1
|
Yuan Z, Wang Y, Wang X, Du X, Li G, Luo L, Yao B, Zhang J, Zhao F, Liu D. The fruit of Rosa odorata sweet var. gigantea (Coll. et Hemsl.) Rehd. et Wils attenuates chronic atrophic gastritis induced by MNNG and its potential mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118876. [PMID: 39362325 DOI: 10.1016/j.jep.2024.118876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosa odorata Sweet var. gigantea (Coll. et Hemsl.) Rehd. et Wils is a commonly utilized traditional medicine among the Yi nationality, also known as "Gugongguo", for the treatment of gastrointestinal disorders. Previous studies have indicated that the extract of Rosa odorata sweet var. gigantea (FOE) fruit has demonstrated a protective effect on the stomach; however, its impact on chronic atrophic gastritis (CAG) with severe disease remains unknown. AIM OF THE STUDY This study aimed to investigate the impact of FOE on CAG and its underlying mechanisms both in vitro and in vivo. MATERIALS AND METHODS By employing Ultra Performance Liquid Chromatography/Quadrupole-Time of Flight Mass Spectrometry (UPLC-QTOF-MS/MS) and network pharmacology, the primary active compounds and action targets of FOE were identified. In vitro, the impact of FOE on CAG was investigated through scratch, migration, and invasion assays. Subsequently, guided by network pharmacology, EMT and TGF-β signaling pathway-related proteins were assessed using Western blot and immunofluorescence experiments. Additionally, an in vivo CAG rat model was established to validate the effects of FOE and confirm its mechanism of action through hematoxylin-eosin (H&E), immunohistochemistry, Western blot, as well as untargeted metabolomics analysis of rat serum. It was observed that FOE inhibited scratch healing abilities, migration, invasion capabilities, as well as the expression of EMT-related proteins (E-cadherin, N-cadherin, Snail, Vimentin) in CAG model cells (MC cells), providing initial evidence for its efficacy. RESULTS Through the analysis of UPLC-QTOF-MS/MS, a total of 51 major compounds were identified in the FOE. Subsequent network pharmacological analysis suggested that FOE may regulate Epithelial mesenchymal transition (EMT) through the transforming growth factor β (TGF-β) pathway. Furthermore, experimental verification demonstrated that FOE inhibited the protein expression of TGF-β1 and its downstream protein Smad2/3 in vitro. In vivo findings also indicated similar mechanisms in MC cells, suggesting a reversal of the CAG process and significant inhibition of EMT and TGF-β signaling pathways. Additionally, untargeted metabolomics of rat serum confirmed the therapeutic effect of FOE on CAG and predicted its potential involvement in the arachidonic acid metabolic pathway. CONCLUSION This study initially demonstrated that FOE effectively reverses the process of EMT through the TGF-β1/Smad2/3 signaling pathway, thereby providing a therapeutic benefit for CAG.
Collapse
Affiliation(s)
- Zhen Yuan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Yansheng Wang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, 300380, China; National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xinrui Wang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, 300380, China; National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiqin Du
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, 300380, China; National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Guotong Li
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, 300380, China; National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Lifei Luo
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, 300380, China.
| | - Bin Yao
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, 300380, China; National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jingze Zhang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, 300380, China; National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Feng Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Dailin Liu
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, 300380, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Wei X, Wang D, Xu Z, Liu J, Zhu Q, Chen Q, Tang H, Xu W. Research progress on the regulatory and pharmacological mechanism of chemical components of Dendrobium. Heliyon 2024; 10:e37541. [PMID: 39328574 PMCID: PMC11425140 DOI: 10.1016/j.heliyon.2024.e37541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dendrobium is a precious Chinese herbal medicine, which belongs to the genus Orchidaceae. Ancient records and modern pharmacological research show that Dendrobium has pharmacological effects such as anti-tumor, antioxidant regulating immunity and blood glucose, and anti-aging. Dendrobium contains polysaccharides, alkaloids, bibenzyl, sesquiterpenes, phenanthrene, polyphenols and other types of chemicals. Its pharmacological activity is closely related to these chemical components. For example, dendrobium extracts can achieve anti-tumor effects by inhibiting tumor cell proliferation and metastasis, promoting cell apoptosis and ferroptosis, or increasing cell sensitivity to chemotherapy drugs. It enhances immunity by regulating immune cell activity or cytokine release. In addition, it can alleviate neurodegenerative diseases by protecting nerve cells from apoptotic damage. In recent years, research reports on biologically active compounds in Dendrobium have shown a blowout growth, which makes us realize that it is meaningful to continuously update the research progress on the components and pharmacological regulatory mechanism of this traditional Chinese medicine. By classifying the collected chemical components according to different chemical structures and summarizing their pharmacological mechanisms, we investigated the current research progress of Dendrobium and provide a more comprehensive scientific foundation for the further development and clinical transformation of Dendrobium in the future.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Anhui Province, Suzhou, 234011, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, PR China
| |
Collapse
|
3
|
Liu Y, Huang T, Wang L, Wang Y, Liu Y, Bai J, Wen X, Li Y, Long K, Zhang H. Traditional Chinese Medicine in the treatment of chronic atrophic gastritis, precancerous lesions and gastric cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118812. [PMID: 39260710 DOI: 10.1016/j.jep.2024.118812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic atrophic gastritis (CAG), precancerous lesions of gastric cancer (PLGC), and gastric cancer (GC), seriously threaten human health. Traditional Chinese medicine (TCM) has been employed in the treatment of chronic diseases for a long time and has shown remarkable efficacy. AIM OF THE STUDY Recently, there has been an increasing use of TCM in treating CAG, PLGC, and GC. The objective of this study is to compile a comprehensive overview of the existing research on the effects and molecular mechanisms of TCM, including formulas, single herbs, and active components. MATERIALS AND METHODS To obtain a comprehensive understanding of traditional use of TCM in treating these diseases, we reviewed ancient books and Chinese literature. In addition, keywords such as "TCM", "CAG", "PLGC", "GC", and "active ingredients" were used to collect modern research on TCM published in databases such as CNKI, Web of Science, and Pubmed up to April 2024. All collected information was then summarized and analyzed. RESULTS This study analyzed 174 articles, which covered the research progress of 20 TCM formulas, 14 single herbs, and 50 active ingredients in treating CAG, PLGC, and GC. Sources, effects, and molecular mechanisms of the TCM were summarized. CONCLUSIONS This article reviews the progress of TCM in the management of CAG, PLGC, and GC, which will provide a foundation for the clinical application and further development of TCM.
Collapse
Affiliation(s)
- Yuxi Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Tingting Huang
- Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China.
| | - Lu Wang
- Shaanxi University of Chinese Medicine, Middle section of Century Avenue, Xianyang, 712046, China.
| | - Yuan Wang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Jingyi Bai
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Xinli Wen
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Ye Li
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Kaihua Long
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China; Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China; Shaanxi University of Chinese Medicine, Middle section of Century Avenue, Xianyang, 712046, China.
| |
Collapse
|
4
|
Jia J, Zhao H, Li F, Zheng Q, Wang G, Li D, Liu Y. Research on drug treatment and the novel signaling pathway of chronic atrophic gastritis. Biomed Pharmacother 2024; 176:116912. [PMID: 38850667 DOI: 10.1016/j.biopha.2024.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is a global digestive system disease and one of the important causes of gastric cancer. The incidence of CAG has been increasing yearly worldwide. PURPOSE This article reviews the latest research on the common causes and future therapeutic targets of CAG as well as the pharmacological effects of corresponding clinical drugs. We provide a detailed theoretical basis for further research on possible methods for the treatment of CAG and reversal of the CAG process. RESULTS CAG often develops from chronic gastritis, and its main pathological manifestation is atrophy of the gastric mucosa, which can develop into gastric cancer. The drug treatment of CAG can be divided into agents that regulate gastric acid secretion, eradicate Helicobacter. pylori (H. pylori), protect gastric mucous membrane, or inhibit inflammatory factors according to their mechanism of action. Although there are limited specific drugs for the treatment of CAG, progress is being made in defining the pathogenesis and therapeutic targets of the disease. Growing evidence shows that NF-κB, PI3K/AKT, Wnt/ β-catenin, MAPK, Toll-like receptors (TLRs), Hedgehog, and VEGF signaling pathways play an important role in the development of CAG.
Collapse
Affiliation(s)
- Jinhao Jia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Huijie Zhao
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Special Administrative Region of China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832003, PR China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| | - Ying Liu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
5
|
Lai CH, Huo CY, Xu J, Han QB, Li LF. Critical review on the research of chemical structure, bioactivities, and mechanism of actions of Dendrobium officinale polysaccharide. Int J Biol Macromol 2024; 263:130315. [PMID: 38382782 DOI: 10.1016/j.ijbiomac.2024.130315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/15/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Dendrobium officinale (Tie-Pi-Shi-Hu) is a precious traditional Chinese medicine (TCM). The principal active components are polysaccharides (DOP), which have a high potency in therapeutic applications. However, limitations in structure analysis and underlying mechanism investigation impede its further research. This review systemically and critically summarises current understanding in both areas, and points out the influence of starch impurities and the role of gut microbiota in DOP research. As challenges faced in studying natural polysaccharide investigations are common, this review contributes to a broader understanding of polysaccharides beyond DOP.
Collapse
Affiliation(s)
- Cheuk-Hei Lai
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chu-Ying Huo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Li-Feng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
6
|
Wu W, Zhao Z, Zhao Z, Zhang D, Zhang Q, Zhang J, Fang Z, Bai Y, Guo X. Structure, Health Benefits, Mechanisms, and Gut Microbiota of Dendrobium officinale Polysaccharides: A Review. Nutrients 2023; 15:4901. [PMID: 38068759 PMCID: PMC10708504 DOI: 10.3390/nu15234901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dendrobium officinale polysaccharides (DOPs) are important active polysaccharides found in Dendrobium officinale, which is commonly used as a conventional food or herbal medicine and is well known in China. DOPs can influence the composition of the gut microbiota and the degradation capacity of these symbiotic bacteria, which in turn may determine the efficacy of dietary interventions. However, the necessary analysis of the relationship between DOPs and the gut microbiota is lacking. In this review, we summarize the extraction, structure, health benefits, and related mechanisms of DOPs, construct the DOPs-host axis, and propose that DOPs are potential prebiotics, mainly composed of 1,4-β-D-mannose, 1,4-β-D-glucose, and O-acetate groups, which induce an increase in the abundance of gut microbiota such as Lactobacillus, Bifidobacterium, Akkermansia, Bacteroides, and Prevotella. In addition, we found that when exposed to DOPs with different structural properties, the gut microbiota may exhibit different diversity and composition and provide health benefits, such as metabolism regulations, inflammation modulation, immunity moderation, and cancer intervention. This may contribute to facilitating the development of functional foods and health products to improve human health.
Collapse
Affiliation(s)
- Weijie Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Ziqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Zhaoer Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Dandan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Qianyi Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Jiayu Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Zhengyi Fang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Yiling Bai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Xiaohui Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| |
Collapse
|
7
|
Zhang S, Shen Y, Liu H, Zhu D, Fang J, Pan H, Liu W. Inflammatory microenvironment in gastric premalignant lesions: implication and application. Front Immunol 2023; 14:1297101. [PMID: 38035066 PMCID: PMC10684945 DOI: 10.3389/fimmu.2023.1297101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Gastric precancerous lesions (GPL) are a major health concern worldwide due to their potential to progress to gastric cancer (GC). Understanding the mechanism underlying the transformation from GPL to GC can provide a fresh insight for the early detection of GC. Although chronic inflammation is prevalent in the GPL, how the inflammatory microenvironment monitored the progression of GPL-to-GC are still elusive. Inflammation has been recognized as a key player in the progression of GPL. This review aims to provide an overview of the inflammatory microenvironment in GPL and its implications for disease progression and potential therapeutic applications. We discuss the involvement of inflammation in the progression of GPL, highlighting Helicobacter pylori (H. pylori) as a mediator for inflammatory microenvironment and a key driver to GC progression. We explore the role of immune cells in mediating the progression of GPL, and focus on the regulation of inflammatory molecules in this disease. Furthermore, we discuss the potential of targeting inflammatory pathways for GPL. There are currently no specific drugs for GPL treatment, but traditional Chinese Medicine (TCM) and natural antioxidants, known as antioxidant and anti-inflammatory properties, exhibit promising effects in suppressing or reversing the progression of GPL. Finally, the challenges and future perspectives in the field are proposed. Overall, this review highlights the central role of the inflammatory microenvironment in the progression of GPL, paving the way for innovative therapeutic approaches in the future.
Collapse
Affiliation(s)
- Shengxiong Zhang
- Rehabilitation Department, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, China
- Department of Spleen and Stomach, GuangZhou Tianhe District Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Shen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huafeng Pan
- Science and Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Zhang P, Zhang X, Zhu X, Hua Y. Chemical Constituents, Bioactivities, and Pharmacological Mechanisms of Dendrobium officinale: A Review of the Past Decade. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14870-14889. [PMID: 37800982 DOI: 10.1021/acs.jafc.3c04154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Dendrobium officinale, a plant in the Orchidaceae family, has been used in traditional Chinese medicine for thousands of years. Sweet and slightly cold in nature, it can invigorate the stomach, promote fluid production, nourish Yin, and dissipate heat. Over the past decade, more than 60 compounds have been derived from D. officinale, including flavonoids, bibenzyl, and phenanthrene. Various studies have explored the underlying pharmacological mechanisms of these compounds, which have shown antitumor, hypoglycemic, hypertensive, gastrointestinal-regulatory, visceral organ protection, antiaging, and neurorestorative effects. This paper presents a systematic review of the structural classification, biological activity, and pharmacological mechanisms of different chemical components obtained from D. officinale over the past decade. This review aims to provide a reference for future study and establish a foundation for clinical applications. Furthermore, this review identifies potential shortcomings in current research as well as potential directions and methodologies in future plant research.
Collapse
Affiliation(s)
- Ping Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xingyu Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xingyi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunfen Hua
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
9
|
Yang W, Chen D, Ji Q, Zheng J, Ma Y, Sun H, Zhang Q, Zhang J, He Y, Song T. Molecular mechanisms underlying the anticancer property of Dendrobium in various systems of the human body: A review. Biomed Pharmacother 2023; 165:115223. [PMID: 37523984 DOI: 10.1016/j.biopha.2023.115223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023] Open
Abstract
Dendrobium, which belongs to the family of Orchidaceae, is a highly valuable traditional Chinese medicine commonly used in China. It exerts pharmacological activities such as antitumor and hypoglycemia effects, and its main components are alkaloids, polysaccharides, and terpenoids, among others. In recent years, research on the clinical application of Dendrobium in antitumor therapy has gained increasing attention. Accumulating evidence suggests that the active components of Dendrobium possess significant inhibitory effects on the viability of cancer cells as evident from in vivo and in vitro experiments, which indicates that Dendrobium exerts significant anticancer effect in treating and preventing cancer development, inhibiting the underlying potential molecular mechanisms, including suppression of cancer cell growth and proliferation, epithelial-mesenchymal transition (EMT), apoptosis induction, tumor angiogenesis, and reinforcement of cisplatin (DDP) -induced apoptosis. We herein present a review that summarizes the research progress of the application of Dendrobium in cancer therapy and its molecular mechanisms. This review describes the positive aspects of the active ingredients of Dendrobium in the treatment of cancers in various systems of the human body, their inhibitory effects on tumor survival and tumor microenvironment, and their potential mechanisms. Additionally, this review proposes future application prospects of Dendrobium in cancer therapy to promote further research and future extensive clinical applications of Dendrobium in cancer therapy.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jishan Zheng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yunyan Ma
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Hongqin Sun
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Qian Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
10
|
Xu L, Zuo SM, Liu M, Wang T, Li Z, Yun YH, Zhang W. Integrated Analysis of Metabolomics Combined with Network Pharmacology and Molecular Docking Reveals the Effects of Processing on Metabolites of Dendrobium officinale. Metabolites 2023; 13:886. [PMID: 37623830 PMCID: PMC10456568 DOI: 10.3390/metabo13080886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Dendrobium officinale (D. officinale) is a precious medicinal species of Dendrobium Orchidaceae, and the product obtained by hot processing is called "Fengdou". At present, the research on the processing quality of D. officinale mainly focuses on the chemical composition indicators such as polysaccharides and flavonoids content. However, the changes in metabolites during D. officinale processing are still unclear. In this study, the process was divided into two stages and three important conditions including fresh stems, semiproducts and "Fengdou" products. To investigate the effect of processing on metabolites of D. officinale in different processing stages, an approach of combining metabolomics with network pharmacology and molecular docking was employed. Through UPLC-MS/MS analysis, a total of 628 metabolites were detected, and 109 of them were identified as differential metabolites (VIP ≥ 1, |log2 (FC)| ≥ 1). Next, the differential metabolites were analyzed using the network pharmacology method, resulting in the selection of 29 differential metabolites as they have a potential pharmacological activity. Combining seven diseases, 14 key metabolites and nine important targets were screened by constructing a metabolite-target-disease network. The results showed that seven metabolites with potential anticoagulant, hypoglycemic and tumor-inhibiting activities increased in relative abundance in the "Fengdou" product. Molecular docking results indicated that seven metabolites may act on five important targets. In general, processing can increase the content of some active metabolites of D. officinale and improve its medicinal quality to a certain extent.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong-Huan Yun
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.X.)
| | | |
Collapse
|
11
|
Lu L, Chen B, Zhang X, Xu Y, Jin L, Qian H, Liang ZF. The effect of phytochemicals in N-methyl-N-nitro-N-nitroguanidine promoting the occurrence and development of gastric cancer. Front Pharmacol 2023; 14:1203265. [PMID: 37456745 PMCID: PMC10339287 DOI: 10.3389/fphar.2023.1203265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Gastric cancer is a common malignant tumor of the digestive tract, with a low early diagnosis rate. N-methyl-N-nitro-N-nitroguanidine (MNNG) is one of the main risk factors for gastric cancer. Phytochemicals are healthy active substances derived from vegetables, fruits, nuts, tea, herbal medicines and other plants. Taking phytochemicals is a very promising strategy for the prevention and treatment of gastric cancer. Many studies have proved that phytochemicals have protective effects on MNNG induced gastric cancer via inhibiting cell proliferation, enhancing immunity, suppressing cell invasion and migration, inducing apoptosis and autophagy, blocking angiogenesis, inhibiting Helicobacter pylori infection as well as regulating metabolism and microbiota. The intervention and therapeutic effects of phytochemicals in MNNG induced gastric cancer have attracted more and more attention. In order to better study and explore the role, advantages and challenges of phytochemicals in MNNG induced gastric cancer, we summarized the intervention and therapeutic effects of phytochemicals in MNNG induced gastric cancer. This review may help to further promote the research and clinical application of phytochemicals in MNNG induced gastric cancer, and provide some new insights.
Collapse
Affiliation(s)
- Ling Lu
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bei Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - XinYi Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yumeng Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Longtao Jin
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhao feng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
12
|
Li PY, Li L, Wang YZ. Traditional uses, chemical compositions and pharmacological activities of Dendrobium: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116382. [PMID: 36948262 DOI: 10.1016/j.jep.2023.116382] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium is a kind of medicine food homology plant. Dendrobium has long been used to strengthen "Yin" and tonify five viscera. AIM OF THIS REVIEW This paper presents a systematic review of the folk usage, chemical composition and pharmacological activity of Dendrobium, aiming to provide a reference for subsequent in-depth understanding and better exploitation of health food, medicine, and natural products. MATERIALS AND METHODS Available information about the genus Dendrobium was collected via Web of Science, PubMed, Science Direct, Scopus, APA-Psy Articles, Google Scholar, Connected Papers, Springer Search, and KNCI. The keywords for this article are Dendrobium, traditional use, chemical diversity and pharmacological activity. Use the "Dictionary of Chinese Ethnic Medicine" to provide 23 kinds of Dendrobium with medicinal value, the Latin name of Dendrobium is verified by the Flora of China (www.iplant.cn), and its species distribution and related information are collected. RESULTS There are 78 species of Dendrobium in China, 14 of which are endemic to China. At present, 450 compounds including sesquiterpenoids, lignans compounds, phenolic compounds, phenanthrene compounds, bibenzyls, polysaccharides and flavonoids have been isolated and identified from at least 50 species of Dendrobium. Among them, bibenzyls and polysaccharides are the main active components, phenolics and lignans are widely distributed, sesquiterpenes are the most common chemical constituents in genus Dendrobium plants. The most popular research objects are Dendrobium officinale and Dendrobium huoshanense. CONCLUSIONS Based on traditional folk uses, chemical composition and pharmacological studies, Dendrobium is considered a promising medicinal and edible plant with multiple pharmacological activities. In addition, a large number of clinical applications and further studies on single chemical components based on the diversity of chemical structures should be conducted, which will lay the foundation for the scientific utilization of genus Dendrobium.
Collapse
Affiliation(s)
- Pei-Yuan Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China; College of Biological Resources and Environmental Sciences of Hunan Province, Jishou University, Jishou, 416000, China
| | - Li Li
- College of Biological Resources and Environmental Sciences of Hunan Province, Jishou University, Jishou, 416000, China.
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| |
Collapse
|
13
|
Okoro NO, Odiba AS, Yu Q, He B, Liao G, Jin C, Fang W, Wang B. Polysaccharides Extracted from Dendrobium officinale Grown in Different Environments Elicit Varying Health Benefits in Caenorhabditis elegans. Nutrients 2023; 15:2641. [PMID: 37375545 DOI: 10.3390/nu15122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Dendrobium officinale is one of the most widely used medicinal herbs, especially in Asia. In recent times, the polysaccharide content of D. officinale has garnered attention due to the numerous reports of its medicinal properties, such as anticancer, antioxidant, anti-diabetic, hepatoprotective, neuroprotective, and anti-aging activities. However, few reports of its anti-aging potential are available. Due to high demand, the wild D. officinale is scarce; hence, alternative cultivation methods are being employed. In this study, we used the Caenorhabditis elegans model to investigate the anti-aging potential of polysaccharides extracted from D. officinale (DOP) grown in three different environments; tree (TR), greenhouse (GH), and rock (RK). Our findings showed that at 1000 µg/mL, GH-DOP optimally extended the mean lifespan by 14% and the maximum lifespan by 25% (p < 0.0001). TR-DOP and RK-DOP did not extend their lifespan at any of the concentrations tested. We further showed that 2000 µg/mL TR-DOP, GH-DOP, or RK-DOP all enhanced resistance to H2O2-induced stress (p > 0.05, p < 0.01, and p < 0.01, respectively). In contrast, only RK-DOP exhibited resistance (p < 0.01) to thermal stress. Overall, DOP from the three sources all increased HSP-4::GFP levels, indicating a boost in the ability of the worms to respond to ER-related stress. Similarly, DOP from all three sources decreased α-synuclein aggregation; however, only GH-DOP delayed β-amyloid-induced paralysis (p < 0.0001). Our findings provide useful information on the health benefits of DOP and also provide clues on the best practices for cultivating D. officinale for maximum medicinal applications.
Collapse
Affiliation(s)
- Nkwachukwu Oziamara Okoro
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria
| | - Arome Solomon Odiba
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Yu
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bin He
- School of Agriculture and Engineering, Guangxi Vocational and Technical College, Nanning 530226, China
| | - Guiyan Liao
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxia Fang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
14
|
Li J, Wang YF, Shen ZC, Zou Q, Lin XF, Wang XY. Recent developments on natural polysaccharides as potential anti-gastric cancer substance: Structural feature and bioactivity. Int J Biol Macromol 2023; 232:123390. [PMID: 36706878 DOI: 10.1016/j.ijbiomac.2023.123390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Gastric cancer (GC) is being a serious threat to human health. Seeking safer and more effective ingredients for anti-GC is of significance. Increasing natural polysaccharides (NPs) have been demonstrated to possess anti-GC activity. However, the information on anti-GC NPs is scattered. For well-understanding the potential of NPs as anti-GC substances, the recent developments on structure, bioactivity and mechanism of anti-GC NPs were comprehensively reviewed in this article. Meanwhile, the structure-activity relationship was discussed. Recent studies indicated that anti-GC NPs could be mainly divided into glucan and heteropolysaccharide, whose structures affected by sources and protocols of extraction and purification. NPs exhibited anti-GC activities in cell and animal experiments as well as clinical trials, and the mechanisms might be anti-proliferation, inducing apoptosis, anti-metastasis and anti-invasion, inducing autophagy, boosting immunity, anti-angiogenesis, reducing drug resistance, anti-angiogenesis, improving antioxidant level and changing metabolites. Moreover, structural features included molecular weight, functional groups, uronic acid and monosaccharide composition, glycosidic linkage type, and degree of branching and conformation might influence the activities. Otherwise, modifications could enhance the anti-GC activity of NPs, and anti-GC NPs could be combinedly used with chemotherapeutic drugs. This review supports the applications of NPs in anti-GC and provides theoretical basis for future study.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
15
|
Qiang M, Cai P, Ao M, Li X, Chen Z, Yu L. Polysaccharides from Chinese materia medica: Perspective towards cancer management. Int J Biol Macromol 2023; 224:496-509. [PMID: 36265542 DOI: 10.1016/j.ijbiomac.2022.10.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
Cancer has always been a focus of global attention, and the difficulty of treatment and poor prognosis have always plagued humanity. Conventional chemotherapeutics and treatment with synthetic disciplines will cause adverse side effects and drug resistance. Therefore, searching for a safe, valid, and clinically effective drug is necessary. At present, some natural compounds have proved to have the potential to fight cancer. Polysaccharides obtained from Chinese materia medica are good anti-cancer ingredients. Polysaccharides are macromolecular compounds of equal or distinct monosaccharides with an α- or β-glycosidic bonds. The anti-cancer activity has been fully demonstrated in vivo and in vitro. However, Chinese materia medica polysaccharides are only used as adjuvant therapy for cancer-related diseases. Hence, this review mainly discusses the chemical composition, biological activity, absorption in vivo, and clinical application of Chinese materia medica polysaccharides. Also, we discussed the anti-cancer mechanism. We also discussed the current research's limitations on treating cancer with Chinese materia medica polysaccharides and insights into future research.
Collapse
Affiliation(s)
- Mengqin Qiang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Pingjun Cai
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Mingyue Ao
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xing Li
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Zhimin Chen
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| | - Lingying Yu
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| |
Collapse
|
16
|
Qi L, Shi Y, Li C, Liu J, Chong SL, Lim KJ, Si J, Han Z, Chen D. Glucomannan in Dendrobium catenatum: Bioactivities, Biosynthesis and Perspective. Genes (Basel) 2022; 13:1957. [PMID: 36360194 PMCID: PMC9690530 DOI: 10.3390/genes13111957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 07/13/2024] Open
Abstract
Dendrobium catenatum is a classical and precious dual-use plant for both medicine and food in China. It was first recorded in Shen Nong's Herbal Classic, and has the traditional functions of nourishing yin, antipyresis, tonifying the stomach, and promoting fluid production. The stem is its medicinal part and is rich in active polysaccharide glucomannan. As an excellent dietary fiber, glucomannan has been experimentally confirmed to be involved in anti-cancer, enhancing immunity, lowering blood sugar and blood lipids, etc. Here, the status quo of the D. catenatum industry, the structure, bioactivities, biosynthesis pathway and key genes of glucomannan are systematically described to provide a crucial foundation and theoretical basis for understanding the value of D. catenatum and the potential application of glucomannan in crop biofortification.
Collapse
Affiliation(s)
- Luyan Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Yan Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Cong Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Sun-Li Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Zhigang Han
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| |
Collapse
|
17
|
Chen L, He C, Zhou M, Long J, Li L. Research Progress on the Mechanisms of Polysaccharides against Gastric Cancer. Molecules 2022; 27:5828. [PMID: 36144560 PMCID: PMC9501385 DOI: 10.3390/molecules27185828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is a common type of cancer that poses a serious threat to human health. Polysaccharides are important functional phytochemicals, and research shows that polysaccharides have good anti-gastric cancer effects. We collated all relevant literature published from 2000 to 2020 and found that more than 60 natural polysaccharides demonstrate anti-gastric cancer activity. At the present, the sources of these polysaccharides include fungi, algae, tea, Astragalus membranaceus, Caulis Dendrobii, and other foods and Chinese herbal medicines. By regulating various signaling pathways, including the PI3K/AKT, MAPK, Fas/FasL, Wnt/β-catenin, IGF-IR, and TGF-β signaling pathways, polysaccharides induce gastric cancer cell apoptosis, cause cell cycle arrest, and inhibit migration and invasion. In addition, polysaccharides can enhance the immune system and killing activity of immune cells in gastric cancer patients and rats. This comprehensive review covers the extraction, purification, structural characterization, and mechanism of plant and fungal polysaccharides against gastric cancer. We hope this review is helpful for researchers to design, research, and develop plant and fungal polysaccharides.
Collapse
Affiliation(s)
- Liping Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Chunrong He
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Min Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jiaying Long
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
18
|
Wu Y, Li Y, Jin XM, Dai GH, Chen X, Tong YL, Ren ZM, Chen Y, Xue XM, Wu RZ. Effects of Granule Dendrobii on chronic atrophic gastritis induced by N-methyl-N'-nitro-N-nitrosoguanidine in rats. World J Gastroenterol 2022; 28:4668-4680. [PMID: 36157922 PMCID: PMC9476874 DOI: 10.3748/wjg.v28.i32.4668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dendrobium officinale is an herb of Traditional Chinese Medicine (TCM) commonly used for treating stomach diseases. One formula of Granule Dendrobii (GD) consists of Dendrobium officinale and American Ginseng (Radix Panacis quinquefolii), and is a potent TCM product in China. Whether treatment with GD can promote gastric acid secretion and alleviate gastric gland atrophy in chronic atrophic gastritis (CAG) requires verification.
AIM To determine the effect of GD treatment on CAG and its potential cellular mechanism.
METHODS A CAG model was induced by feeding rats N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) for 12 wk. After oral administration of low, moderate, and high doses of GD in CAG rats for 8 wk, its effects on body weight, gastric mucosa histology, mucosal atrophy, intestinal metaplasia, immunohistochemical staining of proliferating cell nuclear antigen (PCNA) and B-cell lymphoma-2, and hemoglobin and red blood cells were examined.
RESULTS The body weights of MNNG-induced CAG model rats before treatment (143.5 ± 14.26 g) were significantly lower than that of healthy rats (220.2 ± 31.20 g, P < 0.01). At the 8th week of treatment, the body weights of rats in the low-, moderate-, and high-dose groups of GD (220.1 ± 36.62 g) were significantly higher than those in the untreated group (173.3 ± 28.09 g, all P < 0.01). The level of inflammation in gastric tissue of the high-dose group (1.68 ± 0.54) was significantly reduced (P < 0.01) compared with that of the untreated group (3.00 ± 0.00, P < 0.05). The number and thickness of gastric glands in the high-dose group (31.50 ± 6.07/mm, 306.4 ± 49.32 µm) were significantly higher than those in the untreated group (26.86 ± 6.41/mm, 244.3 ± 51.82 µm, respectively, P < 0.01 and P < 0.05), indicating improved atrophy of gastric mucosa. The areas of intestinal metaplasia were significantly lower in the high-dose group (1.74% ± 1.13%), medium-dose group (1.81% ± 0.66%) and low-dose group (2.36% ± 1.08%) than in the untreated group (3.91% ± 0.96%, all P < 0.01). The expression of PCNA in high-dose group was significantly reduced compared with that in untreated group (P < 0.01). Hemoglobin level in the high-dose group (145.3 ± 5.90 g/L), medium-dose group (139.3 ± 5.71 g/L) and low-dose group (137.5 ± 7.56 g/L) was markedly increased compared with the untreated group (132.1 ± 7.76 g/L; P < 0.01 or P < 0.05).
CONCLUSION Treatment with GD for 8 wk demonstrate that GD is effective in the treatment of CAG in the MNNG model by improving the histopathology of gastric mucosa, reversing gastric atrophy and intestinal metaplasia, and alleviating gastric inflammation.
Collapse
Affiliation(s)
- Yue Wu
- First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310052, Zhejiang Province, China
- Institute of Basic Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Yu Li
- Institute of Basic Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310052, Zhejiang Province, China
| | - Xiao-Ming Jin
- Stark Neuroscience Research Institute & Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Guan-Hai Dai
- Institute of Basic Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Xuan Chen
- Institute of Basic Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Ye-Ling Tong
- Institute of Basic Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Ze-Ming Ren
- Institute of Basic Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Yu Chen
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Xiao-Min Xue
- Institute of Basic Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Ren-Zhao Wu
- Institute of Basic Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| |
Collapse
|
19
|
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q, Xu H. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer 2022; 21:144. [PMID: 35836256 PMCID: PMC9281132 DOI: 10.1186/s12943-022-01616-7] [Citation(s) in RCA: 284] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background The Wnt signaling pathway is a complex network of protein interactions that functions most commonly in embryonic development and cancer, but is also involved in normal physiological processes in adults. The canonical Wnt signaling pathway regulates cell pluripotency and determines the differentiation fate of cells during development. The canonical Wnt signaling pathway (also known as the Wnt/β-catenin signaling pathway) is a recognized driver of colon cancer and one of the most representative signaling pathways. As a functional effector molecule of Wnt signaling, the modification and degradation of β-catenin are key events in the Wnt signaling pathway and the development and progression of colon cancer. Therefore, the Wnt signaling pathway plays an important role in the pathogenesis of diseases, especially the pathogenesis of colorectal cancer (CRC). Objective Inhibit the Wnt signaling pathway to explore the therapeutic targets of colorectal cancer. Methods Based on studying the Wnt pathway, master the biochemical processes related to the Wnt pathway, and analyze the relevant targets when drugs or inhibitors act on the Wnt pathway, to clarify the medication ideas of drugs or inhibitors for the treatment of diseases, especially colorectal cancer. Results Wnt signaling pathways include: Wnt/β-catenin or canonical Wnt signaling pathway, planar cell polarity (Wnt-PCP) pathway and Wnt-Ca2+ signaling pathway. The Wnt signaling pathway is closely related to cancer cell proliferation, stemness, apoptosis, autophagy, metabolism, inflammation and immunization, microenvironment, resistance, ion channel, heterogeneity, EMT/migration/invasion/metastasis. Drugs/phytochemicals and molecular preparations for the Wnt pathway of CRC treatment have now been developed. Wnt inhibitors are also commonly used clinically for the treatment of CRC. Conclusion The development of drugs/phytochemicals and molecular inhibitors targeting the Wnt pathway can effectively treat colorectal cancer clinically.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
20
|
Guo W, Cao P, Wang X, Hu M, Feng Y. Medicinal Plants for the Treatment of Gastrointestinal Cancers From the Metabolomics Perspective. Front Pharmacol 2022; 13:909755. [PMID: 35833022 PMCID: PMC9271783 DOI: 10.3389/fphar.2022.909755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal cancer (GIC), primarily including colorectal cancer, gastric cancer, liver cancer, pancreatic cancer, and esophageal cancer, is one of the most common causes of cancer-related deaths with increasing prevalence and poor prognosis. Medicinal plants have been shown to be a great resource for the treatment of GIC. Due to their complex manifestations of multi-component and multi-target, the underlying mechanisms how they function against GIC remain to be completely deciphered. Cell metabolism is of primary importance in the initialization and development of GIC, which is reported to be a potential target. As an essential supplement to the newest “omics” sciences, metabolomics focuses on the systematic study of the small exogenous and endogenous metabolites involved in extensive biochemical metabolic pathways of living system. In good agreement with the systemic perspective of medicinal plants, metabolomics offers a new insight into the efficacy assessment and action mechanism investigation of medicinal plants as adjuvant therapeutics for GIC therapy. In this review, the metabolomics investigations on metabolism-targeting therapies for GIC in the recent 10 years were systematically reviewed from five aspects of carbohydrate, lipid, amino acid, and nucleotide metabolisms, as well as other altered metabolisms (microbial metabolism, inflammation, and oxidation), with particular attention to the potential of active compounds, extracts, and formulae from medicinal plants. Meanwhile, the current perspectives and future challenges of metabolism-targeting therapies of medicinal plants for GIC were also discussed. In conclusion, the understanding of the action mechanisms of medicinal plants in GIC from the metabolomics perspective will contribute to the clinical application of potential candidates from the resourceful medicinal plants as novel and efficient adjuvant therapeutics for GIC therapy.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Min Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
- *Correspondence: Min Hu, ; Yibin Feng,
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- *Correspondence: Min Hu, ; Yibin Feng,
| |
Collapse
|
21
|
Xu J, Shen X, Sun D, Zhu Y. Cordycepin Suppresses The Malignant Phenotypes of Colon Cancer Cells through The GSK3ß/ß-catenin/cyclin D1 Signaling Pathway. CELL JOURNAL 2022; 24:255-260. [PMID: 35717567 PMCID: PMC9445518 DOI: 10.22074/cellj.2022.8160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Cordycepin, also known as 3'-deoxyadenosine, is the main bioactive ingredient of Cordyceps militaris and possesses various pharmacological effects. This study was performed to investigate the role of cordycepin in regulating the biological behaviors of colon cancer cells and the potential mechanism behind it. MATERIALS AND METHODS In this experimental study, after treatment of colon cancer cells with different concentrations of cordycepin, inhibition of proliferation was detected by the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Colon cancer cell migration and invasion abilities were analyzed by wound healing and Transwell assays. Flow cytometry was performed to detect cell apoptosis. A lung metastasis model in nude mice was utilized to examine the effect of cordycepin on the metastasis of colon cancer cells in in vivo. Western blot was used to quantify GSK3β, β-catenin and cyclin D1 expression levels. RESULTS Cordycepin inhibited colon cancer cell proliferation, migration and invasion, induced apoptosis in vitro, and inhibited lung metastasis of colon cancer cells in vivo. GSK-3β inhibitor (CHIR99021) treatment abolished the effects of cordycepin on cell viability, migration, invasion and apoptosis. Additionally, cordycepin promoted the expressions of GSK3β, and inhibited β-catenin and cyclin D1 in colon cancer cells, while co-treatment with CHIR99021 reversed the above effects. CONCLUSION Cordycepin suppresses the malignant phenotypes of colon cancer through the GSK3β/β-catenin/cyclin D1 signaling pathway.
Collapse
Affiliation(s)
- Jie Xu
- Department of General Surgery, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Xia Shen
- Department of Emergency, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Daozhong Sun
- Department of General Surgery, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Yanjie Zhu
- Department of Dermatology, The Second People's Hospital of Yuhang District, Hangzhou, Zhejiang, China,Department of DermatologyThe Second People's Hospital of Yuhang DistrictHangzhouZhejiangChina
| |
Collapse
|
22
|
Microglia Polarization from M1 toward M2 Phenotype Is Promoted by Astragalus Polysaccharides Mediated through Inhibition of miR-155 in Experimental Autoimmune Encephalomyelitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:5753452. [PMID: 34976303 PMCID: PMC8720009 DOI: 10.1155/2021/5753452] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
Activated microglia is considered to be major mediators of the neuroinflammatory environment in demyelinating diseases of the central nervous system (CNS). Activated microglia are mainly polarized into M1 type, which plays a role in promoting inflammation and demyelinating. However, the proportion of microglia polarized into M2 type is relatively low, which cannot fully play the role of anti-inflammatory and resistance to demyelinating. Our previous study found that Astragalus polysaccharides (APS) has an immunomodulatory effect and can inhibit neuroinflammation and demyelination in experimental autoimmune encephalomyelitis (EAE), which is a classic animal model of CNS demyelinating disease. In this study, we found that APS was effective in treating EAE mice. It restored microglia balance by inhibiting the polarization of microglia to M1-like phenotype and promoting the polarization of microglia to M2-like phenotype in vivo and in vitro. miR-155 is a key factor in regulating microglia polarization. We found that APS could inhibit the expression level of miR-155 in vivo and in vitro. Furthermore, we performed transfection overexpression and blocking experiments. The results showed that miR-155 mediated the polarization of microglia M1/M2 phenotype, while the selective inhibitor of miR-155 attenuated the inhibition of APS on microglia M1 phenotype and eliminated the promotion of APS on microglia M2 phenotype. Microglia can secrete IL-1α, TNF-α, and C1q after polarizing into M1 type and induce the activation of A1 neurotoxic astrocytes, further aggravating neuroinflammation and demyelination. APS reduced the secretion of IL-1α, TNF-α, and C1q by activated microglia, thus inhibited the formation of A1 neurotoxic astrocytes. In summary, our study suggests that APS regulates the polarization of microglia from M1 to M2 phenotype by inhibiting the miR-155, reduces the secretion of inflammatory factors, and inhibits the activation of neurotoxic astrocytes, thus effectively treating EAE.
Collapse
|
23
|
Xu W, Li B, Xu M, Yang T, Hao X. Traditional Chinese medicine for precancerous lesions of gastric cancer: A review. Biomed Pharmacother 2021; 146:112542. [PMID: 34929576 DOI: 10.1016/j.biopha.2021.112542] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common type of cancer and the third leading cause of death due to cancer worldwide. The gastric mucosa often undergoes many years of precancerous lesions of gastric cancer (PLGC) stages before progressing to gastric malignancy. Unfortunately, there are no effective Western drugs for patients with PLGC. In recent years, traditional Chinese medicine (TCM) has been proven effective in treating PLGC. Classical TCM formulas and chemical components isolated from some Chinese herbal medicines have been administered to treat PLGC, and the main advantage is their comprehensive intervention with multiple approaches and multiple targets. In this review, we focus on recent studies using TCM treatment for PLGC, including clinical observations and experimental research, with a focus on targets and mechanisms of drugs. This review provides some ideas and a theoretical basis for applying TCM to treat PLGC and prevent GC.
Collapse
Affiliation(s)
- Weichao Xu
- Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China; Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine Gastroenterology, Shijiazhuang 050011, China
| | - Bolin Li
- Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China; Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine Gastroenterology, Shijiazhuang 050011, China
| | - Miaochan Xu
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Tianxiao Yang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xinyu Hao
- Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
24
|
Zhong C, Tian W, Chen H, Yang Y, Xu Y, Chen Y, Chen P, Zhu S, Li P, Du B. Structural characterization and immunoregulatory activity of polysaccharides from Dendrobium officinale leaves. J Food Biochem 2021; 46:e14023. [PMID: 34873736 DOI: 10.1111/jfbc.14023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
In this study, two kinds of polysaccharides from leaves of Dendrobium officinale, namely DLP-1 and DLP-2, were obtained by hot water extraction, ethanol sedimentation, and chromatographic separation using DEAE-52 cellulose and Sephadex G-100 columns. They were composed of different monosaccharides and the content of monosaccharides varied significantly while DLP-1 (Mw 1.38 × 106 Da) was mainly composed of mannose (71.69%) and glucose (22.89%), and DLP-2 (Mw 1.93 × 106 Da) was constituted by rhamnose (35.05%), arabinose (24.12%), and galactose (25.65%). A triple-helical conformation was exhibited by both of them. The scanning electron microscope image of DLP-1 showed an irregular and large lamellar shape, as well as a smooth surface and a porous interior, illustrating they had an amorphous structure. In contrast, DLP-2 revealed a rough, loose, and uneven surface consisting of large sponge-like particles. Nuclear magnetic resonance analysis showed that (1→4)-β-D-Manp, (1→4)-β-D-Glcp, and (1→4)-2-O-acetyl-β-D-Manp were the main linkage types of DLP-1, whereas DLP-2 was constituted by a large amount of (1→4)-β-D-Manp, (1→4)-β-D-Glcp, and other residues. Besides, DLP-1 and DLP-2 stimulated the proliferation and phagocytic capacities of RAW 264.7 cells and improved the production of nitric oxide, interleukin-6, TNF-α, and IL-1β. These results proved that both DLP-1 and DLP-2 possessed excellent immunoregulatory bioactivities and could be functional food or adjuvant drug. PRACTICAL APPLICATIONS: The leaf of Dendrobium officinale is a by-product with huge biomass. The lack of systematic research on its chemical composition and pharmacologic effect, leading to a great waste of resources. In order to maximize the value of D. officinale, this study aimed to investigate the structural characteristics and immunologic effects of two polysaccharide fractions (DLP-1 and DLP-2) from D. officinale leaves, showing that DLP-1 and DLP-2 in D. officinale leaves could be used as anti-inflammatory agents to avoid wasting.
Collapse
Affiliation(s)
- Chunfei Zhong
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wenni Tian
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hongzhu Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yunyun Yang
- Guangdong Engineering and Technology Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou, China
| | - Yanan Xu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yanlan Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pei Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Siyang Zhu
- Hua An Tang Biotech Group Co., Ltd, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Liu B, Li QM, Shang ZZ, Zha XQ, Pan LH, Luo JP. Anti-gastric cancer activity of cultivated Dendrobium huoshanense stem polysaccharide in tumor-bearing mice: Effects of molecular weight and O-acetyl group. Int J Biol Macromol 2021; 192:590-599. [PMID: 34648801 DOI: 10.1016/j.ijbiomac.2021.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/26/2021] [Accepted: 10/03/2021] [Indexed: 02/08/2023]
Abstract
The present study aimed at assuring whether homogeneous cultivated Dendrobium huoshanense stem polysaccharide (cDHPS) could inhibit gastric cancer in vivo, and whether its anti-gastric cancer activity could be affected by its molecular weight and O-acetyl group. Three different fractions (cDHPS-I, cDHPS-II and cDHPS-III) with decreased molecular weights and one fraction (cDHPS-IV) without O-acetyl group were prepared from cDHPS. Their structures were identified systematically. The backbone of cDHPS-I-III was the same as that of cDHPS, while their relative molecular weights displayed a decreasing order as follows: cDHPS > cDHPS-I > cDHPS-II > cDHPS-III. The backbone of cDHPS-IV was similar to those of cDHPS and cDHPS-I-III, but with the absence of O-acetyl groups. Animal experiments exhibited that cDHPS and cDHPS-I-IV could significantly inhibit tumor growth, induce tumor cell apoptosis, suppress tumor angiogenesis and enhance T cell immune response of murine forestomach carcinoma (MFC) tumor-bearing mice. Moreover, all the above effects of cDHPS and cDHPS-I-IV on MFC tumor-bearing mice exhibited a decreasing order as follows: cDHPS > cDHPS-I > cDHPS-II > cDHPS-III > cDHPS-IV. The results suggest that cDHPS could inhibit gastric cancer in vivo, and its anti-gastric cancer activity was closely linked with its molecular weight and O-acetyl group.
Collapse
Affiliation(s)
- Bing Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Zhen-Zi Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
26
|
RNA-Seq Analysis Reveals Dendrobium officinale Polysaccharides Inhibit Precancerous Lesions of Gastric Cancer through PER3 and AQP4. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3036504. [PMID: 34721627 PMCID: PMC8550840 DOI: 10.1155/2021/3036504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
Purpose There has been mounting evidence that Dendrobium officinale polysaccharides (DOP), a traditional Chinese medicine, are a potential candidate treatment for N-methyl-N'-nitro-N-nitrosoguanidine- (MNNG-) induced precancerous lesions of gastric cancer (PLGC). However, the underlying mechanisms have not been adequately addressed. Method We utilized RNA-Seq analysis to investigate possible molecular targets and then used Venn software to identify the differentially expressed genes (DEGs). Further, we analyzed these DEGs with core analysis, upstream analysis, and interaction network analysis by IPA software and validated the DEGs by real-time PCR and Western blot. Result 78 DEGs were identified from the normal control group (CON), the PLGC model group (MOD), and the DOP-treated group (DOP) by the Venn software. Further analysis of these DEGs, including core analysis, upstream analysis, and interaction network analysis, was performed by Ingenuity Pathway Analysis (IPA). The main canonical pathways involved were SPINK1 Pancreatic Cancer Pathway (-log (P value) = 4.45, ratio = 0.0667) and Circadian Rhythm Signaling (-log (P value) = 2.33, ratio = 0.0606). Circadian Rhythm Signaling was strongly upregulated in the model group versus the DOP group. CLOCK was predicted to be strongly activated (z-score = 2.236) in upstream analysis and induced the downstream PER3. In addition, the relative mRNA expression levels of seven DEGs (CD2AP, ECM1, AQP4, PER3, CMTM4, ESRRG, and KCNJ15) from RT-PCR agreed with RNA-Seq data from MOD versus CON and MOD versus DOP groups. The gene and protein expression levels of PER3 and AQP4 were significantly downregulated in the PLGC model and significantly increased by DOP treatment (9.6 g/kg). Conclusions These findings not only showed DOP inhibits PLGC development by upregulating the PER3 and AQP4 gene and protein expression but also suggested that its mechanism of action involved modulating the Circadian Rhythm Signaling pathway.
Collapse
|
27
|
Chen W, Lu J, Zhang J, Wu J, Yu L, Qin L, Zhu B. Traditional Uses, Phytochemistry, Pharmacology, and Quality Control of Dendrobium officinale Kimura et. Migo. Front Pharmacol 2021; 12:726528. [PMID: 34421620 PMCID: PMC8377736 DOI: 10.3389/fphar.2021.726528] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Dendrobium officinale, a well-known plant used as a medicinal and food homologous product, has been reported to contain various bioactive components, such as polysaccharides, bibenzyls, phenanthrenes, and flavonoids. It is also widely used as a traditional medicine to strengthen “Yin”, nourish heart, tonify five viscera, remove arthralgia, relieve fatigue, thicken stomach, lighten body, and prolong life span. These traditional applications are in consistent with modern pharmacological studies, which have demonstrated that D. officinale exhibits various biological functions, such as cardioprotective, anti-tumor, gastrointestinal protective, anti-diabetes, immunomodulatory, anti-aging, and anti-osteoporosis effects. In this review, we summarize the research progress of D. officinale from November 2016 to May 2021 and aim to better understand the botany, traditional use, phytochemistry, and pharmacology of D. officinale, as well as its quality control and safety. This work presents the development status of D. officinale, analyzes gaps in the current research on D. officinale, and raises the corresponding solutions to provide references and potential directions for further studies of D. officinale.
Collapse
Affiliation(s)
- Wenhua Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiemiao Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiahao Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianjun Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lilong Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
28
|
Chen WH, Wu JJ, Li XF, Lu JM, Wu W, Sun YQ, Zhu B, Qin LP. Isolation, structural properties, bioactivities of polysaccharides from Dendrobium officinale Kimura et. Migo: A review. Int J Biol Macromol 2021; 184:1000-1013. [PMID: 34197847 DOI: 10.1016/j.ijbiomac.2021.06.156] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
Dendrobium officinale Kimura et Migo (D. officinale) is used as herbal medicine and new food resource in China, which is nontoxic and harmless, and can be used as common food. Polysaccharide as one of the main bioactive components in D. officinale, mainly composed of glucose and mannose (Manp: Glcp = 2.01:1.00-8.82:1.00), along with galactose, xylose, arabinose, and rhamnose in different molar ratios and types of glycosidic bonds. Polysaccharides of D. officinale exhibit a variety of biological effects, including immunomodulatory, anti-tumor, gastro-protective, hypoglycemic, anti-inflammatory, hepatoprotective, and vasodilating effects. This paper presents the extraction, purification, structural characteristics, bioactivities, structure-activity relationships and analyzes gaps in the current research on D. officinale polysaccharides. In addition, based on in vitro and in vivo experiments, the possible mechanisms of bioactivities of D. officinale polysaccharides were summarized. We hope that this work may provide helpful references and promising directions for further study and development of D. officinale polysaccharides.
Collapse
Affiliation(s)
- Wen-Hua Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jian-Jun Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Xue-Fei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jie-Miao Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Wei Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yi-Qi Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Lu-Ping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| |
Collapse
|
29
|
Zhang T, Zhang T, Li C, Zhai X, Huo Q. Complementary and alternative therapies for precancerous lesions of gastric cancer: A protocol for a Bayesian network meta analysis. Medicine (Baltimore) 2021; 100:e24249. [PMID: 33466209 PMCID: PMC7808479 DOI: 10.1097/md.0000000000024249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumors, which seriously affect peoples quality of life and threaten people's health. Precancerous lesions of gastric cancer (PLGC) are a critical stage in the occurrence and development of gastric cancer. Early effective intervention is an important means to prevent and control gastric cancer. In this study, we will evaluate the efficacy and safety of complementary and alternative therapies in the treatment of PLGC by Bayesian network meta-analysis (NMA). METHODS We will search PubMed, Cochrane Library, CNKI and other databases to gather randomized controlled trials (RCTs) on the treatment of PLGC with complementary and alternative therapies. Two reviewers will screen the literature and extract the data according to the inclusion and exclusion criteria, and then assess the quality and bias risk according to Cochrane's Risk of Bias Assessment Tool. Bayesian network meta-analysis will be conducted by Stata16.0 and WinBUGS1.4.3. RESULTS This study will compare and rank the efficacy and safety of different complementary and alternative therapies for PLGC. CONCLUSION This study can provide reliable evidence for the efficacy and safety of complementary and alternative therapies in treatment of PLGC. We expect to provide scientific and rigorous evidence support for clinicians and patients, and then assist them to choose the optimum treatment. PROTOCOL REGISTRATION NUMBER INPLASY2020120077.
Collapse
Affiliation(s)
- Tianqi Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine
| | - Tiefeng Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine
| | - Chuancheng Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine
| | - Xixi Zhai
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine
| | - Qing Huo
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
30
|
Lin W, Wang J, Xu X, Wu Y, Qiu D, He B, Sarsaiya S, Ma X, Chen J. Rapid propagation in vitro and accumulation of active substances of endangered Dendrobium cariniferum Rchb. f. Bioengineered 2020; 11:386-396. [PMID: 32172675 PMCID: PMC7161565 DOI: 10.1080/21655979.2020.1739406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dendrobium cariniferum is a valuable ornamental and medicinal plant rich with polysaccharides, alkaloid, and other bioactive compounds, which are potential raw materials for pharmacological utilization. In this study, an efficient protocol for the rapid propagation of D. cariniferum was developed. By using the tissue culture protocol, the effects of pH, hormone combinations, temperatures, light intensity, culture time protocorm proliferation, seedlings rooting, and accumulation of biomass with bioactive compounds were investigated. The experiments showed that the medium [1/2 MS + activated carbon1.0 g/L+ agar strip 7.5 g/L + sucrose 25 g/L] effectively promoted the germination of D. cariniferum seeds. The optimal culture conditions were found at pH 5.7, temperature 23 ± 2°C, and light intensity of 1000 Lx in the protocorm proliferation stage. Adding 1.5 g/L peptone in the medium effectively promoted the seedling rooting. The optimal culture conditions for accumulation of bioactive compounds (polysaccharides and alkaloids) of seedlings were found at temperature of 25 ± 2°C, light intensity of 1500–2000 Lx after the 60-day (d). Our study constructed a rapid propagation system in vitro for D. cariniferum, as well as the methods for efficient accumulation of active substances in seedling culture, which will serve as guidance for industrial production of D. cariniferum seedlings for both medicinal raw materials and ornamental plants. In addition, our study provided a new idea that we can directly use the high bioactive compound seedlings to extract medicinal components in industry conditions without transferring to the field.
Collapse
Affiliation(s)
- Wei Lin
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, the Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization (Fuzhou), College of Horticulture, College of Food Science, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Jingjing Wang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, the Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization (Fuzhou), College of Horticulture, College of Food Science, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuming Xu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, the Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization (Fuzhou), College of Horticulture, College of Food Science, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhan Wu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, the Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization (Fuzhou), College of Horticulture, College of Food Science, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongliang Qiu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, the Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization (Fuzhou), College of Horticulture, College of Food Science, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bizhu He
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, the Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization (Fuzhou), College of Horticulture, College of Food Science, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Xiaokai Ma
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, the Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization (Fuzhou), College of Horticulture, College of Food Science, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jishuang Chen
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| |
Collapse
|
31
|
Zhang X, Duan S, Tao S, Huang J, Liu C, Xing S, Ren Z, Lei Z, Li Y, Wei G. Polysaccharides from Dendrobium officinale inhibit proliferation of osteosarcoma cells and enhance cisplatin-induced apoptosis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
32
|
A Systematic Review of the Mechanisms Underlying Treatment of Gastric Precancerous Lesions by Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9154738. [PMID: 32454874 PMCID: PMC7212333 DOI: 10.1155/2020/9154738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/19/2023]
Abstract
Gastric precancerous lesions (GPLs) are an essential precursor in the occurrence and development of gastric cancer, known to be one of the most common and lethal cancers worldwide. Traditional Chinese medicine (TCM) has a positive prospect for the prevention and therapy of GPL owing to several advantages including a definite curative effect, fewer side effects compared to other treatments, multiple components, and holistic regulation. Despite these characteristic advantages, the mechanisms of TCM in treating GPL have not been fully elucidated. In this review, we summarize the current knowledge with respect to herbal formulations and the therapeutic mechanisms of TCM active ingredients for GPL. This paper elaborates on the mechanisms of TCM underlying the prevention and treatment of GPL, specifically those that are linked to anti-H. pylori, anti-inflammation, antiproliferation, proapoptotic, antioxidation, antiglycolytic, and antiangiogenesis effects.
Collapse
|
33
|
Mai Y, Yang Z, Ji X, An W, Huang Y, Liu S, He L, Lai X, Huang S, Zheng X. Comparative analysis of transcriptome and metabolome uncovers the metabolic differences between Dendrobium officinale protocorms and mature stems. ALL LIFE 2020; 13:346-359. [DOI: 10.1080/26895293.2020.1781699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Yansui Mai
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zerui Yang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xiaoyu Ji
- Laboratory of Brain Function and Diseases, Shantou University Medical College, Shantou, People’s Republic of China
| | - Wenli An
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yuying Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Shanshan Liu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Lian He
- Guangdong Food and Drug Vocational College, Guangzhou, People’s Republic of China
| | - Xiaoping Lai
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Song Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xiasheng Zheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|