1
|
Laryea MK, Boadu Ampomah G, Ekuadzi E, Dickson RA, Borquaye LS. Antimalarial compounds from the climbing stems of salacia debilis. Nat Prod Res 2024; 38:4034-4043. [PMID: 37867307 DOI: 10.1080/14786419.2023.2272288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 10/24/2023]
Abstract
Salacia debilis Walp., (Celastraceae) is used traditionally in West Africa for the treatment of malaria. However, no scientific reports validating these effects and its active constituents are on record. Therefore, this study is aimed at evaluating the antimalarial effects, of its ethanolic extract and isolated compounds against Plasmodium falciparum 3D7 and P. berghei ANKA strains. Using chromatographic, spectrometric and spectroscopic techniques three compounds were isolated and characterised. The extract of S. debilis was active against P. falciparum 3D7, in an in vitro assay with IC50 of 12.0 ± 0.32 µg/ml. The three isolated compounds, namely 1,10-dihydroxy-6H-benzo[c]chromen-6-one (1), 8- hydroxy-3,4-dimethoxydibenzo[b,d]furan-1-carboxylic acid (2) and benzyl-2-methoxybenzoate (3), also showed antimalarial activity against Plasmodium berghei ANKA strain in curative and suppressive in vivo assays. The ethanolic extract and isolated compounds of S. debilis possess antimalarial effects. The isolated compounds may be responsible, at least in part, for the observed activities of the extract.
Collapse
Affiliation(s)
- Michael Konney Laryea
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gilbert Boadu Ampomah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Edmund Ekuadzi
- Department of Pharmacognosy, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Rita Akosua Dickson
- Department of Pharmacognosy, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
2
|
Cebollada P, Gomes NGM, Andrade PB, López V. An integrated in vitro approach on the enzymatic and antioxidant mechanisms of four commercially available essential oils ( Copaifera officinalis, Gaultheria fragrantissima, Helichrysum italicum, and Syzygium aromaticum) traditionally used topically for their anti-inflammatory effects. Front Pharmacol 2024; 14:1310439. [PMID: 38371914 PMCID: PMC10871035 DOI: 10.3389/fphar.2023.1310439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/31/2023] [Indexed: 02/20/2024] Open
Abstract
Introduction: Despite the increasing number of essential oils being reported on their potential therapeutic effects, some remain relatively unknown on their biological properties. That is the case of the essential oils obtained from copaiba (Copaifera officinalis L.), wintergreen (Gaultheria fragrantissima Wall.), everlasting (Helichrysum italicum (Roth) G.Don) and clove (Syzygium aromaticum (L.) Merr. & L.M.Perry), commonly labelled as being useful on the amelioration of conditions with an inflammatory background. Methods: To further broaden the current knowledge on the four essential oils, commercially available samples were approached on their effects upon a series of mediators that are involved on the inflammatory and oxidative response, both through in vitro cell-free and cell-based assays (5-lipoxygenase activity, lipid peroxidation, free radical and nitric oxide radical scavenging properties or tyrosinase inhibition). Results: The four oils proved to be active at some of the concentrations tested in most of the performed assays. Significant differences were found between the essential oils, S. aromaticum proving to tbe the most active, followed by G. fragrantissima against 5-lipoxygenase (5-LOX) and linoleic acid peroxidation, proving their potential use as antioxidants and anti-inflammatory agents. In fact, the IC50 value of S. aromaticum in the 5-LOX assay was 62.30 μg mL-1. Besides S. aromaticum efficiently scavenged superoxide radicals generated by xanthine/xanthine oxidase, displaying an IC50 value of 135.26 μg mL-1. The essential oil obtained from H. italicum exhibited a significant decrease in the nitric oxide levels on BV-2 cells, showing its potential as a cytoprotective agent against toxic damage. Copaiba oil ranked first as the most potent tyrosinase inhibitor, exhibiting an IC50 98.22 μg mL-1. Conclusion: More studies are needed to describe the essential oils properties, but these results confirm the potential of these essential oils as anti-inflammatory and antioxidant agents.
Collapse
Affiliation(s)
- Pilar Cebollada
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain
| | - Nelson G. M. Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
3
|
Liu G, Fan Y, Tao Y, Wang S, Wang M, Li L. Interactions of potato-derived and human recombinant 5-lipoxygenase with sec-O-glucosylhamaudol by multi-spectroscopy and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121100. [PMID: 35272121 DOI: 10.1016/j.saa.2022.121100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
5-lipoxygenase (5-LOX) was a key enzyme involved in many inflammatory diseases. Sec-O-glucosylhamaudol (SOG) was a chromone found in Saposhnikovia divaricata (Turcz.) Schischk (S. divaricate). The potato-derived 5-LOX (p-5-LOX) and human recombinant 5-LOX (h-5-LOX) were selected as model protein due to their simple usability and high stability in this study. Thus, the binding interactions of p-5-LOX and h-5-LOX with SOG were investigated by multi-spectroscopy and molecular docking. As a result, the fluorescence intensities of the two 5-LOX were quenched statically by SOG. However, the binding ability of SOG to h-5-LOX was higher than that of p-5-LOX at the same temperature. The results of multi-spectroscopy revealed that the conformation and micro-environment of the two 5-LOX proteins were changed after binding with SOG. Fluorescence assay and molecular docking indicated that hydrogen bond and electrostatic gravitation were the main forces between the two 5-LOX and SOG. Our results here suggested that SOG may exert anti-inflammatory effect by inhibiting 5-LOX activity.
Collapse
Affiliation(s)
- Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun 130032, China.
| |
Collapse
|
4
|
Nyamboki DK, Bedane KG, Hassan K, Spiteller M, Matasyoh JC. Cytotoxic compounds from the leaf of Bersama abyssinica subspecies abyssinica. PHYTOCHEMISTRY 2022; 198:113153. [PMID: 35240134 DOI: 10.1016/j.phytochem.2022.113153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
From the leaves of Kenyan medicinal plant Bersama abyssinica Subspecies abyssinica, four previously undescribed compounds namely, three bufadienolides, 10β-formylpaulliniogenin B, 10β-formylpaulliniogenin A and 1β-acetoxy-3β,5β-dihydroxy-15-methoxy-16,19-dioxobufa-14(15),20,22-trienolide, and a phenolic compound 2,6,4'-trihydroxybenzophenone-4-O-(6‴-cinnamoyl)-β-D-glucoside were isolated together with four known compounds. The structural elucidation of the compounds was based on 1D and 2D NMR spectroscopy and HRMS data analyses. The relative configurations were defined by NOESY correlations. Cytotoxic activities on L929 and KB3.1 cell lines of the isolated compounds were investigated using MTT assay. The 1β-acetoxy-3β,5β-dihydroxy-15-methoxy-16,19-dioxobufa-14(15),20,22-trienolide showed significant cytotoxic activity against KB3.1 cell lines with IC50 of 3.9 ± 0.99 μM.
Collapse
Affiliation(s)
- Divinah Kwamboka Nyamboki
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany; Department of Chemistry, Faculty of Sciences, Egerton University, P.O. Box 536, 20115, Egerton, Kenya
| | - Kibrom Gebreheiwot Bedane
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany; Department of Chemistry, Addis Ababa University, P.O. Box 33658, Addis Ababa, Ethiopia
| | - Khadija Hassan
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
| | - Michael Spiteller
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Josphat Clement Matasyoh
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany; Department of Chemistry, Faculty of Sciences, Egerton University, P.O. Box 536, 20115, Egerton, Kenya.
| |
Collapse
|
5
|
HPLC-DAD-ESI/MSn and UHPLC-ESI/QTOF/MSn characterization of polyphenols in the leaves of Neocarya macrophylla (Sabine) Prance ex F. White and cytotoxicity to gastric carcinoma cells. Food Res Int 2022; 155:111082. [DOI: 10.1016/j.foodres.2022.111082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/23/2022]
|
6
|
Balde E, Traoré M, Balde M, Baldé A, Bah F, Camara A, Kéita S, Baldé A. Traditional Guinean management of breast diseases in low and Middle Guinea. J Herb Med 2022. [DOI: 10.1016/j.hermed.2021.100520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Osman M, Kasir D, Rafei R, Kassem II, Ismail MB, El Omari K, Dabboussi F, Cazer C, Papon N, Bouchara JP, Hamze M. Trends in the epidemiology of dermatophytosis in the Middle East and North Africa region. Int J Dermatol 2021; 61:935-968. [PMID: 34766622 DOI: 10.1111/ijd.15967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Dermatophytosis corresponds to a broad series of infections, mostly superficial, caused by a group of keratinophilic and keratinolytic filamentous fungi called dermatophytes. These mycoses are currently considered to be a major public health concern worldwide, particularly in developing countries such as those in the Middle East and North Africa (MENA) region. Here we compiled and discussed existing epidemiologic data on these infections in the MENA region. Most of the available studies were based on conventional diagnostic strategies and were published before the last taxonomic revision of dermatophytes. This has led to misidentifications, which might have resulted in the underestimation of the real burden of these infections in the MENA countries. Our analysis of the available literature highlights an urgent need for further studies based on reliable diagnostic tools and standard susceptibility testing methods for dermatophytosis, which represents a major challenge for these countries. This is crucial for guiding appropriate interventions and activating antifungal stewardship programs in the future.
Collapse
Affiliation(s)
- Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Dalal Kasir
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Issmat I Kassem
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, GA, USA
| | - Mohamad Bachar Ismail
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Faculty of Science, Lebanese University, Tripoli, Lebanon
| | - Khaled El Omari
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Quality Control Center Laboratories, Chamber of Commerce, Industry, and Agriculture of Tripoli and North Lebanon, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Casey Cazer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| | | | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
8
|
Yanyun C, Ying T, Wei K, Hua F, Haijun Z, Ping Z, Shunming X, Jian W. Preliminary Study on Antifungal Mechanism of Aqueous Extract of Cnidium monnieri Against Trichophyton rubrum. Front Microbiol 2021; 12:707174. [PMID: 34489895 PMCID: PMC8417377 DOI: 10.3389/fmicb.2021.707174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Trichoderma rubrum (T. rubrum) is one of the important pathogens because it is the cause of most dermatomycosis. The treatment of Trichophyton rubrum infection is time-consuming and very expensive; it is easy for the infections to reoccur, leading to therapeutic failures, persistence, and chronic infection. These issues have inspired researchers to study natural alternative therapies instead. Cnidium monnieri (L.), as a kind of traditional Chinese medicine, has a variety of pharmacological activities and a wide range of applications, so it has a high potential for researching and economic value. We detected the effect of aqueous extract of C. monnieri (L.) on the activity of T. rubrum by Cell Count Kit-8 assay (CCK-8), and we found that 128 and 256 μg/ml of aqueous extracts of C. monnieri (L.) co-cultured with T. rubrum for 24 h showed the inhibitory effect on T. rubrum. The results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed that aqueous extract of C. monnieri (L.) damaged the T. rubrum. At the same time, mass spectrometry screening with T. rubrum before and after the treatment of 256 μg/ml of aqueous extracts of C. monnieri (L.) showed that 966 differentially expressed proteins were detected, including 524 upregulated differentially expressed genes (DEGs) and 442 downregulated DEGs. The most significantly downregulated protein was chitin synthase (CHS); and the results of qRT-PCR and Western blotting demonstrated that the expression level of CHS was downregulated in the 256 μg/ml group compared with the control group. The study showed that the aqueous extract of C. monnieri (L.) could destroy the morphology of mycelia and the internal structure of T. rubrum, and it could inhibit the growth of T. rubrum. The antifungal effect of aqueous extract of C. monnieri (L.) may be related to the downregulation of the expression of CHS in T. rubrum, and CHS may be one of the potential targets of its antifungal mechanism. We concluded that aqueous extract from C. monnieri (L.) may be a potential candidate for antifungal agents.
Collapse
Affiliation(s)
- Cao Yanyun
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai, China
| | - Tang Ying
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai, China
| | - Kong Wei
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai, China
| | - Fang Hua
- Department of Clinical Laboratory, Pudong New Area People's Hospital, Shanghai, China
| | - Zhu Haijun
- Department of Emergency and Critical Care Medicine, Pudong New Area People' s Hospital, Shanghai, China
| | - Zheng Ping
- Department of Clinical Laboratory, Pudong New Area People's Hospital, Shanghai, China
| | - Xu Shunming
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai, China
| | - Wan Jian
- Department of Emergency and Critical Care Medicine, Pudong New Area People' s Hospital, Shanghai, China
| |
Collapse
|
9
|
Ma Y, Wang X, Li R. Cutaneous and subcutaneous fungal infections: recent developments on host-fungus interactions. Curr Opin Microbiol 2021; 62:93-102. [PMID: 34098513 DOI: 10.1016/j.mib.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The incidence of skin fungal infections is increasing at an alarming rate worldwide, presenting a major challenge to health professionals. Cutaneous and subcutaneous fungal infections are caused by pathogenic or opportunistic organisms varying from mold, yeasts, to dimorphic fungi. Recently, skin fungal have been increasingly reported and studied, giving rise to crucial breakthroughs in etiology and pathogenesis. This review aims to summarize recent insights into the clinical and etiological characteristics of common skin fungal infections according to different fungal species, as well as remarkable advances in the immune mechanisms. We hope it will be helpful to understand these diverse skin fungal infections, and bring about the latest developments that may facilitate novel diagnostic and therapeutic approaches to improve the outcomes in these patients.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Dermatology and Venerology, Peking University First Hospital, China; Research Center for Medical Mycology, Peking University, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, China; National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Xiaowen Wang
- Department of Dermatology and Venerology, Peking University First Hospital, China; Research Center for Medical Mycology, Peking University, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, China; National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China.
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, China; Research Center for Medical Mycology, Peking University, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, China; National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China.
| |
Collapse
|
10
|
Sitarek P, Merecz-Sadowska A, Kowalczyk T, Wieczfinska J, Zajdel R, Śliwiński T. Potential Synergistic Action of Bioactive Compounds from Plant Extracts against Skin Infecting Microorganisms. Int J Mol Sci 2020; 21:ijms21145105. [PMID: 32707732 PMCID: PMC7403983 DOI: 10.3390/ijms21145105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/16/2023] Open
Abstract
The skin is an important organ that acts as a physical barrier to the outer environment. It is rich in immune cells such as keratinocytes, Langerhans cells, mast cells, and T cells, which provide the first line of defense mechanisms against numerous pathogens by activating both the innate and adaptive response. Cutaneous immunological processes may be stimulated or suppressed by numerous plant extracts via their immunomodulatory properties. Several plants are rich in bioactive molecules; many of these exert antimicrobial, antiviral, and antifungal effects. The present study describes the impact of plant extracts on the modulation of skin immunity, and their antimicrobial effects against selected skin invaders. Plant products remain valuable counterparts to modern pharmaceuticals and may be used to alleviate numerous skin disorders, including infected wounds, herpes, and tineas.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
- Correspondence:
| | - Anna Merecz-Sadowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Joanna Wieczfinska
- Department of Immunopathology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Radosław Zajdel
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
11
|
Inhibition of Proinflammatory Enzymes and Attenuation of IL-6 in LPS-Challenged RAW 264.7 Macrophages Substantiates the Ethnomedicinal Use of the Herbal Drug Homalium bhamoense Cubitt & W.W.Sm. Int J Mol Sci 2020; 21:ijms21072421. [PMID: 32244489 PMCID: PMC7178040 DOI: 10.3390/ijms21072421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022] Open
Abstract
Commonly used to treat skin injuries in Asia, several Homalium spp. have been found to promote skin regeneration and wound healing. While ethnobotanical surveys report the use of H. bhamoense trunk bark as a wound salve, there are no studies covering bioactive properties. As impaired cutaneous healing is characterized by excessive inflammation, a series of inflammatory mediators involved in wound healing were targeted with a methanol extract obtained from H. bhamoense trunk bark. Results showed concentration-dependent inhibition of hyaluronidase and 5-lipoxygenase upon exposure to the extract, with IC50 values of 396.9 ± 25.7 and 29.0 ± 2.3 µg mL−1, respectively. H. bhamoense trunk bark extract also exerted anti-inflammatory activity by significantly suppressing the overproduction of interleukin 6 (IL-6) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages at concentrations ranging from 125 to 1000 µg mL−1, while leading to a biphasic effect on nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) levels. The phenolic profile was elucidated by HPLC-DAD, being characterized by the occurrence of ellagic acid as the main constituent, in addition to a series of methylated derivatives, which might underlie the observed anti-inflammatory effects. Our findings provide in vitro data on anti-inflammatory ability of H. bhamoense trunk bark, disclosing also potential cutaneous toxicity as assessed in HaCaT keratinocytes.
Collapse
|
12
|
Macedo T, Ribeiro V, Oliveira AP, Pereira DM, Fernandes F, Gomes NGM, Araújo L, Valentão P, Andrade PB. Anti-inflammatory properties of Xylopia aethiopica leaves: Interference with pro-inflammatory cytokines in THP-1-derived macrophages and flavonoid profiling. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112312. [PMID: 31629028 DOI: 10.1016/j.jep.2019.112312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ethnopharmacological surveys on Guinea-Bissauan flora reveal that several species are used to treat or ameliorate the symptomatology of conditions with an inflammatory background. As such, extracts obtained from a series of plants recorded in those surveys were screened for their anti-inflammatory properties, a hydroethanolic extract obtained from the leaves of Xylopia aethiopica (Dunal) A. Rich, (Annonaceae), used on the treatment of headache, muscular pain and rheumatic pain, scoring positively and being further investigated. AIM OF THE STUDY In order to identify species with anti-inflammatory properties, extracts were screened for their ability to interfere with LPS-induced TNF-α levels. Since significant effects were recorded upon treatment with the extract of the leaves obtained from X. aethiopica, further assays were conducted to elucidate additional mechanisms underlying its anti-inflammatory potential. Since little is known on the chemical composition of the plant, we also aimed to characterise its phenolic profile. MATERIALS AND METHODS Interference with cytokines was evaluated by ELISA assay, through the quantification of TNF-α and IL-6 levels in the culture medium collected from LPS-activated THP-1-derived-macrophages. Inhibition of 5-lipoxygenase was assessed based on the oxidation of linoleic acid to 13-hydroperoxylinoleic acid. Characterization of the phenolic profile was attained by HPLC-DAD. RESULTS Evaluation of TNF-α levels in LPS-challenged THP-1 macrophages evidenced a significant inhibition (>90%) upon treatment with the hydroethanolic extract obtained from X. aethiopica leaves at a concentration of 500 μg/mL. Additional anti-inflammatory effects were recorded, including a significant decrease on IL-6 levels at 250 and 500 μg/mL. The extract proved to be active towards 5-LOX, leading to significant inhibition at concentrations ranging from 16 to 250 μg/mL (IC50 = 85 μg/mL). Phenolic profiling allowed the identification and quantitation of eight constituents, including caffeoylquinic acids (1-3), mono-O-glycosylated flavonols (5-8), and the mono-O-glycosyl flavone luteolin-7-O-glucoside (4). The main phenolic constituent, kaempferol-3-O-rutinoside (8), was found to significantly contribute to the anti-inflammatory effects, namely through the inhibition of 5-LOX. However, no effects on the decrease of TNF-α and IL-6 levels caused by this phenolic compound were found. CONCLUSION The anti-inflammatory effects of X. aethiopica leaves are demonstrated experimentally, thus substantiating its use in folk Medicine. Relevantly, the observed anti-inflammatory properties can stimulate further studies in order to fully unveil the therapeutic potential of the plant, namely as a source of phenolic compounds with a significant ability to interfere with conventional inflammatory targets.
Collapse
Affiliation(s)
- Tiago Macedo
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Vera Ribeiro
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Andreia P Oliveira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Fátima Fernandes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Luísa Araújo
- MDS - Medicamentos e Diagnósticos em Saúde, Avenida dos Combatentes da Liberdade da Pátria, Bissau, Guinea-Bissau.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| |
Collapse
|
13
|
Cedeño H, Espinosa S, Andrade JM, Cartuche L, Malagón O. Novel Flavonoid Glycosides of Quercetin from Leaves and Flowers of Gaiadendron punctatum G.Don. (Violeta de Campo), used by the Saraguro Community in Southern Ecuador, Inhibit α-Glucosidase Enzyme. Molecules 2019; 24:molecules24234267. [PMID: 31771116 PMCID: PMC6930599 DOI: 10.3390/molecules24234267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Gaiadandendron punctatum G.Don. (violeta de campo) is a plant used in traditional medicine by the Saraguro people, an ancient indigenous group that lives in southern Ecuador. From samples collected in the region, six glycoside flavonoids, five with quercetin and one with kaempferol as aglycon, were isolated and characterized from hydroalcoholic extracts of leaves and flowers. Rutin (2) was found in flowers and leaves, nicotiflorin (1) was found in flowers, artabotryside A (3) was found in leaves, and three novel quercetin flavonoid glycosides were isolated, elucidated, and characterized via 1D and 2D NMR experiments (1H, 13C, COSY, DEPT, HMBC, HSQC, TOCSY, NOESY, ROESY), acid hydrolysis–derivatization–GC-MS analysis, HPLC-MS, IR, UV, and optical rotation. The new quercetin flavonoid glycosides were named hecpatrin (4) (isolated from leaves), gaiadendrin (5) (isolated from leaves), and puchikrin (6) (isolated from flowers). The hydroalcoholic extracts of the leaves presented antimicrobial activity against Micrococcus luteus, Staphylococcus aureus, and Enterococcus faecalis and the hydroalcoholic extract of the flowers was active against Micrococcus luteus. However, glycoside flavonoids presented scarce antimicrobial activity against bacteria. Hydroalcoholic extracts from leaves and flowers and their secondary metabolites showed inhibition against the α-glucosidase enzyme at different concentrations. Rutin, gaiadendrin, and nicotiflorin showed competitive α-glucosidase inhibition, while hecpatrin presented non-competitive inhibition.
Collapse
|