1
|
Aihaiti A, Wang J, Zhang W, Shen M, Meng F, Li Z, Zhang Y, Ren M, Zhang M. Recent advances and trends in innovative biosensor-based devices for heavy metal ion detection in food. Compr Rev Food Sci Food Saf 2024; 23:e13358. [PMID: 38923121 DOI: 10.1111/1541-4337.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 06/28/2024]
Abstract
Low-cost, reliable, and efficient biosensors are crucial in detecting residual heavy metal ions (HMIs) in food products. At present, based on distance-induced localized surface plasmon resonance of noble metal nanoparticles, enzyme-mimetic reaction of nanozymes, and chelation reaction of metal chelators, the constructed optical sensors have attracted wide attention in HMIs detection. Besides, based on the enrichment and signal amplification strategy of nanomaterials on HMIs and the construction of electrochemical aptamer sensing platforms, the developed electrochemical biosensors have overcome the plague of low sensitivity, poor selectivity, and the inability of multiplexed detection in the optical strategy. Moreover, along with an in-depth discussion of these different types of biosensors, a detailed overview of the design and application of innovative devices based on these sensing principles was provided, including microfluidic systems, hydrogel-based platforms, and test strip technologies. Finally, the challenges that hinder commercial application have also been mentioned. Overall, this review aims to establish a theoretical foundation for developing accurate and reliable sensing technologies and devices for HMIs, thereby promoting the widespread application of biosensors in the detection of HMIs in food.
Collapse
Affiliation(s)
- Aihemaitijiang Aihaiti
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Jingkang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Wenrui Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Mingping Shen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Zongda Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Yukun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Mengyao Ren
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Ürümqi, China
| |
Collapse
|
2
|
Zhu J, Wang D, Yu H, Yin H, Wang L, Shen G, Geng X, Yang L, Fei Y, Deng Y. Advances in colorimetric aptasensors for heavy metal ion detection utilizing nanomaterials: a comprehensive review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6320-6343. [PMID: 37965993 DOI: 10.1039/d3ay01815f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Heavy metal ion contamination poses significant environmental and health risks, necessitating rapid and efficient detection methods. In the last decade, colorimetric aptasensors have emerged as powerful tools for heavy metal ion detection, owing to their notable attributes such as high specificity, facile synthesis, adaptability to modifications, long-term stability, and heightened sensitivity. This comprehensive overview summarizes the key developments in this field over the past ten years. It discusses the principles, design strategies, and innovative techniques employed in colorimetric aptasensors using nanomaterials. Recent advancements in enhancing sensitivity, selectivity, and on-site applicability are highlighted. The review also presents application studies of successful heavy metal ion detection using colorimetric aptasensors, underlining their potential for environmental monitoring and health protection. Finally, future directions and challenges in the continued evolution of these aptasensors are outlined.
Collapse
Affiliation(s)
- Jiangxiong Zhu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Danfeng Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Hong Yu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Hao Yin
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Lumei Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Guoqing Shen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Xueqing Geng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Linnan Yang
- School of Big Data, Yunnan Agricultural University, Kunming 650201, China
| | - Yongcheng Fei
- Eryuan County Inspection and Testing Institute, Yunnan 671299, China
| | - Yun Deng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
- Eryuan County Inspection and Testing Institute, Yunnan 671299, China
| |
Collapse
|
3
|
Xiong H, Li P, Cun F, Chen H, Kong J. Methylene-Blue-Encapsulated Metal-Organic-Framework-Based Electrochemical POCT Platform for Multiple Detection of Heavy Metal Ions in Milk. BIOSENSORS 2023; 13:783. [PMID: 37622869 PMCID: PMC10452309 DOI: 10.3390/bios13080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Considering the high risk of heavy metal ions (HMIs) transferring through the food chain and accumulating in milk, a flexible and facile point-of-care testing (POCT) platform is urgently needed for the accurate, sensitive, and highly selective on-site quantification of multiple HMIs in milk. In this work, a cost-effective disk with six screen-printed electrodes (SPEs) was designed for hand-held electrochemical detection. Metal organic frameworks (MOFs) were adopted to amplify and enhance the electrochemical signals of methylene blue (MB). Using differential pulse voltammetry (DPV) methods, low limits of detection for four HMIs (Cd2+, 0.039 ppb; Hg2+, 0.039 ppb; Pb2+, 0.073 ppb; and As3+, 0.022 ppb) were achieved within four minutes. Moreover, the quantitative POCT system was applied to milk samples. The advantages of low cost, ease of on-site implementation, fast response, and accuracy allow for the POCT platform to be used in practical monitoring applications for the quantitation of multiple HMIs in milk samples.
Collapse
Affiliation(s)
| | | | | | - Hui Chen
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
Gao Z, Wang Y, Wang H, Li X, Xu Y, Qiu J. Recent Aptamer-Based Biosensors for Cd 2+ Detection. BIOSENSORS 2023; 13:612. [PMID: 37366977 DOI: 10.3390/bios13060612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Cd2+, a major environmental pollutant, is heavily toxic to human health. Many traditional techniques are high-cost and complicated; thus, developing a simple, sensitive, convenient, and cheap monitoring approach is necessary. The aptamer can be obtained from a novel method called SELEX, which is widely used as a DNA biosensor for its easy acquisition and high affinity of the target, especially for heavy metal ions detection, such as Cd2+. In recent years, highly stable Cd2+ aptamer oligonucleotides (CAOs) were observed, and electrochemical, fluorescent, and colorimetric biosensors based on aptamers have been designed to monitor Cd2+. In addition, the monitoring sensitivity of aptamer-based biosensors is improved with signal amplification mechanisms such as hybridization chain reactions and enzyme-free methods. This paper reviews approaches to building biosensors for inspecting Cd2+ by electrochemical, fluorescent, and colorimetric methods. Finally, many practical applications of sensors and their implications for humans and the environment are discussed.
Collapse
Affiliation(s)
- Zihan Gao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yin Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haijian Wang
- Hangzhou Alltest Biotech Co., Ltd., Hangzhou 310000, China
| | - Xiangxiang Li
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Youyang Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jieqiong Qiu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Lu L, Yu R, Zhang L. AFB1 colorimetric aptamer sensor for the detection of AFB1 in ten different kinds of miscellaneous beans based on gold nanoparticles and smartphone imaging. Food Chem 2023; 421:136205. [PMID: 37094407 DOI: 10.1016/j.foodchem.2023.136205] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
A simple, rapid, low-cost, sensitive, intuitive, visual, label-free, colorimetric smartphone-assisted assay was developed for the measurement of aflatoxin B1 in miscellaneous beans. Ten different kinds of miscellaneous beans were treated and measured by modified QuEChERS(Quick、Easy、Cheap、Effective、Rugged、Safe) method with aflatoxin B1 nucleic acid aptamer as a recognition element and gold nanoparticles as indicators. Several factors influencing its sensitivity were investigated, including consumes and NaCl concentrations, as well as incubation time and specificity. The results showed a good linear relationship between concentrations of 0.2-8.0 ng/g under optimal conditions. With a detection limit of 0.08 ng/g, the linear regression equation was Y = 0.024X + 0.4615 (R = 0.9989). Sensor specificity is good. The content of aflatoxin B1 in bean samples was determined successfully. The recovery of aflatoxin B1 ranged from 87.18% to 110.24%. The whole thing took 15 min. This smartphone-assisted colorimetric aptamer sensor can be used to detect aflatoxin B1 in beans.
Collapse
Affiliation(s)
- Lifeng Lu
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China
| | - Runzhong Yu
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China
| | - Liyuan Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China; Chinese National Engineering Research Center, Daqing 163319, PR China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang province, Daqing 163319, PR China.
| |
Collapse
|
6
|
Bracamonte AG. Current Advances in Nanotechnology for the Next Generation of Sequencing (NGS). BIOSENSORS 2023; 13:260. [PMID: 36832027 PMCID: PMC9954403 DOI: 10.3390/bios13020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This communication aims at discussing strategies based on developments from nanotechnology focused on the next generation of sequencing (NGS). In this regard, it should be noted that even in the advanced current situation of many techniques and methods accompanied with developments of technology, there are still existing challenges and needs focused on real samples and low concentrations of genomic materials. The approaches discussed/described adopt spectroscopical techniques and new optical setups. PCR bases are introduced to understand the role of non-covalent interactions by discussing about Nobel prizes related to genomic material detection. The review also discusses colorimetric methods, polymeric transducers, fluorescence detection methods, enhanced plasmonic techniques such as metal-enhanced fluorescence (MEF), semiconductors, and developments in metamaterials. In addition, nano-optics, challenges linked to signal transductions, and how the limitations reported in each technique could be overcome are considered in real samples. Accordingly, this study shows developments where optical active nanoplatforms generate signal detection and transduction with enhanced performances and, in many cases, enhanced signaling from single double-stranded deoxyribonucleic acid (DNA) interactions. Future perspectives on miniaturized instrumentation, chips, and devices aimed at detecting genomic material are analyzed. However, the main concept in this report derives from gained insights into nanochemistry and nano-optics. Such concepts could be incorporated into other higher-sized substrates and experimental and optical setups.
Collapse
Affiliation(s)
- Angel Guillermo Bracamonte
- Instituto de Investigaciones en Físicoquímica de Córdoba (INFIQC), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; or
- Departement de Chimie et Centre d’Optique, Photonique et Laser (COPL), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Li M, He B, Yan H, Xie L, Cao X, Jin H, Wei M, Ren W, Suo Z, Xu Y. An aptasensor for cadmium ions detection based on PEI-MoS2@Au NPs 3D flower-like nanocomposites and Thi-PtPd NPs core-shell sphere. Anal Chim Acta 2022; 1232:340470. [DOI: 10.1016/j.aca.2022.340470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/28/2022] [Accepted: 09/28/2022] [Indexed: 11/01/2022]
|
8
|
Sawan S, Errachid A, Maalouf R, Jaffrezic-Renault N. Aptamers functionalized metal and metal oxide nanoparticles: Recent advances in heavy metal monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Li H, Lv S, Feng L, Peng P, Hu L, Liu Z, Hati S, Bimal C, Mo H. Smartphone-Based Image Analysis for Rapid Evaluation of Kiwifruit Quality during Cold Storage. Foods 2022; 11:foods11142113. [PMID: 35885355 PMCID: PMC9316195 DOI: 10.3390/foods11142113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
As a vitamin C–rich fruit, choosing the eating time for kiwifruit with the best quality during the shelf period is still a problem for consumers. This paper mainly focuses on the correlation between cold storage time, quality indexes, volatile flavor compounds of postharvest kiwifruit and RGB value readouts from photos taken by mobile phone. Results indicated that the R to B ratio values (Central R/B) and B to G ratio values (Central B/G) of the central site of kiwifruit were strongly associated with storage time and all quality indicators. The central R/B was negatively correlated with titratable acidity, vitamin C and 2,6-Nonadienal contents and firmness and positively correlated with storage time, weight loss, soluble solids content, total soluble sugars, total plate counts and 1,3-Cyclooctadiene. We provide a novel and smart strategy to predict the shelf life and quality parameters of kiwifruit by capturing and calculating RGB values using a smartphone.
Collapse
Affiliation(s)
- Hongbo Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (S.L.); (L.F.); (L.H.); (Z.L.)
| | - Shuang Lv
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (S.L.); (L.F.); (L.H.); (Z.L.)
| | - Li Feng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (S.L.); (L.F.); (L.H.); (Z.L.)
| | - Peng Peng
- School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Liangbin Hu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (S.L.); (L.F.); (L.H.); (Z.L.)
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (S.L.); (L.F.); (L.H.); (Z.L.)
| | - Subrota Hati
- SMC College of Dairy Science, Kamdhenu University, Anand 388110, India;
| | - Chitrakar Bimal
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (S.L.); (L.F.); (L.H.); (Z.L.)
- Correspondence: ; Tel.: +86-13525039059
| |
Collapse
|
10
|
Lan Y, He B, Tan CS, Ming D. Applications of Smartphone-Based Aptasensor for Diverse Targets Detection. BIOSENSORS 2022; 12:bios12070477. [PMID: 35884280 PMCID: PMC9312806 DOI: 10.3390/bios12070477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/17/2022]
Abstract
Aptamers are a particular class of functional recognition ligands with high specificity and affinity to their targets. As the candidate recognition layer of biosensors, aptamers can be used to sense biomolecules. Aptasensors, aptamer-based biosensors, have been demonstrated to be specific, sensitive, and cost-effective. Furthermore, smartphone-based devices have shown their advantages in binding to aptasensors for point-of-care testing (POCT), which offers an immediate or spontaneous responding time for biological testing. This review describes smartphone-based aptasensors to detect various targets such as metal ions, nucleic acids, proteins, and cells. Additionally, the focus is also on aptasensors-related technologies and configurations.
Collapse
Affiliation(s)
- Ying Lan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
| | - Baixun He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
| | - Cherie S. Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
- Correspondence: (C.S.T.); (D.M.)
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Correspondence: (C.S.T.); (D.M.)
| |
Collapse
|
11
|
Progress in smartphone-enabled aptasensors. Biosens Bioelectron 2022; 215:114509. [DOI: 10.1016/j.bios.2022.114509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
|
12
|
Zon G. Recent advances in aptamer applications for analytical biochemistry. Anal Biochem 2022; 644:113894. [PMID: 32763306 PMCID: PMC7403853 DOI: 10.1016/j.ab.2020.113894] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Aptamers are typically defined as relatively short (20-60 nucleotides) single-stranded DNA or RNA molecules that bind with high affinity and specificity to various types of targets. Aptamers are frequently referred to as "synthetic antibodies" but are easier to obtain, less expensive to produce, and in several ways more versatile than antibodies. The beginnings of aptamers date back to 1990, and since then there has been a continual increase in aptamer publications. The intent of the present account was to focus on recent original research publications, i.e., those appearing in 2019 through April 2020, when this account was written. A Google Scholar search of this recent literature was performed for relevance-ranking of articles. New methods for selection of aptamers were not included. Nine categories of applications were organized and representative examples of each are given. Finally, an outlook is offered focusing on "faster, better, cheaper" application performance factors as key drivers for future innovations in aptamer applications.
Collapse
|
13
|
Peng Y, Xu M, Guo Y, Yang H, Zhou Y. A novel signal amplification biosensor for detection of Cd 2+ based on asymmetric PCR. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120885. [PMID: 35051799 DOI: 10.1016/j.saa.2022.120885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
In this work, a novel signal amplification biosensor was utilized to detect Cd2+ based on asymmetric PCR. In the presence of Cd2+, it can bind with Cd2+-aptamer C1 which caused the complementary strand C2 to be released from double-stranded DNA C1-C2. Because the single-stranded C1 cannot be hydrolyzed by Exo III, it can be used as a template to take part in asymmetric PCR reaction. In the absence of Cd2+, the C1-C2 was digested by Exo III and no PCR template was left. During the experiment, an interesting phenomenon was found that the asymmetric PCR can obtain higher level of fluorescent signal than that of symmetric PCR. To the best of our knowledge, this is the first report of using asymmetric PCR to detect Cd2+. Through the asymmetric PCR amplification strategy, this biosensor had a low detection limit (19.93 nM) and a wide linear range (0-500 nM). Meanwhile, this biosensor showed a satisfactory selectivity and recovery rate.
Collapse
Affiliation(s)
- Yu Peng
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Mingming Xu
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, Guizhou 550083, China
| | - Hualin Yang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Yu Zhou
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; College of Animal Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China.
| |
Collapse
|
14
|
Xiao S, Lu J, Sun L, An S. A simple and sensitive AuNPs-based colorimetric aptasensor for specific detection of azlocillin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120924. [PMID: 35093821 DOI: 10.1016/j.saa.2022.120924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A new colorimetric biosensor for specific detection of azlocillin was developed by using DNA aptamer as recognition element and unmodified gold nanoparticles (AuNPs) as colorimetric indicator. In the absence of azlocillin, the AuNPs were protected by the aptamer and stabilized at high NaCl concentrations, displaying a red solution. In the presence of azlocillin, the aptamer reacts specifically with azlocillin, resulting in the aggregation of AuNPs and an apparent red to blue color change. The characteristic change can be easily observed by the naked eye and quantitatively detected by an ultraviolet-visible (UV-Vis) spectrometer. Under the optimal conditions, the absorbance variation at 522 nm (ΔA522) of AuNPs changed proportionally with increasing concentration of azlocillin, which exhibited a linear relationship in the concentration range of 50 nM to 500 nM, with a detection limit of 11.6 nM. Furthermore, the aptasensor was successfully used to detect azlocillin in milk and tap water samples, with recoveries ranging from 97.64% to 102.21% and a relative standard deviation (RSD) less than 3.81%.
Collapse
Affiliation(s)
- Shuyan Xiao
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China; Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Baotou 014010, China.
| | - Jiping Lu
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China; Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Baotou 014010, China
| | - Liang Sun
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China; Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Baotou 014010, China
| | - Shengli An
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China; Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Baotou 014010, China
| |
Collapse
|
15
|
Hyder A, Buledi JA, Nawaz M, Rajpar DB, Shah ZUH, Orooji Y, Yola ML, Karimi-Maleh H, Lin H, Solangi AR. Identification of heavy metal ions from aqueous environment through gold, Silver and Copper Nanoparticles: An excellent colorimetric approach. ENVIRONMENTAL RESEARCH 2022; 205:112475. [PMID: 34863692 DOI: 10.1016/j.envres.2021.112475] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 05/25/2023]
Abstract
Heavy metal pollution has become a severe threat to human health and the environment for many years. Their extensive release can severely damage the environment and promote the generation of many harmful diseases of public health concerns. These toxic heavy metals can cause many health problems such as brain damage, kidney failure, immune system disorder, muscle weakness, paralysis of the limbs, cardio complaint, nervous system. For many years, researchers focus on developing specific reliable analytical methods for the determination of heavy metal ions and preventing their acute toxicity to a significant extent. The modern researchers intended to utilize efficient and discerning materials, e.g. nanomaterials, especially the metal nanoparticles to detect heavy metal ions from different real sources rapidly. The metal nanoparticles have been broadly utilized as a sensing material for the colorimetric detection of toxic metal ions. The metal nanoparticles such as Gold (Au), Silver (Ag), and Copper (Cu) exhibited localized plasmon surface resonance (LPSR) properties which adds an outstanding contribution to the colorimetric sensing field. Though, the stability of metal nanoparticles was major issue to be exploited colorimetric sensing of heavy emtal ions, but from last decade different capping and stabilizing agents such as amino acids, vitmains, acids and ploymers were used to functionalize the metal surface of metal nanoparticles. These capping agents prevent the agglomeration of nanoparticles and make them more active for prolong period of time. This review covers a comprehensive work carried out for colorimetric detection of heavy metals based on metal nanoparticles from the year 2014 to onwards.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Muhammad Nawaz
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Dhani B Rajpar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Zia-Ul-Hassan Shah
- Department of Soil Science, Sindh Agriculture University, Tandojam, Pakistan
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan.
| |
Collapse
|
16
|
Liu W, Li Y, Li L, Shangguan J, Liu Y, Ni T, Wang Y, Kang J. A Sensitive Colorimetric Determination of Metformin Based on Gold Nanoparticles Aggregation in Salt Solution. ChemistrySelect 2022. [DOI: 10.1002/slct.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Liu
- College of Pharmacy Xinxiang Medical University 601 Jinsui Road Xinxiang Henan Provincial 453000 PR China
| | - Yongyang Li
- College of Pharmacy Xinxiang Medical University 601 Jinsui Road Xinxiang Henan Provincial 453000 PR China
| | - Lin Li
- College of Pharmacy Xinxiang Medical University 601 Jinsui Road Xinxiang Henan Provincial 453000 PR China
| | - Jingfang Shangguan
- College of Pharmacy Xinxiang Medical University 601 Jinsui Road Xinxiang Henan Provincial 453000 PR China
| | - Yufei Liu
- College of Pharmacy Xinxiang Medical University 601 Jinsui Road Xinxiang Henan Provincial 453000 PR China
| | - Tianjun Ni
- College of Pharmacy Xinxiang Medical University 601 Jinsui Road Xinxiang Henan Provincial 453000 PR China
| | - Yaofeng Wang
- College of Pharmacy Xinxiang Medical University 601 Jinsui Road Xinxiang Henan Provincial 453000 PR China
| | - Jing Kang
- School of Life Science and Technology Xinxiang Medical University 601 Jinsui Road Xinxiang Henan Provincial 453000 PR China
| |
Collapse
|
17
|
Pavadai R, Perumal P. Versatile Sensing Platform of Innovative Copper Oxide Assisted Cu-Phenolic Coordination Nanosheet mediated Fluorophore tagged GT-rich SSA based Fluorescence ON-OFF Biosensor for Subsequent Detection of Cd2+ and S2− Ions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05804e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Increased levels of toxic metal/non-metal ions Cadmium (Cd2+) and Sulfide (S2−) in the environment can be detrimental to human health. Given the circumstances, the detection and measurement of Cd2+ and...
Collapse
|
18
|
Xie M, Zhao F, Zhang Y, Xiong Y, Han S. Recent advances in aptamer-based optical and electrochemical biosensors for detection of pesticides and veterinary drugs. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108399] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Shi H, Jiang S, Liu B, Liu Z, Reis NM. Modern microfluidic approaches for determination of ions. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021; 94:193-224. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France.,Université Paris-Saclay, 91190 Saint-Aubin, France.,Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
21
|
Kumar A, Sardhalia V, Sahoo PR, Kumar A, Kumar S. Structure analysis and evaluation of two probes for the colorimetric detection of Hg2+ and turn-on fluorescence-based detection of Cd2+ ions in an aqueous solution. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Liu Y, Zhang D, Ding J, Hayat K, Yang X, Zhan X, Zhang D, Lu Y, Zhou P. A Facile Aptasensor for Instantaneous Determination of Cadmium Ions Based on Fluorescence Amplification Effect of MOPS on FAM-Labeled Aptamer. BIOSENSORS-BASEL 2021; 11:bios11050133. [PMID: 33922514 PMCID: PMC8145427 DOI: 10.3390/bios11050133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
Analytical performance and efficiency are two pivotal issues for developing an on-site and real-time aptasensor for cadmium (Cd2+) determination. However, suffering from redundant preparations, fabrications, and incubation, most of them fail to well satisfy the requirements. In this work, we found that fluorescence intensity of 6-carboxyfluorescein(FAM)-labeled aptamer (FAM-aptamer) could be remarkably amplified by 3-(N-morpholino)propane sulfonic acid (MOPS), then fell proportionally as Cd2+ concentration introduced. Importantly, the fluorescence variation occurred immediately after addition of Cd2+, and would keep stable for at least 60 min. Based on the discovery, a facile and ultra-efficient aptasensor for Cd2+ determination was successfully developed. The sensing mechanism was confirmed by fluorescence pattern, circular dichroism (CD) and intermolecular interaction related to pKa. Under the optimal conditions, Cd2+ could be determined rapidly from 5 to 4000 ng mL-1. The detection limit (1.92 ng mL-1) was also lower than the concentration limit for drinking water set by WHO and EPA (3 and 5 ng mL-1, respectively). More than a widely used buffer, MOPS was firstly revealed to have fluorescence amplification effect on FAM-aptamer upon a given context. Despite being sensitive to pH, this simple, high-performance and ultra-efficient aptasensor would be practical for on-site and real-time monitoring of Cd2+.
Collapse
Affiliation(s)
- Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jina Ding
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuejia Zhan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yitong Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-21-34205762
| |
Collapse
|
23
|
Kumar A, Kumar R, Kumar S. Cyanide‐Ion‐Induced J‐Aggregation of Merocyanine Dye for Paper‐Based Colorimetric Detection in Water. ChemistrySelect 2021. [DOI: 10.1002/slct.202100147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Arvind Kumar
- Department of Chemistry, St. Stephen's College (University of Delhi) University Enclave Delhi 110007 India
| | - Rajesh Kumar
- Defence Laboratory Jodhpur Jodhpur 342011 Rajasthan India
| | - Satish Kumar
- Department of Chemistry, St. Stephen's College (University of Delhi) University Enclave Delhi 110007 India
| |
Collapse
|
24
|
Shaban SM, Kim DH. Recent Advances in Aptamer Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:979. [PMID: 33540523 PMCID: PMC7867169 DOI: 10.3390/s21030979] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Recently, aptamers have attracted attention in the biosensing field as signal recognition elements because of their high binding affinity toward specific targets such as proteins, cells, small molecules, and even metal ions, antibodies for which are difficult to obtain. Aptamers are single oligonucleotides generated by in vitro selection mechanisms via the systematic evolution of ligand exponential enrichment (SELEX) process. In addition to their high binding affinity, aptamers can be easily functionalized and engineered, providing several signaling modes such as colorimetric, fluorometric, and electrochemical, in what are known as aptasensors. In this review, recent advances in aptasensors as powerful biosensor probes that could be used in different fields, including environmental monitoring, clinical diagnosis, and drug monitoring, are described. Advances in aptamer-based colorimetric, fluorometric, and electrochemical aptasensing with their advantages and disadvantages are summarized and critically discussed. Additionally, future prospects are pointed out to facilitate the development of aptasensor technology for different targets.
Collapse
Affiliation(s)
- Samy M. Shaban
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Petrochemicals Department, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
25
|
Liu Y, Zhang D, Ding J, Hayat K, Yang X, Zhan X, Zhang D, Lu Y, Zhou P. Label-Free and Sensitive Determination of Cadmium Ions Using a Ti-Modified Co 3O 4-Based Electrochemical Aptasensor. BIOSENSORS-BASEL 2020; 10:bios10120195. [PMID: 33266040 PMCID: PMC7761109 DOI: 10.3390/bios10120195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
The current work demonstrates an electrochemical aptasensor for sensitive determination of Cd2+ based on the Ti-modified Co3O4 nanoparticles. In this unlabeled system, Ti-modified Co3O4 nanoparticles act as current signal amplifiers modified on the screen-printed carbon electrode (SPCE) surface, while the derivative aptamer of Cd2+ works as a target recognizer. In addition, the sensing is based on the increase in electrochemical probe thionine current signal due to the binding of aptamer to Cd2+ via specific recognition. In the current study, key parameters, including aptamer concentration, pH, and incubation time were optimized, respectively, to ensure sensing performance. Cyclic voltammetry was used not only to characterize each preparation and optimization step, but also to profile the bindings of aptamer to Cd2+. Under optimal conditions, Cd2+ can be determined in a linear range of 0.20 to 15 ng/mL, with a detection limit of 0.49 ng/mL, significantly below the maximum concentration limit set by the U.S. Environmental Protection Agency. Based on comparative analysis and the results of recovery test with real samples, this simple, label-free but highly selective method has considerable potential and thus can be used as an in-situ environmental monitoring platform for Cd2+ testing.
Collapse
Affiliation(s)
- Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jina Ding
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuejia Zhan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yitong Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-021-34205762
| |
Collapse
|
26
|
Wang S, Su L, Wang L, Zhang D, Shen G, Ma Y. Colorimetric determination of carbendazim based on the specific recognition of aptamer and the poly-diallyldimethylammonium chloride aggregation of gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117809. [PMID: 31784220 DOI: 10.1016/j.saa.2019.117809] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
This paper proposes the idea of establishing carbendazim (CBZ) colorimetric determination in spiked water samples by specific aptamers of unlabeled carbendazim (CBZ), gold nanoparticles (AuNPs) and cationic polymer poly-diallyldimethylammonium chloride (PDDA). In the absence of CBZ, the CBZ aptamer will react with the cationic polymer PDDA by electrostatic interaction to form a complex structure. Therefore, the gold nanoparticles will remain dispersed due to the lack of PDDA. However, when CBZ is added into the sensory system, the CBZ-specific aptamer can selectively capture CBZ to form a stable complex structure. Due to the consumption of the aptamer, PDDA is unable to interact with the aptamer and begins to induce aggregation of AuNPs, thereby causing the color of the solution to change from red to blue. Colorimetric determination of CBZ based on the specific recognition of aptamer and the PDDA-induced aggregation of AuNPs has a detection limit of 2.2 nM, a linear range (R = 0.9960) from 2.2 to 500 nM. The method has good sensitivity and specificity, and the average recovery of CBZ is 94.9-104.8% in the application of actual water samples. This colorimetric method is simple, time-saving and low requirements for equipment, therefore, it holds great potential for CBZ detection in the environmental water samples.
Collapse
Affiliation(s)
- Song Wang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lantian Su
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lumei Wang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Dongwei Zhang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Guoqing Shen
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yun Ma
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|