1
|
Aryee AN, Tachie C, Kaleda A. Formation of volatile compounds in salt-mediated naturally fermented cassava. Food Chem X 2025; 25:102101. [PMID: 39810948 PMCID: PMC11732480 DOI: 10.1016/j.fochx.2024.102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Cassava is a starchy staple typically consumed in tropical countries; however, its high moisture content renders it susceptible to post-harvest deterioration. Fermentation has been used to improve shelf-life, functional properties, nutrient bioavailability, minimize toxic compounds, and alter aroma. In this study, the effect of added salt (5-25 %) on the pH, titratable acidity (TTA), and volatile compounds (VOCs) in cassava fermented was investigated. A sharp reduction in pH from 6.98 to 6.20 to 4.81-4.00 and concomitant increase in TTA (0.027-0.297 %) was observed in all the samples on day 2 except the 25 % added salt ferments. The 32 VOCs quantitated on day 50 by headspace solid-phase microextraction (HS-SPME) arrow coupled with gas chromatography-mass spectrometry (GC-MS) and classified as: alcohol (9), aldehydes (6), ketones (5), carboxylic acids (5), esters (3), nitriles (2), phenol (1) and hydrocarbon (1) were affected by the amount of added salt. PCA explained 68.50 % of the variance and cluster samples based on the similarities between the identified VOCs and showed that fermentation mediated by 15 % added salt presented a VOCs profile comparable to using 20 % of salt, with the former representing a lower cost. The addition of salt can be used to control acidification, adopted as an effective preservation technique, and mediate VOCs production during cassava fermentation.
Collapse
Affiliation(s)
- Alberta N.A. Aryee
- Delaware State University, College Agriculture, Science and Technology, Food Science & Biotechnology Program, Department of Human Ecology, 1200 N DuPont, Highway Dover, DE 19901, United States of America
| | - Christabel Tachie
- Delaware State University, College Agriculture, Science and Technology, Food Science & Biotechnology Program, Department of Human Ecology, 1200 N DuPont, Highway Dover, DE 19901, United States of America
| | - Aleksei Kaleda
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4B, 12618 Tallinn, Estonia
| |
Collapse
|
2
|
Luo X, Jiang JH, Liu SL, Gao JY, Zhou LW. Metabolomics analysis of rice fermented by medicinal fungi providing insights into the preparation of functional food. Food Chem 2024; 459:140372. [PMID: 38986207 DOI: 10.1016/j.foodchem.2024.140372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Rice, a primary staple food, may be improved in value via fermentation. Here, ten medicinal basidiomycetous fungi were separately applied for rice fermentation. After preliminary screening, Ganoderma boninense, Phylloporia pulla, Sanghuangporus sanghuang and Sanghuangporus weigelae were selected for further LC-MS based determination of the changes in metabolic profile after their fermentation with rice, and a total of 261, 296, 312, and 355 differential compounds were identified, respectively. Most of these compounds were up-regulated and involved in the metabolic pathways of amino acid metabolism, lipid metabolism, carbohydrate metabolism and the biosynthesis of other secondary metabolites. Sanghuangporus weigelae endowed the rice with the highest nutritional and bioactive values. The metabolic network of the identified differential compounds in rice fermented by S. weigelae illustrated their close relationships. In summary, this study provides insights into the preparation and application of potential functional food via the fermentation of rice with medicinal fungi.
Collapse
Affiliation(s)
- Xing Luo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Hang Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shi-Liang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Yun Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Liu Z, Fu B, Wang J, Li W, Hu Y, Liu Z, Fu C, Li D, Wang C, Xu N. Transcriptomics Reveals the Effect of Strain Interactions on the Growth of A. Oryzae and Z. Rouxii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5525-5534. [PMID: 36989392 DOI: 10.1021/acs.jafc.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The microbial community structure in traditional fermented foods is quite complex, making the relationship between strains unclear. In this regard, the co-culture system can simulate microbial interactions during food fermentation and reveal the morphological changes, metabolic processes, and gene expression of microbial communities. The present study sought to investigate the effects of microbial interactions on the growth of Aspergillus oryzae and Zygosaccharomyces rouxii through omics. After co-cultivation, the pH value and dry weight were consistent with the pure culture of Z. rouxii. Additionally, the consumption of reducing sugar decreased, and the enzymatic activity increased compared with the pure culture of fungus. The analysis of volatile organic compounds (VOCs) and transcriptomics showed that co-culture significantly promoted the effect on Z. rouxii. A total of 6 different VOCs and 2202 differentially expressed genes were identified in the pure and co-culture of Z. rouxii. The differentially expressed genes were mainly related to the endonucleolytic cleavage of rRNA, ribosome biogenesis in eukaryotes, and RNA polymerase metabolic pathways. The study results will provide insights into the effect of microbial interactions on the growth of A. oryzae and Z. rouxii.
Collapse
Affiliation(s)
- Zeping Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Bin Fu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jing Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Wei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yong Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zhijie Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Caixia Fu
- Hubei Tulaohan Flavouring and Food Co., Ltd., Yichang, Hubei 443000, China
| | - Dongsheng Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chao Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ning Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| |
Collapse
|
4
|
Analysis of the Microbial Community Structure and Volatile Metabolites of JIUYAO in Fangxian, China. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
JIUYAO is an important saccharification starter in the production of huangjiu and is also an important source of flavor. In this study, the microbial community structure of JIUYAO from Fangxian was studied by high-throughput sequencing (HTS) technology for the first time. The volatile flavor compounds of the JIUYAO metabolites were also analyzed by headspace solid-phase microextraction combined with full two-dimensional gas chromatography-mass spectrometry (HS-SPME-GC×GC/MS) for the first time. The results showed that there were 15 dominant bacterial genera, including Weissella, Pediococcus, unclasssified_k_norank_d_Bacteria, Lactobacillus, Leuconostoc, etc. Thirteen species of dominant fungi included Wickerhamomyces, Saccharomycopsis, Rhizopus, etc. The different samples of JIUYAO were similar in their microbial species, but the number of species was significantly different. A total of 191 volatile flavor compounds (VFCs) were detected, among which esters, alcohols, acids, and alkenes were the main flavor compounds, and 21 terpenoids were also detected. In addition, the functional prediction of micro-organisms in JIUYAO revealed that global and overview maps, amino acid metabolism, and carbohydrate metabolism were the dominant categories. Through correlation analysis, 538 potential correlations between the dominant micro-organisms and the different flavor compounds were obtained. This study revealed the interactions between the micro-organisms and the volatile metabolites in JIUYAO, which provided reliable data for the analysis of the microbial community structure of Fangxian JIUYAO and provided theoretical support for the quality evaluation of JIUYAO.
Collapse
|
5
|
Liu X, Wang X, Cheng Y, Wu Y, Yan Y, Li Z. Variations in volatile organic compounds in Zhenyuan Daocai samples at different storage durations evaluated using E-nose, E-tongue, gas chromatography, and spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
ABDUL-ABBAS SJ, AL ALNABI DIB, AL-HATIM RR, AL-YOUNIS ZK, AL-SHAWI SG, BOKOV DO, ABDELBASSET WK. Effects of mixed strains of rhizopus oryzae and lactobacillus on corn meal fermentation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.73621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | - Dmitry Olegovich BOKOV
- Sechenov First Moscow State Medical University, Russian Federation; Biotechnology and Food Safety, Russian Federation
| | | |
Collapse
|
7
|
Liu K, Zhang C, Xu J, Liu Q. Research advance in gas detection of volatile organic compounds released in rice quality deterioration process. Compr Rev Food Sci Food Saf 2021; 20:5802-5828. [PMID: 34668316 DOI: 10.1111/1541-4337.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Rice quality deterioration will cause grievous waste of stored grain and various food safety problems. Gas detection of volatile organic compounds (VOCs) produced by deterioration is a nondestructive detection method to judge rice quality and alleviate rice spoilage. This review discussed the research advance of VOCs detection in terms of nondestructive detection methods of rice quality deterioration, applications of VOCs in grain detection, inspection of characteristic gas produced during rice spoilage, rice deterioration prevention and control, and detection of VOCs released by rice mildew and insect attack. According to the main causes of rice quality deterioration and major sources of VOCs with off-odor generated during rice storage, deterioration can be divided into mold and insect infection. The results of literature manifested that researches mainly focused on the infection of Aspergillus in the mildew process and the attack of certain pests in recent years, thus the research scope was limited. In this paper, the gas detection methods combined with the chemometrics to qualitatively analyze the VOCs, as well as the correlation with the number of colonies and insects were further studied based on the common dominant strains during rice mildew, that is, Aspergillus and Penicillium fungi, and the common pests during storage, that is, Sitophilus oryzae and Rhyzopertha dominica. Furthermore, this paper pointed out that the quantitative determination of characteristic VOCs, the numeration relationship between VOCs and the degree of mildew and insect infestation, the further expansion of detection range, and the application of degraded rice should be the spotlight of future research.
Collapse
Affiliation(s)
- Kewei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Jinyong Xu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Qiaoquan Liu
- Key Laboratories of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
8
|
Tejuino, a Traditional Fermented Beverage: Composition, Safety Quality, and Microbial Identification. Foods 2021; 10:foods10102446. [PMID: 34681495 PMCID: PMC8535997 DOI: 10.3390/foods10102446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
This study aims to analyze the chemical and microbial composition and characterize volatile compounds from the artisanal and commercial Tejuino beverage. For this, eight samples are analyzed (four artisanal and four commercial). The chemical and microbiological quality is determined by standard methods, and volatile compounds are determined by solid-phase microextraction. Overall, the physicochemical composition and microbiological quality are higher for artisanal Tejuino (p < 0.05). The pH values were 3.20 and 3.62, and 0.76 and 0.46 meq of lactic acid for artisanal and commercial Tejuino, respectively. With volatile compounds analyzed, esters, benzenes, and aldehydes were predominant; meanwhile, ethanol was a volatile compound with the highest concentration for all samples. Saccharomyces cerevisiae and Limosilactobacillus fermentum were identified in artisanal Tejuino; yeasts of the Pichia genera and Lactiplantibacillus plantarum, for commercial Tejuino, and Enterococcus genus were identified in both samples. The characterization of both types of Tejuino allows us to update the information available on this important Mexican beverage. In addition, the isolation of lactic acid bacteria, as representative bacteria of both drinks, offers an area of opportunity to know the potential functionality of these bacteria in traditional fermented products.
Collapse
|
9
|
Hu W, Yang X, Ji Y, Guan Y. Effect of starter cultures mixed with different autochthonous lactic acid bacteria on microbial, metabolome and sensory properties of Chinese northeast sauerkraut. Food Res Int 2021; 148:110605. [PMID: 34507749 DOI: 10.1016/j.foodres.2021.110605] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 01/09/2023]
Abstract
Effects of mixed cultures composed of any two of four autochthonous lactic acid bacteria on fermentation of Chinese northeast sauerkraut were investigated in this study. Results indicated that different mixed cultures inoculation generated diversified physicochemical, microbiological and flavor quality of sauerkraut. Compared to spontaneous fermentation, mix-culture fermentation showed significant higher population of lactic acid bacteria and lower amounts of undesirable microorganisms. Free amino acids increased by 2- to 5-fold from initial level in spontaneous and mix-culture fermentation, with the lowest production by spontaneous fermentation. Moreover, mix-culture fermentation promoted the flavor formation based on the analysis of HS-SPME/GC-MS, E-nose, E-tongue and sensory evaluation, especially for the mixed culture of Leu. mesenteroides and L. plantarum. These results highlighted that using a mixed culture made up with Leu. mesenteroides and L. plantarum could be a potential way to improve the quality of sauerkraut, which could provide an alternative way to meet consumers' requirement.
Collapse
Affiliation(s)
- Wenzhong Hu
- School of Pharmacy and Food Science, Zhuhai College of Jilin University, Zhuhai 519041, China; Department of Food Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| | - Xiaozhe Yang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yaru Ji
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yuge Guan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
10
|
Ghamry M, Li L, Zhao W. A metabolomics comparison of Lactobacillus communities isolated from breast milk and camel milk and Lactobacillus apis isolated from bee gut during cereals-based fermentation vs. Lactobacillus plantarum as a reference. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Markkinen N, Laaksonen O, Yang B. Impact of malolactic fermentation with Lactobacillus plantarum on volatile compounds of sea buckthorn juice. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03660-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractMalolactic fermentation using sea buckthorn (Hippophaë rhamnoides) juice as raw material was performed with six different strains of Lactobacillus plantarum. Increasing juice pH from 2.7 to 3.5 or adapting cells to low pH (i.e., acclimation) prior to inoculation allowed malolactic fermentation with all tested strains. Moreover, reducing pH of the growth medium from 6 to 4.5 with l-malate had little or no impact on biomass production. Volatile profile of sea buckthorn juice was analyzed with HS-SPME–GC–MS before and after fermentation. A total of 92 volatiles were tentatively identified and semi-quantified from sea buckthorn juice, majority of which were esters with fruity odor descriptors. Esters and terpenes were decreased in both inoculated and control juices during incubation. Microbial activity increased the levels of acetic acid (vinegar like), free fatty acids (cheese like), ketones (buttery like), and alcohols with fruity descriptors. Conversely, aldehydes associated with “green” aroma were decreased as a result of fermentation. Juices fermented with DSM 1055 had the highest acid and alcohol content, while fermentation with DSM 13273 resulted in the highest content of ketones. Compared to inoculation with other strains, fermentation with strains DSM 16365 and DSM 100813 resulted in rapid malolactic fermentation, less production of volatile acids, and lower loss of esters and terpenes important for natural sea buckthorn flavor.
Collapse
|
12
|
Comparison of northeast sauerkraut fermentation between single lactic acid bacteria strains and traditional fermentation. Food Res Int 2020; 137:109553. [DOI: 10.1016/j.foodres.2020.109553] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022]
|
13
|
Adebo OA, Oyeyinka SA, Adebiyi JA, Feng X, Wilkin JD, Kewuyemi YO, Abrahams AM, Tugizimana F. Application of gas chromatography–mass spectrometry (GC‐MS)‐based metabolomics for the study of fermented cereal and legume foods: A review. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14794] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Samson Adeoye Oyeyinka
- School of Agriculture and Food Technology Alafua Campus University of the South Pacific Suva Fiji
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Xi Feng
- Department of Nutrition Food Science and Packaging San Jose State University One Washington Square San Jose CA95192USA
| | - Jonathan D. Wilkin
- Division of Engineering and Food Science School of Applied Sciences Abertay University Dundee United Kingdom
| | - Yusuf Olamide Kewuyemi
- School of Tourism and Hospitality College of Business and Economics University of Johannesburg P. O. Box 524Bunting Road Campus Johannesburg South Africa
| | - Adrian Mark Abrahams
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Fidele Tugizimana
- International R&D Omnia Group, Ltd P.O. Box 69888 Gauteng South Africa
| |
Collapse
|
14
|
Minervini F, Missaoui J, Celano G, Calasso M, Achour L, Saidane D, Gobbetti M, De Angelis M. Use of Autochthonous Lactobacilli to Increase the Safety of Zgougou. Microorganisms 2019; 8:microorganisms8010029. [PMID: 31877880 PMCID: PMC7023124 DOI: 10.3390/microorganisms8010029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/16/2022] Open
Abstract
Seeds of Pinus halepensis are used for preparing zgougou, a spontaneously fermented matrix giving juice and seeds debris, consumed in many Arabian countries, including Tunisia. In the same way as all the food processes based on spontaneous fermentation, zgougou hides health risks due to eventual pathogenic microorganisms and derived toxins. This study aimed at investigating the effect of the use of autochthonous Lactobacillus paraplantarum A1 and Lactobacillus plantarum A2, as fermentation starters, on the microbiological characteristics, profiles of volatile organic compounds (VOC), antibacterial and antioxidant activities of juice and seeds debris from zgougou. The starter lactobacilli inhibited undesired bacteria (e.g., Enterobacter and Aeromonas) and coccus-shaped lactic acid bacteria, as shown by culture-dependent and-independent methods. The inhibitory effect was more evident in juice than in seeds debris. Some VOC (ethanol, acetoin, phenol,2-methoxy and caryophyllene) were present at higher concentrations in juice and seeds obtained upon spontaneous fermentation, compared to the samples deriving from fermentation with lactobacilli. The latter samples were characterized by higher concentrations of acetic acid, decane, 1-nonanol, bornyl acetate and bornyl formate. In addition, they showed a wider spectrum of antibacterial activity than spontaneously fermented juice and seeds. The use of autochthonous lactobacilli did not relevantly affect the antioxidant activity of zgougou. When juice from lactobacilli-driven fermentation was used to prepare a traditional Tunisian pudding ("Assidat-Zgougou"), it improved color and odor with respect to the pudding containing juice from spontaneous fermentation. This study showed that the use, at laboratory scale, of autochthonous lactobacilli is a feasible biotechnological tool to outgrow undesired bacteria, thus improving the safety of zgougou juice. Future studies should be undertaken to confirm the observed benefits at industrial scale.
Collapse
Affiliation(s)
- Fabio Minervini
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
- Correspondence:
| | - Jihen Missaoui
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
- Laboratory of Analysis, Treatment and Valuation of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Lotfi Achour
- Bio-resources: Integrative Biology & Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, 5000 Monastir, Tunisia
| | - Dalila Saidane
- Laboratory of Analysis, Treatment and Valuation of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, 39100 Bolzano, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|