana root culture is a promising source of polyphenols, especially rosmarinic acid (RA), a phenolic acid depside with pleiotropic activity and a wide application in medicine and cosmetology. The aim of the study was to enhance the culture productivity by finding suitable elicitation protocol and to determine its biological potential in terms of antioxidant, anticancer and antimicrobial properties. The total content of phenols and the levels of particular constituents in root extracts were analyzed using HPLC-PDA. Among four elicitors tested (yeast extract; methyl jasmonate, MJA; trans-anethol; and cadmium chloride), MJA was found to be the most effective. The greatest boost in phenolic production (up to 124.4 mg/g dry weight) was observed after three-day treatment with MJA at 100 µM, with an almost 100% improvement compared to the controls (non-treated root culture). The hydromethanolic extract from the elicited culture exhibited strong antioxidant activity with IC50 values of 11.1 µg/mL, 6.5 µg/mL and 69.5 µg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)) and superoxide anion radical, respectively. Moreover, in concentrations of 0.5-5 mg/mL the extract inhibited the growth of LoVo, AGS and HeLa cell lines, but was safe for the L929 cells up to the concentration of 5 mg/mL. The extract also exhibited moderate antimicrobial activity. Thus, the results confirmed that elicitation can be a beneficial strategy for increase the phenolic acid biosynthesis in hairy roots of S. bulleyana, and that such a highly productive culture can show significant biological potential.
Collapse
Affiliation(s)
- Marta Krzemińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (A.O.); (M.A.O.)
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Monika A. Olszewska
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (A.O.); (M.A.O.)
| | - Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
5
|
δ-Lactones-A New Class of Compounds That Are Toxic to E. coli K12 and R2-R4 Strains. MATERIALS 2021; 14:ma14112956. [PMID: 34070884 PMCID: PMC8199173 DOI: 10.3390/ma14112956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022]
Abstract
Lactones are among the well-known organic substances with a specific taste and smell. They are characterized by antibacterial, antiviral, anti-inflammatory, and anti-cancer properties. In recent years, among this group of compounds, new biologically active substances have been searched by modifying the main (leading) structure with new analogs with stronger or different responses that may have a toxic effect on the cells of pathogenic bacteria and constitute an alternative to commonly used antibiotics. A preliminary study of δ-lactone derivatives as new potential candidates for antibacterial drugs was conducted. Particular emphasis was placed on the selection of the structure of lactones with the highest biological activity, especially those with fluorine in their structure as a substituent in terms of action on bacterial lipopolysaccharide (LPS) in the model strains of Escherichia coli K12 (without LPS in its structure) and R2–R4 (LPS of different lengths in its structure). In the presented studies, on the basis of the conducted MIC and MBC tests, it was shown that the antibacterial (toxic) activity of lactones depends on their structure and the length of the bacterial LPS in the membrane of specific strains. Moreover, oxidative damage of bacterial DNA isolated from bacteria after modification with newly synthesized compounds after application of the repair enzyme Fpg glycosylase was analyzed. The analyzed damage values were compared with the modification with appropriate antibiotics: ciprofloxacin, bleomycin, and cloxacillin. The presented research clearly shows that lactone derivatives can be potential candidates as substitutes for drugs, e.g., the analyzed antibiotics. Their chemical and biological activity is related to coumarin derivatives and the corresponding δ-lactone groups in the structure of the substituent. The observed results are of particular importance in the case of increasing bacterial resistance to various drugs and antibiotics, especially in nosocomial infections and neoplasms, and in the era of a microbial pandemic.
Collapse
|
6
|
Sikorska-Zimny K, Lisiecki P, Gonciarz W, Szemraj M, Ambroziak M, Suska O, Turkot O, Stanowska M, Rutkowski KP, Chmiela M, Mielicki W. Influence of Agronomic Practice on Total Phenols, Carotenoids, Chlorophylls Content, and Biological Activities in Dry Herbs Water Macerates. Molecules 2021; 26:molecules26041047. [PMID: 33671275 PMCID: PMC7923153 DOI: 10.3390/molecules26041047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) have long been known for their organoleptic properties. Both plants are widely used in cuisine worldwide in fresh and dried form and as a pharmaceutical raw material. The study aimed to assess if the type of cultivation influenced chosen chemical parameters (total polyphenols by Folin-Ciocalteu method; carotenoids and chlorophyll content by Lichtenthaler method), antimicrobial activity (with chosen reference microbial strains) and shaped cytotoxicity (with L929 mouse fibroblasts cell line) in water macerates of dry oregano and thyme. Polyphenols content and antimicrobial activity were higher in water macerates obtained from conventional cultivation (independently from herb species), unlike the pigments in a higher amount in macerates from organic herbs cultivation. Among all tested macerates stronger antimicrobial properties (effective in inhibiting the growth of Pseudomonas aeruginosa, Bacillus cereus and Salmonella enteritidis) and higher cytotoxicity (abilities to diminish the growth of L929 fibroblasts cytotoxicity) characterized the conventionally cultivated thyme macerate.
Collapse
Affiliation(s)
- Kalina Sikorska-Zimny
- Skierniewice, Fruit and Vegetables Storage and Processing Department, Division of Fruit and Vegetable Storage and Postharvest Physiology, Research Institute of Horticulture, Pomologiczna 13a Street, 96-100 Skierniewice, Poland;
- Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland; (P.L.); (M.A.); (O.S.); (O.T.); (M.S.); (W.M.)
- Correspondence: or ; Tel.: +48-53-4800-418
| | - Paweł Lisiecki
- Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland; (P.L.); (M.A.); (O.S.); (O.T.); (M.S.); (W.M.)
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, The Medical University of Łódź, Pomorska 137 Street, 90-235 Lodz, Poland;
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environment Protection, The University of Łódź, Banacha 12/16 Street, 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, The Medical University of Łódź, Pomorska 137 Street, 90-235 Lodz, Poland;
| | - Maja Ambroziak
- Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland; (P.L.); (M.A.); (O.S.); (O.T.); (M.S.); (W.M.)
| | - Olga Suska
- Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland; (P.L.); (M.A.); (O.S.); (O.T.); (M.S.); (W.M.)
| | - Oliwia Turkot
- Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland; (P.L.); (M.A.); (O.S.); (O.T.); (M.S.); (W.M.)
| | - Małgorzata Stanowska
- Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland; (P.L.); (M.A.); (O.S.); (O.T.); (M.S.); (W.M.)
| | - Krzysztof P. Rutkowski
- Skierniewice, Fruit and Vegetables Storage and Processing Department, Division of Fruit and Vegetable Storage and Postharvest Physiology, Research Institute of Horticulture, Pomologiczna 13a Street, 96-100 Skierniewice, Poland;
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environment Protection, The University of Łódź, Banacha 12/16 Street, 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Wojciech Mielicki
- Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland; (P.L.); (M.A.); (O.S.); (O.T.); (M.S.); (W.M.)
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, The Medical University of Łódź, Muszyńskiego 1 Street, 90-151 Lodz, Poland
| |
Collapse
|
7
|
Biotechnological Approach for the Production of Enantiomeric Hydroxylactones Derived from Benzaldehyde and Evaluation of Their Cytotoxic Activity. Catalysts 2020. [DOI: 10.3390/catal10111313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The β-aryl-δ-halo-γ-lactones are known for their antiproliferative activity towards numerous cancer cell lines. The aim of this study was to obtain in the biotransformation process new β-aryl-δ-hydroxy-γ-lactones and compare their activity with the antiproliferative activity of parent compounds. The racemic cis-5-(1-iodoethyl)-4-phenyldihydrofuran-2-one as well as separate enantiomers were transformed in fungal cultures. Among ten tested biocatalysts, three (Absidia cylindrospora AM336, Absidia glauca AM254, and Fusarium culmorum AM10) were able to catalyze the hydrolytic dehalogenation process. The biotransformations processes were highly stereoselective and enantiomerically pure hydroxylactones were obtained (ee ≥ 99%). The iodo- and hydroxylactone enantiomers were subjected to cytotoxic activity evaluation on canine leukemia and lymphoma cell lines. The iodolactones exhibited higher biological potential towards tested cell lines than hydroxylactones. Higher cytotoxic potential was also characteristic for (+)-(4S,5S,6R)-enantiomer of iodolactone compared to its antipode.
Collapse
|