1
|
Madhu S, MacKenzie J, Grewal KS, Farooque AA, Koleilat GI, Selopal GS. Titanium Carbide (Ti 3C 2T x) MXene for Sequestration of Aquatic Pollutants. CHEMSUSCHEM 2024; 17:e202400421. [PMID: 38804999 DOI: 10.1002/cssc.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 05/29/2024]
Abstract
The rapid expansion of industrialization has resulted in the release of multiple ecological contaminants in gaseous, liquid, and solid forms, which pose significant environmental risks to many different ecosystems. The efficient and cost-effective removal of these environmental pollutants has attracted global attention. This growing concern has prompted the synthesis and optimization of nanomaterials and their application as potential pollutant removal. In this context, MXene is considered an outstanding photocatalytic candidate due to its unique physicochemical and mechanical properties, which include high specific surface area, physiological compatibility, and robust electrodynamics. This review highlights recent advances in shaping titanium carbide (Ti3C2Tx) MXenes, emphasizing the importance of termination groups to boost photoactivity and product selectivity, with a primary focus on engineering aspects. First, a broad overview of Ti3C2Tx MXene is provided, delving into its catalytic properties and the formation of surface termination groups to establish a comprehensive understanding of its fundamental catalytic structure. Subsequently, the effects of engineering the morphology of Ti3C2Tx MXene into different structures, such as two-dimensional (2D) accordion-like forms, monolayers, hierarchies, quantum dots, and nanotubes. Finally, a concise overview of the removal of different environmental pollutants is presented, and the forthcoming challenges, along with their prospective outlooks, are delineated.
Collapse
Affiliation(s)
- Swedha Madhu
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, B2N 5E3, NS, Canada
| | - Jayden MacKenzie
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, B2N 5E3, NS, Canada
| | - Kuljeet Singh Grewal
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, C1A4P3, Canada
| | - Aitazaz A Farooque
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, C1A4P3, Canada
- Canadian Centre for Climate Change and Adaptation, University of Prince Edward Island, St Peters Bay, PE, Canada
| | - Ghada I Koleilat
- Department of Process Engineering and Applied Science, & Department of Electrical and Computer Engineering, Dalhousie University, Halifax, 5273 Dacosta Row, B3H 4R2, Canada
| | - Gurpreet Singh Selopal
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, B2N 5E3, NS, Canada
| |
Collapse
|
2
|
Liu Y, Chen X, Sun J, Xu N, Tang Q, Ren J, Chen C, Lei W, Zhang C, Liu D. Large-scale production of MXenes as nanoknives for antibacterial application. NANOSCALE ADVANCES 2023; 5:6572-6581. [PMID: 38024301 PMCID: PMC10662114 DOI: 10.1039/d3na00744h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
Antimicrobial resistance of existing antibacterial agents has become a pressing issue for human health and demands effective antimicrobials beyond conventional antibacterial mechanisms. Two-dimensional (2D) nanomaterials have attracted considerable interest for this purpose. However, obtaining a high yield of 2D nanomaterials with a designed morphology for effective antibacterial activity remains exceptionally challenging. In this study, an efficient one-step mechanical exfoliation (ECO-ME) method has been developed for rapidly preparing Ti3C2 MXenes with a concentration of up to 30 mg mL-1. This synthetic pathway involving mechanical force endows E-Ti3C2 MXene prepared by the ECO-ME method with numerous irregular sharp edges, resulting in a unique nanoknife effect that can successfully disrupt the bacterial cell wall, demonstrating better antibacterial activity than the MXenes prepared by conventional wet chemical etching methods. Overall, this study provides a simple and effective method for preparing MXenes on a large scale, and its antibacterial effects demonstrate great potential for E-Ti3C2 in environmental and biomedical applications.
Collapse
Affiliation(s)
- Yuchen Liu
- School of Resources and Environment, Anhui Agricultural University 130 Changjiang West Road Hefei 230036 Anhui China
- Institute for Frontier Materials, Deakin University Locked Bag 2000 Geelong Victoria 3220 Australia
| | - Xing Chen
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University Hefei 230036 China
| | - Jiazhi Sun
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University Hefei 230036 China
| | - Nuo Xu
- School of Resources and Environment, Anhui Agricultural University 130 Changjiang West Road Hefei 230036 Anhui China
| | - Qi Tang
- School of Resources and Environment, Anhui Agricultural University 130 Changjiang West Road Hefei 230036 Anhui China
| | - Jie Ren
- School of Resources and Environment, Anhui Agricultural University 130 Changjiang West Road Hefei 230036 Anhui China
| | - Cheng Chen
- School of Resources and Environment, Anhui Agricultural University 130 Changjiang West Road Hefei 230036 Anhui China
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University Locked Bag 2000 Geelong Victoria 3220 Australia
| | - Chao Zhang
- School of Resources and Environment, Anhui Agricultural University 130 Changjiang West Road Hefei 230036 Anhui China
| | - Dan Liu
- Institute for Frontier Materials, Deakin University Locked Bag 2000 Geelong Victoria 3220 Australia
| |
Collapse
|
3
|
Massoumılari Ş, Velioǧlu S. Can MXene be the Effective Nanomaterial Family for the Membrane and Adsorption Technologies to Reach a Sustainable Green World? ACS OMEGA 2023; 8:29859-29909. [PMID: 37636908 PMCID: PMC10448662 DOI: 10.1021/acsomega.3c01182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/29/2023] [Indexed: 08/29/2023]
Abstract
Environmental pollution has intensified and accelerated due to a steady increase in the number of industries, and exploring methods to remove hazardous contaminants, which can be typically divided into inorganic and organic compounds, have become inevitable. Therefore, the development of efficacious technology for the separation processes is of paramount importance to ensure the environmental remediation. Membrane and adsorption technologies garnered attention, especially with the use of novel and high performing nanomaterials, which provide a target-specific solution. Specifically, widespread use of MXene nanomaterials in membrane and adsorption technologies has emerged due to their intriguing characteristics, combined with outstanding separation performance. In this review, we demonstrated the intrinsic properties of the MXene family for several separation applications, namely, gas separation, solvent dehydration, dye removal, separation of oil-in-water emulsions, heavy metal ion removal, removal of radionuclides, desalination, and other prominent separation applications. We highlighted the recent advancements used to tune separation potential of the MXene family such as the manipulation of surface chemistry, delamination or intercalation methods, and fabrication of composite or nanocomposite materials. Moreover, we focused on the aspects of stability, fouling, regenerability, and swelling, which deserve special attention when the MXene family is implemented in membrane and adsorption-based separation applications.
Collapse
Affiliation(s)
- Şirin Massoumılari
- Institute
of Nanotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Sadiye Velioǧlu
- Institute
of Nanotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
- Nanotechnology
Research and Application Center, Gebze Technical
University, Gebze 41400, Kocaeli, Turkey
| |
Collapse
|
4
|
Tawalbeh M, Mohammed S, Al-Othman A, Yusuf M, Mofijur M, Kamyab H. MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: Critical review. ENVIRONMENTAL RESEARCH 2023; 228:115919. [PMID: 37072081 DOI: 10.1016/j.envres.2023.115919] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
The rapid increase in the global population and its ever-rising standards of living are imposing a huge burden on global resources. Apart from the rising energy needs, the demand for freshwater is correspondingly increasing. A population of around 3.8 billion people will face water scarcity by 2030, as per the reports of the World Water Council. This may be due to global climate change and the deficiency in the treatment of wastewater. Conventional wastewater treatment technologies fail to completely remove several emerging contaminants, especially those containing pharmaceutical compounds. Hence, leading to an increase in the concentration of harmful chemicals in the human food chain and the proliferation of several diseases. MXenes are transition metal carbide/nitride ceramics that primarily structure the leading 2D material group. MXenes act as novel nanomaterials for wastewater treatment due to their high surface area, excellent adsorption properties, and unique physicochemical properties, such as high electrical conductivity and hydrophilicity. MXenes are highly hydrophilic and covered with active functional groups (i.e., hydroxyl, oxygen, fluorine, etc.), which makes them efficient adsorbents for a wide range of species and promising candidates for environmental remediation and water treatment. This work concludes that the scaling up process of MXene-based materials for water treatment is currently of high cost. The up-to-date applications are still limited because MXenes are currently produced mainly in the laboratory with limited yield. It is recommended to direct research efforts towards lower synthesis cost procedures coupled with the use of more environmentally friendly materials to avoid secondary contamination.
Collapse
Affiliation(s)
- Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Shima Mohammed
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
5
|
Jatoi AS, Mubarak NM, Hashmi Z, Solangi NH, Karri RR, Hua TY, Mazari SA, Koduru JR, Alfantazi A. New insights into MXene applications for sustainable environmental remediation. CHEMOSPHERE 2023; 313:137497. [PMID: 36493892 DOI: 10.1016/j.chemosphere.2022.137497] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Multiple ecological contaminants in gaseous, liquid, and solid forms are vented into ecosystems due to the huge growth of industrialization, which is today at the forefront of worldwide attention. High-efficiency removal of these environmental pollutants is a must because of the potential harm to public health and biodiversity. The alarming concern has led to the synthesis of improved nanomaterials for removing pollutants. A path to innovative methods for identifying and preventing several obnoxious, hazardous contaminants from entering the environment is grabbing attention. Various applications in diverse industries are seen as a potential directions for researchers. MXene is a new, excellent, and advanced material that has received greater importance related to the environmental application. Due to its unique physicochemical and mechanical properties, high specific surface area, physiological compatibility, strong electrodynamics, and raised specific surface area wettability, its applications are growing. This review paper examines the most recent methods and trends for environmental pollutant removal using advanced 2D Mxene materials. In addition, the history and the development of MXene synthesis were elaborated. Furthermore, an extreme summary of various environmental pollutants removal has been discussed, and the future challenges along with their future perspectives have been illustrated.
Collapse
Affiliation(s)
- Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan.
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Zubair Hashmi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Tan Yie Hua
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Akram Alfantazi
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
6
|
Ahmaruzzaman M. MXenes and MXene-supported nanocomposites: a novel materials for aqueous environmental remediation. RSC Adv 2022; 12:34766-34789. [PMID: 36540274 PMCID: PMC9723541 DOI: 10.1039/d2ra05530a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/22/2022] [Indexed: 08/29/2023] Open
Abstract
Water contamination has become a significant issue on a global scale. Adsorption is a cost-effective way to treat water and wastewater compared to other techniques such as the Advanced Oxidation Processes (AOPs), photocatalytic degradation, membrane filtration etc. Numerous research experts are continuously developing inexpensive substances for the adsorptive removal of organic contaminants from wastewater. A fresh and intriguing area of inquiry has emerged as a result of the development of MXenes. This article aims to provide a preliminary understanding of MXenes from synthesis, structure, and characterization to the scope of further research. The applications of MXenes as a new generation adsorbent for remediation of various kinds of organic pollutants and heavy metals from wastewater are also summarized. MXenes with altered surfaces may make effective adsorbents for wastewater treatment. Lastly, the mechanism of adsorption of organic contaminants and heavy metals on MXenes is also discussed for a better understanding of the readers.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
7
|
Miri-Jahromi A, Mohammady Maklavany D, Rouzitalab Z, Ghaemi Khiavi S, Ghasemy E, Khedri M, Rezvantalab S, Sharafinia S, Rashidi A, Maleki R. Engineering of two-dimensional monolayers to phenolic compounds removal from wastewater: An experimental and computational insight. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Assad H, Fatma I, Kumar A, Kaya S, Vo DVN, Al-Gheethi A, Sharma A. An overview of MXene-Based nanomaterials and their potential applications towards hazardous pollutant adsorption. CHEMOSPHERE 2022; 298:134221. [PMID: 35276102 DOI: 10.1016/j.chemosphere.2022.134221] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
With the massive development of industrialization, multiple ecological contaminants in gaseous, liquid, and solid forms are vented into habitats, which is currently at the forefront of worldwide attention. Because of the possible damage to public health and eco-diversity, high-efficiency clearance of these environmental contaminants is a serious concern. Improved nanomaterials (NMs) could perform a significant part in the exclusion of contaminants from the atmosphere. MXenes, a class of two-dimensional (2D) compounds that have got tremendous consideration from researchers for a broad array of applications in a variety of industries and are viewed as a potential route for innovative solutions to identify and prevent a variety of obstreperous hazardous pollutants from environmental compartments due to their exceptional innate physicochemical and mechanical features, including high specific surface area, physiological interoperability, sturdy electrodynamics, and elevated wettability. This paper discusses the recent progress in MXene-based nanomaterials' applications such as environmental remediation, with a focus on their adsorption-reduction characteristics. The removal of heavy metals, dyes, and radionuclides by MXenes and MXene-based nanomaterials is depicted in detail, with the adsorption mechanism and regeneration potential highlighted. Finally, suggestions for future research are provided to ensure that MXenes and MXene-based nanomaterials are synthesized and applied more effectively.
Collapse
Affiliation(s)
- Humira Assad
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India
| | - Ishrat Fatma
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India
| | - Ashish Kumar
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India.
| | - Savas Kaya
- Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas, Turkey
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Adel Al-Gheethi
- Faculty of Civil Engineering and Built Environment (FKAAB), Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Batu Pahat, Johor, Malaysia
| | - Ajit Sharma
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
9
|
Ahmaruzzaman M. MXene-based novel nanomaterials for remediation of aqueous environmental pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Vasyukova IA, Zakharova OV, Kuznetsov DV, Gusev AA. Synthesis, Toxicity Assessment, Environmental and Biomedical Applications of MXenes: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1797. [PMID: 35683652 PMCID: PMC9182201 DOI: 10.3390/nano12111797] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
MXenes are a family of two-dimensional (2D) composite materials based on transition metal carbides, nitrides and carbonitrides that have been attracting attention since 2011. Combination of electrical and mechanical properties with hydrophilicity makes them promising materials for biomedical applications. This review briefly discusses methods for the synthesis of MXenes, their potential applications in medicine, ranging from sensors and antibacterial agents to targeted drug delivery, cancer photo/chemotherapy, tissue engineering, bioimaging, and environmental applications such as sensors and adsorbents. We focus on in vitro and in vivo toxicity and possible mechanisms. We discuss the toxicity analogies of MXenes and other 2D materials such as graphene, mentioning the greater biocompatibility of MXenes. We identify existing barriers that hinder the formation of objective knowledge about the toxicity of MXenes. The most important of these barriers are the differences in the methods of synthesis of MXenes, their composition and structure, including the level of oxidation, the number of layers and flake size; functionalization, test concentrations, duration of exposure, and individual characteristics of biological test objects Finally, we discuss key areas for further research that need to involve new methods of nanotoxicology, including predictive computational methods. Such studies will bring closer the prospect of widespread industrial production and safe use of MXene-based products.
Collapse
Affiliation(s)
- Inna A. Vasyukova
- Technopark “Derzhavinsky”, Derzhavin Tambov State University, 392000 Tambov, Russia; (I.A.V.); (O.V.Z.)
| | - Olga V. Zakharova
- Technopark “Derzhavinsky”, Derzhavin Tambov State University, 392000 Tambov, Russia; (I.A.V.); (O.V.Z.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Denis V. Kuznetsov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
| | - Alexander A. Gusev
- Technopark “Derzhavinsky”, Derzhavin Tambov State University, 392000 Tambov, Russia; (I.A.V.); (O.V.Z.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| |
Collapse
|
11
|
Velusamy K, Chellam P, Kumar PS, Venkatachalam J, Periyasamy S, Saravanan R. Functionalization of MXene-based nanomaterials for the treatment of micropollutants in aquatic system: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119034. [PMID: 35196563 DOI: 10.1016/j.envpol.2022.119034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The increased industrialization and urbanization generate a larger quantity of effluent that is discharged into the environment regularly. Based on the effluent composition produced from various industries, the number of hazardous substances such as heavy metals, hydrocarbons, volatile organic compounds, organic chemicals, microorganisms introduced into the aquatic systems vary. The conventional wastewater treatment systems do not meet the effluent standards before discharge and require a different treatment system before reuse. Adsorption is an eco-friendly technique that uses selective adsorbents to remove hazardous pollutants even at microscale levels. MXene, a 2-Dimensional nanomaterial with resplendent properties like conductivity, hydrophilicity, stability, and functionalized surface characteristics, is found as a potential candidate for pollutant removal systems. This review discusses the fabrication, characterization, and application of MXene based nanoparticles to remove many pollutants in water treatment systems. The improvement in surface properties and adsorption capacity of MXene based NPs, when modified using different modification agents, has also been discussed. Their feasibility in terms of economic and environmental aspects has been evaluated to understand their scope for practical application in large-scale industries. The challenges towards the synthesis and toxicity's importance have been discussed, with the appropriate recommendations.
Collapse
Affiliation(s)
- Karthik Velusamy
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, Tamilnadu, India
| | | | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | | | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
12
|
Capability of MXene 2D material as an amoxicillin, ampicillin, and cloxacillin adsorbent in wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Ibrahim Y, Meslam M, Eid K, Salah B, Abdullah AM, Ozoemena KI, Elzatahry A, Sharaf MA, Sillanpää M. A review of MXenes as emergent materials for dye removal from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Hao C, Li G, Wang G, Chen W, Wang S. Preparation of acrylic acid modified alkalized MXene adsorbent and study on its dye adsorption performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127730] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Li Z, Li J, Tan J, Jiang M, Fu S, Zhang T, Wang X. In situ synthesis of novel peroxo-functionalized Ti 3C 2T x adsorbent for aqueous pollutants removal: Role of oxygen-containing terminal groups. CHEMOSPHERE 2022; 286:131801. [PMID: 34371352 DOI: 10.1016/j.chemosphere.2021.131801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 05/22/2023]
Abstract
A novel peroxo-functionalized Ti3C2Tx adsorbent with abundant surface termination groups was facilely prepared in situ to remove aqueous anionic and cationic dyes. The adsorption behavior of methylene blue on peroxo-functionalized Ti3C2Tx was systematically investigated by adsorption kinetics, isotherms, and thermodynamics. Compared with Ti3C2Tx, the adsorption capacities of peroxo-functionalized Ti3C2Tx for cationic dyes methylene blue (558.0 mg g-1), rhodamine B (524.6 mg g-1) and anionic dyes methyl orange (292.6 mg g-1), congo red (258.2 mg g-1) were increased at room temperature without adjustment of pH, background ions and humic acid, etc of the contaminant solution by 7.9, 5.3, 5.9 and 4.6 times, respectively. In addition, peroxo-functionalized Ti3C2Tx could well tolerate the effects of pH, ionic strength, and humic acid. As revealed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, the adsorption mechanism of peroxo-functionalized Ti3C2Tx for anionic and cationic dyes was mainly attributed to the electrostatic interaction, hydrogen bonding interaction, and noncovalent surface-π attraction interaction. This study demonstrates a facile modification strategy for Ti3C2Tx adsorbent materials and aims to provide insights for the development of excellent Ti3C2Tx-based adsorbent materials.
Collapse
Affiliation(s)
- Zhifeng Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Tan
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengyun Jiang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuhan Fu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaohui Wang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
16
|
Abstract
MXenes and their related nanocomposites with superior physicochemical properties such as high surface area, ease of synthesis and functionalization, high drug loading capacity, collective therapy potentials, pH-triggered drug release behavior,...
Collapse
|
17
|
Zhang S, Bilal M, Adeel M, Barceló D, Iqbal HMN. MXene-based designer nanomaterials and their exploitation to mitigate hazardous pollutants from environmental matrices. CHEMOSPHERE 2021; 283:131293. [PMID: 34182621 DOI: 10.1016/j.chemosphere.2021.131293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 02/08/2023]
Abstract
MXenes are a rapidly expanding and large family of two-dimensional (2D) materials that have recently garnered incredible research interests for diverse applications domains in various industrial sectors. Owing to unique inherent structural and physicochemical characteristics, such as high surface area, biological compatibility, robust electrochemistry, and high hydrophilicity, MXenes are appraised as a prospective avenue for environmental-clean-up technologies to detect and mitigate an array of recalcitrant hazardous contaminants from environmental matrices. MXene-based nanoarchitectures are thought to mitigate inorganic pollutants via interfacial chemical transformation and sorption, while three different mechanisms, including i) surface complexation and sorption (ii) catalytic activation and removal and (iii) radical's generation-based photocatalytic degradation, are involved in the removal of organic contaminants. Considering the application performance of MXenes on the incessant rise to expansion, in this review, we discuss the wide-spectrum applicability of diverse MXenes-based hybrid nanocomposites in environmental remediation. A brief description related to environmental pollutants, structural properties, chemical abilities, and synthesis route of MXenes is delineated at the start. Afterwards, the adsorption and degradative robustness of MXene-based designer nanomaterials for various contaminants including organic dyes, toxic heavy metals, pesticide residues, phenolics, antibiotics, radionuclides, and many others are thoroughly vetted to prove their potentiality in the arena of wastewater purification and remediation. Lastly, challenges and trends in assessing the wide-range applicability and scalability of MXenes are outlined. Seeing encouraging outcomes in plenty of reports, it can be concluded that MXenes-based nanostructures could be considered the next-generation candidates for water sustainability.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- School of Food Science and Technology, Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Muhammad Adeel
- Faculty of Applied Engineering, iPRACS, University of Antwerp, 2020, Antwerp, Belgium
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034, Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003, Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
18
|
Jamalipour Soufi G, Iravani P, Hekmatnia A, Mostafavi E, Khatami M, Iravani S. MXenes and MXene-based Materials with Cancer Diagnostic Applications: Challenges and Opportunities. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1990890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Parisa Iravani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Hekmatnia
- Radiology Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Khandelwal N, Darbha GK. A decade of exploring MXenes as aquatic cleaners: Covering a broad range of contaminants, current challenges and future trends. CHEMOSPHERE 2021; 279:130587. [PMID: 33901892 DOI: 10.1016/j.chemosphere.2021.130587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Clean water, the elixir of life, is of tremendous importance in achieving environmental sustainability and the balanced functioning of our ecosystem. Coupled with population growth, several anthropogenic activities and environmental catastrophes have together contributed to an alarming increase in the concentration of toxic pollutants in water bodies. Diversified physiochemical conditions of water matrices, ranging from mining drainage to seawater, is the critical challenge in designing adsorbents. MXenes, a new class of 2D layered materials, are transition metal nitrides, carbides, carbonitrides or borides formed through selective etching process. MXenes are known to have high surface area and activity with biological compatibility and chemical stability and therefore are promising adsorbents and have been explored for a broad range of contaminants. This review starts with a brief about environmental contaminants followed by synthesis and modifications of MXenes. It then revolves around their so far explored adsorbing and degradation properties for different contaminants ranging from toxic metals, inorganic ions, and radionuclides to various organic pollutants, including dyes, pharmaceuticals, aromatic hydrocarbons, and pesticides, etc. Finally, we have discussed associated toxicity, secondary contamination, future trends, and challenges in ascertaining scalability and wide-range applicability of MXenes in natural environmental conditions to make them a warrior of water sustainability.
Collapse
Affiliation(s)
- Nitin Khandelwal
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India, 741246
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India, 741246; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
20
|
Enhanced Adsorptive Removal of Dyes Using Mandarin Peel Biochars via Chemical Activation with NH4Cl and ZnCl2. WATER 2021. [DOI: 10.3390/w13111495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study examined differences in the adsorption kinetics, isotherms, and thermodynamics of the dyes (methyl orange and fast green FCF) by pristine (M–biochar) and chemical activated mandarin peel biochars (MN–biochar and MZ–biochar). The specific surface area (1085.0 m2/g) and pore volume (0.194 cm3/g) of MZ-biochar much higher than those of the M–biochar (specific surface area = 8.5 m2/g, pore volume = 0.016 cm3/g) and MN–biochar (specific surface area = 181.1 m2/g, pore volume = 0.031 cm3/g). The equilibrium adsorption capacities (mg/g) of MO and FG using M–biochar (MO = 0.95, FG = 0.78) MN–biochar (MO = 2.52, FG = 2.13), and MZ–biochar (MO = 16.27, FG = 12.44) have well-matched the pseudo-second-order model (R2 ≥ 0.952) compared with the pseudo-first-order model (R2 ≥ 0.008). Furthermore, the better explanation of the adsorption behavior of dyes by the Freundlich isotherm model (R2 ≥ 0.978) than the Langmuir isotherm model (R2 ≥ 0.881) supports the assumption that the multilayer adsorption governed the adsorption of dyes using mandarin peel biochars. The adsorptions of dyes were significantly dependent on the solution pH and temperature since the electrostatic and spontaneous endothermic reactions governed their removal using the pristine and chemical activated mandarin peel biochars.
Collapse
|
21
|
Khatami M, Iravani S. MXenes and MXene-based Materials for the Removal of Water Pollutants: Challenges and Opportunities. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1922396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Zandi P, Ghasemy E, Khedri M, Rashidi A, Maleki R, Miri Jahromi A. Shedding Light on Miniaturized Dialysis Using MXene 2D Materials: A Computational Chemistry Approach. ACS OMEGA 2021; 6:6312-6325. [PMID: 33718722 PMCID: PMC7948252 DOI: 10.1021/acsomega.0c06118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/16/2021] [Indexed: 05/09/2023]
Abstract
Materials science can pave the way toward developing novel devices at the service of human life. In recent years, computational materials engineering has been promising in predicting material performance prior to the experiments. Herein, this capability has been carefully employed to tackle severe problems associated with kidney diseases through proposing novel nanolayers to adsorb urea and accordingly causing the wearable artificial kidney (WAK) to be viable. The two-dimensional metal carbide and nitride (MXene) nanosheets can leverage the performance of various devices since they are highly tunable along with fascinating surface chemistry properties. In this study, molecular dynamics (MD) simulations were exploited to investigate the interactions between urea and different MXene nanosheets. To this end, detailed analyses were performed that clarify the suitability of these nanostructures in urea adsorption. The atomistic simulations were carried out on Mn2C, Cd2C, Cu2C, Ti2C, W2C, Ta2C, and urea to determine the most appropriate urea-removing adsorbent. It was found that Cd2C was more efficient followed by Mn2C, which can be effectively exploited in WAK devices at the service of human health.
Collapse
Affiliation(s)
- Pegah Zandi
- School
of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran 1417466191, Iran
| | - Ebrahim Ghasemy
- Nanotechnology
Department, School of New Technologies, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Mohammad Khedri
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Alimorad Rashidi
- Nanotechnology
Research Center, Research Institute of Petroleum
Industry (RIPI), Tehran 1485733111, Iran
| | - Reza Maleki
- Computational
Biology and Chemistry Group (CBCG), Universal
Scientific Education and Research Network (USERN), Tehran 1449614535, Iran
| | - Ahmad Miri Jahromi
- Computational
Biology and Chemistry Group (CBCG), Universal
Scientific Education and Research Network (USERN), Tehran 1449614535, Iran
| |
Collapse
|
23
|
Yaqub A, Shafiq Q, Khan AR, Husnain SM, Shahzad F. Recent advances in the adsorptive remediation of wastewater using two-dimensional transition metal carbides (MXenes): a review. NEW J CHEM 2021. [DOI: 10.1039/d1nj00772f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MXenes, since their discovery in 2011, have garnered significant research attention for a variety of applications due to their exciting physico-chemical properties.
Collapse
Affiliation(s)
- Azra Yaqub
- Chemistry Division
- Directorate of Science
- Pakistan Institute of Nuclear Science and Technology (PINSTECH)
- Islamabad
- Pakistan
| | - Qamar Shafiq
- National Center for Nanotechnology
- Department of Metallurgy and Materials Engineering
- Pakistan Institute of Engineering and Applied Sciences (PIEAS)
- Islamabad 45650
- Pakistan
| | - Abdul Rehman Khan
- Materials Division
- Directorate of Technology
- Pakistan Institute of Nuclear Science and Technology (PINSTECH)
- Islamabad
- Pakistan
| | - Syed M. Husnain
- Chemistry Division
- Directorate of Science
- Pakistan Institute of Nuclear Science and Technology (PINSTECH)
- Islamabad
- Pakistan
| | - Faisal Shahzad
- National Center for Nanotechnology
- Department of Metallurgy and Materials Engineering
- Pakistan Institute of Engineering and Applied Sciences (PIEAS)
- Islamabad 45650
- Pakistan
| |
Collapse
|
24
|
Cai C, Wang R, Liu S, Yan X, Zhang L, Wang M, Tong Q, Jiao T. Synthesis of self-assembled phytic acid-MXene nanocomposites via a facile hydrothermal approach with elevated dye adsorption capacities. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124468] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Ultrasound-Assisted Preparation of Chitosan/Nano-Activated Carbon Composite Beads Aminated with (3-Aminopropyl)Triethoxysilane for Adsorption of Acetaminophen from Aqueous Solutions. Polymers (Basel) 2019; 11:polym11101701. [PMID: 31623271 PMCID: PMC6835286 DOI: 10.3390/polym11101701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
A composite chitosan/nano-activated carbon (CS-NAC) aminated by (3-aminopropyl)triethoxysilane (APTES) was prepared in the form of beads and applied for the removal of acetaminophen from aqueous solutions. NAC and APTES concentrations were optimized to obtain a suitable adsorbent structure for enhanced removal of the pharmaceutical. The aminated adsorbent (CS-NAC-APTES beads) prepared with 40% w/w NAC and 2% v/v APTES showed higher adsorption capacity (407.83 mg/g) than CS-NAC beads (278.4 mg/g). Brunauer–Emmett–Teller (BET) analysis demonstrated that the surface area of the CS-NAC-APTES beads was larger than that of CS-NAC beads (1.16 times). The adsorption process was well fitted by the Freundlich model (R2 > 0.95), suggesting a multilayer adsorption. The kinetic study also substantiated that the pseudo-second-order model (R2 > 0.98) was in better agreement with the experimental data. Finally, it was proved that the prepared beads can be recycled (by washing with NaOH solution) at least 5 times before detectable performance loss.
Collapse
|