1
|
Schluga PHDC, Larangote D, de Melo AM, Lobermayer GK, Torrejón D, de Oliveira LS, Alvarenga VG, Vivas-Ruiz DE, Veiga SS, Sanchez EF, Gremski LH. A Novel P-III Metalloproteinase from Bothrops barnetti Venom Degrades Extracellular Matrix Proteins, Inhibits Platelet Aggregation, and Disrupts Endothelial Cell Adhesion via α5β1 Integrin Receptors to Arginine-Glycine-Aspartic Acid (RGD)-Containing Molecules. Toxins (Basel) 2024; 16:486. [PMID: 39591241 PMCID: PMC11597958 DOI: 10.3390/toxins16110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Viperid snake venoms are notably abundant in metalloproteinases (proteins) (SVMPs), which are primarily responsible for inducing hemorrhage and disrupting the hemostatic process and tissue integrity in envenomed victims. In this study, barnettlysin-III (Bar-III), a hemorrhagic P-III SVMP, was purified from the venom of the Peruvian snake Bothrops barnetti. Bar-III has a molecular mass of approximately 50 kDa and is a glycosylation-dependent functional metalloproteinase. Some biochemical properties of Bar-III, including the full amino acid sequence deduced from its cDNA, are reported. Its enzymatic activity is increased by Ca2+ ions and inhibited by an excess of Zn2+. Synthetic metalloproteinase inhibitors and EDTA also inhibit its proteolytic action. Bar-III degrades several plasma and ECM proteins, including fibrin(ogen), fibronectin, laminin, and nidogen. Platelets play a key role in hemostasis and thrombosis and in other biological process, such as inflammation and immunity, and platelet activation is driven by the platelet signaling receptors, glycoprotein (GP)Ib-IX-V, which binds vWF, and GPVI, which binds collagen. Moreover, Bar-III inhibits vWF- and convulxin-induced platelet aggregation in human washed platelets by cleaving the recombinant A1 domain of vWF and GPVI into a soluble ectodomain fraction of ~55 kDa (sGPVI). Bar-III does not reduce the viability of cultured endothelial cells; however, it interferes with the adhesion of these cells to fibronectin, vitronectin, and RGD peptides, as well as their migration profile. Bar-III binds specifically to the surface of these cells, and part of this interaction involves α5β1 integrin receptors. These results contribute to a better comprehension of the pathophysiology of snakebite accidents/incidents and could be used as a tool to explore novel and safer anti-venom therapeutics.
Collapse
Affiliation(s)
- Pedro Henrique de Caires Schluga
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Debora Larangote
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Ana Maria de Melo
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Guilherme Kamienski Lobermayer
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (D.T.); (D.E.V.-R.)
| | - Luciana Souza de Oliveira
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Valeria Gonçalves Alvarenga
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Dan Erick Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (D.T.); (D.E.V.-R.)
| | - Silvio Sanches Veiga
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Eladio Flores Sanchez
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Luiza Helena Gremski
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| |
Collapse
|
2
|
Cavalcante JS, de Almeida DEG, Santos-Filho NA, Sartim MA, de Almeida Baldo A, Brasileiro L, Albuquerque PL, Oliveira SS, Sachett JAG, Monteiro WM, Ferreira RS. Crosstalk of Inflammation and Coagulation in Bothrops Snakebite Envenoming: Endogenous Signaling Pathways and Pathophysiology. Int J Mol Sci 2023; 24:11508. [PMID: 37511277 PMCID: PMC10380640 DOI: 10.3390/ijms241411508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 07/30/2023] Open
Abstract
Snakebite envenoming represents a major health problem in tropical and subtropical countries. Considering the elevated number of accidents and high morbidity and mortality rates, the World Health Organization reclassified this disease to category A of neglected diseases. In Latin America, Bothrops genus snakes are mainly responsible for snakebites in humans, whose pathophysiology is characterized by local and systemic inflammatory and degradative processes, triggering prothrombotic and hemorrhagic events, which lead to various complications, organ damage, tissue loss, amputations, and death. The activation of the multicellular blood system, hemostatic alterations, and activation of the inflammatory response are all well-documented in Bothrops envenomings. However, the interface between inflammation and coagulation is still a neglected issue in the toxinology field. Thromboinflammatory pathways can play a significant role in some of the major complications of snakebite envenoming, such as stroke, venous thromboembolism, and acute kidney injury. In addition to exacerbating inflammation and cell interactions that trigger vaso-occlusion, ischemia-reperfusion processes, and, eventually, organic damage and necrosis. In this review, we discuss the role of inflammatory pathways in modulating coagulation and inducing platelet and leukocyte activation, as well as the inflammatory production mediators and induction of innate immune responses, among other mechanisms that are altered by Bothrops venoms.
Collapse
Affiliation(s)
- Joeliton S Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Denis Emanuel Garcia de Almeida
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Norival A Santos-Filho
- Institute of Chemistry, São Paulo State University (UNESP-Univ Estadual Paulista), Araraquara 14800-900, São Paulo, Brazil
| | - Marco Aurélio Sartim
- Laboratory of Bioprospection, University Nilton Lins, Manaus 69058-030, Amazonas, Brazil
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Amanda de Almeida Baldo
- Institute of Biosciences, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Lisele Brasileiro
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Polianna L Albuquerque
- Toxicological Information and Assistance Center, Instituto Doutor Jose Frota Hospital, Fortaleza 60025-061, Ceará, Brazil
- Faculty of Medicine, University of Fortaleza, Fortaleza 60430-140, Ceará, Brazil
| | - Sâmella S Oliveira
- Research Management, Hospital Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-001, Amazonas, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP-UNESP, Botucatu 18610-307, São Paulo, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18610-307, São Paulo, Brazil
| |
Collapse
|
3
|
Torrejón D, Cárdenas J, Juárez D, Espinoza J, Proleón A, Agurto-Arteaga A, Lazo F, Leguía M, Urra FA, Sánchez EF, Chávez-Olortegui C, Vivas-Ruiz DE, Yarlequé A. Comparison of Four Methods of RNA Extraction and cDNA Synthesis from The Venom of Peruvian Snakes of the Genus Bothrops of Clinical Importance. Int J Mol Sci 2023; 24:11161. [PMID: 37446341 DOI: 10.3390/ijms241311161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
RNA purification and cDNA synthesis represents the starting point for molecular analyses of snake venom proteins-enzymes. Usually, the sacrifice of snakes is necessary for venom gland extraction to identify protein-coding transcripts; however, the venom can be used as a source of transcripts. Although there are methods for obtaining RNA from venom, no comparative analysis has been conducted in the Bothrops genus. In the present study, we compared four commercial methods for RNA purification and cDNA synthesis from venom (liquid, lyophilized, or long-term storage) of four clinically relevant species of Peruvian Bothrops. Our results show that the TRIzol method presents the highest yield of RNA purified from venom (59 ± 11 ng/100 µL or 10 mg). The SuperScript First-Strand Synthesis System kit produced high amounts of cDNA (3.2 ± 1.2 ng cDNA/ng RNA), and the highest value was from combination with the Dynabeads mRNA DIRECT kit (4.8 ± 2.0 ng cDNA/ng RNA). The utility of cDNA was demonstrated with the amplification of six relevant toxins: thrombin-like enzymes, P-I and P-III metalloproteinases, acid and basic phospholipases A2, and disintegrins. To our knowledge, this is the first comparative study of RNA purification and cDNA synthesis methodologies from Bothrops genus venom.
Collapse
Affiliation(s)
- Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
| | - Javier Cárdenas
- Laboratorio de Bioquímica, Facultad de Ciencias de la Salud, Universidad Nacional del del Callao, Av. Juan Pablo ΙΙ 306, Bellavista 07011, Peru
| | - Diana Juárez
- Laboratorio de Genómica, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Campus Principal, San Miguel 15088, Peru
| | - Jordano Espinoza
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
| | - Alex Proleón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
| | - Andrés Agurto-Arteaga
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
| | - Fanny Lazo
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
| | - Mariana Leguía
- Laboratorio de Genómica, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Campus Principal, San Miguel 15088, Peru
| | - Félix A Urra
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
| | - Eladio F Sánchez
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Carlos Chávez-Olortegui
- Departamento de Bioquímica-Inmunología, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Dan E Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
| | - Armando Yarlequé
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
| |
Collapse
|
4
|
Pierre-Louis O, Resiere D, Alphonsine C, Dantin F, Banydeen R, Dubois MD, Mehdaoui H, Neviere R. Increased Binding of von Willebrand Factor to Sub-Endothelial Collagen May Facilitate Thrombotic Events Complicating Bothrops lanceolatus Envenomation in Humans. Toxins (Basel) 2023; 15:441. [PMID: 37505710 PMCID: PMC10467054 DOI: 10.3390/toxins15070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Consumption coagulopathy and hemorrhagic syndrome exacerbated by blood anticoagulability remain the most important causes of lethality associated with Bothrops snake envenomation. Bothrops venom also engages platelet aggregation on the injured endothelium via von Willebrand factor (vWF) interactions. Besides platelet aggregation, some Bothrops venom toxins may induce qualitative thrombopathy, which has been in part related to the inhibition of vWF activation. We tested whether B. lanceolatus venom impaired vWF to collagen(s) binding (vWF:CB) activity. Experiments were performed with B. lanceolatus crude venom, in the presence or absence of Bothrofav, a monospecific B. lanceolatus antivenom. Venom of B. lanceolatus fully inhibited vWF to collagen type I and III binding, suggesting venom interactions with the vWF A3 domain. In contrast, B. lanceolatus venom increased vWF to collagen type VI binding, suggesting the enhancement of vWF binding to collagen at the vWF A1 domain. Hence, B. lanceolatus venom exhibited contrasting in vitro effects in terms of the adhesive properties of vWF to collagen. On the other hand, the antivenom Bothrofav reversed the inhibitory effects of B. lanceolatus venom on vWF collagen binding activity. In light of the respective distribution of collagen type III and collagen type VI in perivascular connective tissue and the sub-endothelium, a putative association between an increase in vWF:CB activity for collagen type VI and the onset of thrombotic events in human B. lanceolatus envenomation might be considered.
Collapse
Affiliation(s)
- Olivier Pierre-Louis
- Cardiovascular Research Team EA7525, University of the French West Indies (Université des Antilles), 97233 Fort de France, France; (O.P.-L.); (D.R.); (C.A.); (F.D.); (R.B.); (M.-D.D.); (H.M.)
| | - Dabor Resiere
- Cardiovascular Research Team EA7525, University of the French West Indies (Université des Antilles), 97233 Fort de France, France; (O.P.-L.); (D.R.); (C.A.); (F.D.); (R.B.); (M.-D.D.); (H.M.)
- Department of Critical Care Medicine and Toxicology, University Hospital of Martinique (CHU Martinique), 97200 Fort-de-France, France
| | - Celia Alphonsine
- Cardiovascular Research Team EA7525, University of the French West Indies (Université des Antilles), 97233 Fort de France, France; (O.P.-L.); (D.R.); (C.A.); (F.D.); (R.B.); (M.-D.D.); (H.M.)
| | - Fabienne Dantin
- Cardiovascular Research Team EA7525, University of the French West Indies (Université des Antilles), 97233 Fort de France, France; (O.P.-L.); (D.R.); (C.A.); (F.D.); (R.B.); (M.-D.D.); (H.M.)
| | - Rishika Banydeen
- Cardiovascular Research Team EA7525, University of the French West Indies (Université des Antilles), 97233 Fort de France, France; (O.P.-L.); (D.R.); (C.A.); (F.D.); (R.B.); (M.-D.D.); (H.M.)
| | - Marie-Daniela Dubois
- Cardiovascular Research Team EA7525, University of the French West Indies (Université des Antilles), 97233 Fort de France, France; (O.P.-L.); (D.R.); (C.A.); (F.D.); (R.B.); (M.-D.D.); (H.M.)
| | - Hossein Mehdaoui
- Cardiovascular Research Team EA7525, University of the French West Indies (Université des Antilles), 97233 Fort de France, France; (O.P.-L.); (D.R.); (C.A.); (F.D.); (R.B.); (M.-D.D.); (H.M.)
- Department of Critical Care Medicine and Toxicology, University Hospital of Martinique (CHU Martinique), 97200 Fort-de-France, France
| | - Remi Neviere
- Cardiovascular Research Team EA7525, University of the French West Indies (Université des Antilles), 97233 Fort de France, France; (O.P.-L.); (D.R.); (C.A.); (F.D.); (R.B.); (M.-D.D.); (H.M.)
- Department of Cardiology, University Hospital of Martinique (CHU Martinique), 97200 Fort-de-France, France
| |
Collapse
|
5
|
Vivas-Ruiz DE, Rosas P, Proleón A, Torrejón D, Lazo F, Tenorio-Ricca AB, Guajardo F, Almarza C, Andrades V, Astorga J, Oropesa D, Toledo J, Vera MJ, Martínez J, Araya-Maturana R, Dubois-Camacho K, Hermoso MA, Alvarenga VG, Sanchez EF, Yarlequé A, Oliveira LS, Urra FA. Pictolysin-III, a Hemorrhagic Type-III Metalloproteinase Isolated from Bothrops pictus (Serpentes: Viperidae) Venom, Reduces Mitochondrial Respiration and Induces Cytokine Secretion in Epithelial and Stromal Cell Lines. Pharmaceutics 2023; 15:pharmaceutics15051533. [PMID: 37242775 DOI: 10.3390/pharmaceutics15051533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
From the venom of the Bothrops pictus snake, an endemic species from Peru, we recently have described toxins that inhibited platelet aggregation and cancer cell migration. In this work, we characterize a novel P-III class snake venom metalloproteinase, called pictolysin-III (Pic-III). It is a 62 kDa proteinase that hydrolyzes dimethyl casein, azocasein, gelatin, fibrinogen, and fibrin. The cations Mg2+ and Ca2+ enhanced its enzymatic activity, whereas Zn2+ inhibited it. In addition, EDTA and marimastat were also effective inhibitors. The amino acid sequence deduced from cDNA shows a multidomain structure that includes a proprotein, metalloproteinase, disintegrin-like, and cysteine-rich domains. Additionally, Pic-III reduces the convulxin- and thrombin-stimulated platelet aggregation and in vivo, it has hemorrhagic activity (DHM = 0.3 µg). In epithelial cell lines (MDA-MB-231 and Caco-2) and RMF-621 fibroblast, it triggers morphological changes that are accompanied by a decrease in mitochondrial respiration, glycolysis, and ATP levels, and an increase in NAD(P)H, mitochondrial ROS, and cytokine secretion. Moreover, Pic-III sensitizes to the cytotoxic BH3 mimetic drug ABT-199 (Venetoclax) in MDA-MB-231 cells. To our knowledge, Pic-III is the first SVMP reported with action on mitochondrial bioenergetics and may offer novel opportunities for promising lead compounds that inhibit platelet aggregation or ECM-cancer-cell interactions.
Collapse
Affiliation(s)
- Dan E Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| | - Paola Rosas
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
| | - Alex Proleón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
| | - Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
| | - Fanny Lazo
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
| | - Ana Belén Tenorio-Ricca
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Francisco Guajardo
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Cristopher Almarza
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Víctor Andrades
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Jessica Astorga
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Daniel Oropesa
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Jorge Toledo
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - María Jesús Vera
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Laboratorio de Biología Celular, INTA, University of Chile, Santiago 7810000, Chile
| | - Jorge Martínez
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Laboratorio de Biología Celular, INTA, University of Chile, Santiago 7810000, Chile
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Karen Dubois-Camacho
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 7810000, Chile
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Valéria G Alvarenga
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Brazil
| | - Eladio Flores Sanchez
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Brazil
| | - Armando Yarlequé
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Brazil
| | - Luciana Souza Oliveira
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Brazil
| | - Félix A Urra
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| |
Collapse
|
6
|
Diniz-Sousa R, Silva CCA, Pereira SS, da Silva SL, Fernandes PA, Teixeira LMC, Zuliani JP, Soares AM. Therapeutic applications of snake venoms: An invaluable potential of new drug candidates. Int J Biol Macromol 2023; 238:124357. [PMID: 37028634 DOI: 10.1016/j.ijbiomac.2023.124357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Animal venoms and their chemical compounds have aroused both empirical and scientific attention for ages. However, there has been a significant increase in scientific investigations in recent decades, allowing the production of various formulations that are helping in the development of many important tools for biotechnological, diagnostic, or therapeutic use, both in human and animal health, as well as in plants. Venoms are composed of biomolecules and inorganic compounds that may have physiological and pharmacological activities that are not related to their principal actions (prey immobilization, digestion, and defense). Snake venom toxins, mainly enzymatic and non-enzymatic proteins, and peptides have been identified as potential prototypes for new drugs and/or models for the development of pharmacologically active structural domains for the treatment of cancer, cardiovascular diseases, neurodegenerative and autoimmune diseases, pain, and infectious-parasitic diseases. This minireview aims to provide an overview of the biotechnological potential of animal venoms, with a focus on snakes, and to introduce the reader to the fascinating world of Applied Toxinology, where animal biodiversity can be used to develop therapeutic and diagnostic applications for humans.
Collapse
Affiliation(s)
- Rafaela Diniz-Sousa
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Centro Universitário São Lucas (UniSL), Porto Velho, Rondônia, Brazil
| | - Cleópatra C A Silva
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental (INCT-EpiAmO), Porto Velho, Rondônia, Brazil
| | - Soraya S Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Saulo L da Silva
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Faculty of Chemical Sciences, University of Cuenca, Cuenca, Azuay, Ecuador
| | - Pedro A Fernandes
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Luís M C Teixeira
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Andreimar M Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Centro Universitário São Lucas (UniSL), Porto Velho, Rondônia, Brazil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental (INCT-EpiAmO), Porto Velho, Rondônia, Brazil; Faculdade Católica de Rondônia (FCR), Porto Velho, Rondônia, Brazil.
| |
Collapse
|
7
|
de Alvarenga VG, Oliveira LS, Santos GO, Vivas-Ruiz DE, Borges MH, de Souza RCG, Eble JA, Moura-da-Silva AM, Sanchez EF. Rhomb-I, a P–I metalloproteinase from Lachesis muta rhombeata venom degrades vessel extra cellular matrix components and impairs platelet aggregation. Toxicon 2023; 228:107097. [PMID: 37028563 DOI: 10.1016/j.toxicon.2023.107097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
Rhomb-I, a 23-kDa metalloproteinase was isolated from L. m. rhombeata venom. Its dimethylcasein proteolysis was abolished by metal chelators, and slightly enhanced by Ca2+ and Mg2+ ions, but inhibited by Co2+, Zn2+ and α2-macroglobulin. In aqueous solution, rhomb-I autoproteolyzed to a 20- and 11-kDa fragments at 37 °C. The amino acid sequence showed high homology with other snake venom metalloproteinases. Rhomb-I causes hemorrhage that may be ascribed to hydrolysis of essential basement membrane, extracellular matrix and plasma proteins. It preferentially cleaves the α-chains of fibrin (ogen). Rhomb-I inhibited convulxin- and von Willebrand factor (vWF)-induced aggregation on human platelets without significant effect on collagen-stimulated aggregation or other effectors. It digests vWF into a low-molecular-mass multimers of vWF and a rvWF-A1 domain to a 27-kDa fragment as revealed by western blotting with mouse anti-rvWF A1-domain IgG. Incubation of platelets with rhomb-I resulted in adhesion to and cleavage of platelet receptors glycoprotein (GP)Ibα and GPVI to release a 55-kDa soluble form. Both membrane glycoproteins GPIbα that binds vWF, together with GPVI which binds collagen, play a key role in mediating platelet adhesion/activation and can initiate (patho)physiological thrombus formation. Conclusions: rhomb-I is implicated in the pathophysiology of Lachesis envenoming by disrupting vasculature, hemostasis and platelet aggregation through impairing vWF-GPIb axis and blocking GPVI-collagen binding.
Collapse
Affiliation(s)
| | - Luciana S Oliveira
- Laboratório de Bioquímica de Proteínas de Venenos Animais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Gustavo O Santos
- Laboratório de Bioquímica de Proteínas de Venenos Animais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Dan E Vivas-Ruiz
- Laboratório de Biologia Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Márcia Helena Borges
- Laboratório de Proteômica e Aracnídeos, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | | | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany
| | | | - Eladio F Sanchez
- Laboratório de Bioquímica de Proteínas de Venenos Animais, Fundação Ezequiel Dias, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Experimental Bothrops atrox Envenomation: Blood Plasma Proteome Effects after Local Tissue Damage and Perspectives on Thromboinflammation. Toxins (Basel) 2022; 14:toxins14090613. [PMID: 36136550 PMCID: PMC9503785 DOI: 10.3390/toxins14090613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 02/07/2023] Open
Abstract
The clinical manifestations of Bothrops atrox envenoming involve local and systemic changes, among which edema requires substantial attention due to its ability to progress to compartmental syndromes and sometimes cause tissue loss and amputations. However, the impact of edema on the poisoned body’s system has not been explored. Thus, the present study aimed to explore the systemic pathological and inflammatory events that are altered by intraplantar injection of B. atrox venom in a mouse model through hematologic, lipidic, and shotgun proteomics analysis. Plasma samples collected showed a greater abundance of proteins related to complement, coagulation, lipid system, platelet and neutrophil degranulation, and pathways related to cell death and ischemic tolerance. Interestingly, some proteins, in particular, Prdx2 (peroxiredoxin 2), Hba (hemoglobin subunit alpha), and F9 (Factor IX), increased according to the amount of venom injected. Our findings support that B. atrox venom activates multiple blood systems that are involved in thromboinflammation, an observation that may have implications for the pathophysiological progression of envenomations. Furthermore, we report for the first time a potential role of Prdx2, Hba, and F9 as potential markers of the severity of edema/inflammation in mice caused by B. atrox.
Collapse
|
9
|
Chérifi F, Laraba-Djebari F. Bioactive Molecules Derived from Snake Venoms with Therapeutic Potential for the Treatment of Thrombo-Cardiovascular Disorders Associated with COVID-19. Protein J 2021; 40:799-841. [PMID: 34499333 PMCID: PMC8427918 DOI: 10.1007/s10930-021-10019-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 01/08/2023]
Abstract
As expected, several new variants of Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2) emerged and have been detected around the world throughout this Coronavirus Disease of 2019 (COVID-19) pandemic. Currently, there is no specific developed drug against COVID-19 and the challenge of developing effective antiviral strategies based on natural agents with different mechanisms of action becomes an urgent need and requires identification of genetic differences among variants. Such data is used to improve therapeutics to combat SARS-CoV-2 variants. Nature is known to offer many biotherapeutics from animal venoms, algae and plant that have been historically used in traditional medicine. Among these bioresources, snake venom displays many bioactivities of interest such as antiviral, antiplatelet, antithrombotic, anti-inflammatory, antimicrobial and antitumoral. COVID-19 is a viral respiratory sickness due to SARS-CoV-2 which induces thrombotic disorders due to cytokine storm, platelet hyperactivation and endothelial dysfunction. This review aims to: (1) present an overview on the infection, the developed thrombo-inflammatory responses and mechanisms of induced thrombosis of COVID-19 compared to other similar pathogenesis; (2) underline the role of natural compounds such as anticoagulant, antiplatelet and thrombolytic agents; (3) investigate the management of coagulopathy related to COVID-19 and provide insight on therapeutic such as venom compounds. We also summarize the updated advances on antiviral proteins and peptides derived from snake venoms that could weaken coagulopathy characterizing COVID-19.
Collapse
Affiliation(s)
- Fatah Chérifi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
10
|
Sanchez EF, Alvarenga VG, Oliveira LS, Oliveira DL, Estevao-Costa MI, Flores-Ortiz R, Eble JA. A fibrinolytic snake venom metalloproteinase, mutalysin-II, with antiplatelet activity and targeting capability toward glycoprotein GPIbα and glycoprotein GPVI. Biochimie 2021; 184:1-7. [PMID: 33548391 DOI: 10.1016/j.biochi.2021.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Glycoprotein (GP)Ib that binds von Willebrand factor (vWF) and glycoprotein (GP)VI, that binds collagen play a significant role in platelet activation and aggregation, and are potential targets for antithrombotic treatment. They are targeted by snake venom proteinases. The effect of a such proteinase, mutalysin-II, on platelet aggregation was examined using washed human platelets and platelet-rich plasma. Its proteolytic activity on vWF, on its binding partner GPIbα, and on GPVI was analyzed by SDS-PAGE, and immunodetection with the corresponding antibodies after blotting. Dose- and time-dependently, mutalysin-II inhibits aggregation of washed platelets induced by vWF plus ristocetin and by convulxin, but with no significant effect on platelet-rich-plasma. Furthermore, mutalysin-II cleaves vWF into low molecular mass multimers of vWF and a rvWF-A1 domain to realease a ∼27-kDa fragment detectable by SDS-PAGE and blotting with mouse anti-rvWF-A1-domain IgG. Moreover, GPVI was cut by mutalysin-II into a soluble ∼55-kDa ectodomain and a fragment of ∼35-kDa. Thus, mutalysin-II inhibits vWF-induced platelet aggregation via cleavage of bound vWF-A1, and its receptor GPIbα. The additional cleavage of, GPVI, blocks collagen-induced platelets. Our data highlight mutalysin-II as an interesting platelet-directed tool targeting vWF-GPIbα binding and particularly GPVI. Thus, it might be suited for antithrombotic therapy as its combined inactivation of two receptors does not significantly compromise hemostasis, but shows high efficacy and safety. Studies are needed to further develop and demonstrate its potential benefits.
Collapse
Affiliation(s)
- Eladio F Sanchez
- Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil.
| | - Valeria G Alvarenga
- Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Luciana S Oliveira
- Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Débora L Oliveira
- Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Maria I Estevao-Costa
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Renzo Flores-Ortiz
- Center for Data and Knowledge Integration for Health, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
11
|
Olaoba OT, Karina dos Santos P, Selistre-de-Araujo HS, Ferreira de Souza DH. Snake Venom Metalloproteinases (SVMPs): A structure-function update. Toxicon X 2020; 7:100052. [PMID: 32776002 PMCID: PMC7399193 DOI: 10.1016/j.toxcx.2020.100052] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) represent a diverse group of multi-domain proteins with several biological activities such as the ability to induce hemorrhage, proteolytic degradation of fibrinogen and fibrin, induction of apoptosis and inhibition of platelet aggregation. Due to these activities, SVMPs are responsible for many of the well-known pathological phenotypes in snake envenomations caused particularly by species from the Viperidae family and the Crotalinae subfamily. These proteins have been classified based on their size and domain structure into P–I, P-II and P-III classes. Comparatively, members of the P–I SVMPs possess the simplest structures, formed by the catalytic metalloproteinase domain only; the P-II SVMPs are moderately more complex, having the canonical disintegrin domain in addition to the metalloproteinase domain; members of the P-III class are more structurally varied, comprising the metalloproteinase, disintegrin-like, and cysteine-rich domains. Proteolytic cleavage, repeated domain loss and presence of other ancillary domains are responsible for structural diversities in the P-III class. However, studies continue to unveil the relationship between the structure and function of these proteins. In this review, we recovered evidences from literature on the structural peculiarities and functional classification of Snake Venom Metalloproteinases. In addition, we reflect on diversities that exist among each class while taking into account specific and up-to-date class-based activities.
Collapse
Affiliation(s)
- Olamide Tosin Olaoba
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
| | - Patty Karina dos Santos
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
| | | | - Dulce Helena Ferreira de Souza
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
- Corresponding author.
| |
Collapse
|
12
|
Monteiro WM, Contreras-Bernal JC, Bisneto PF, Sachett J, Mendonça da Silva I, Lacerda M, Guimarães da Costa A, Val F, Brasileiro L, Sartim MA, Silva-de-Oliveira S, Bernarde PS, Kaefer IL, Grazziotin FG, Wen FH, Moura-da-Silva AM. Bothrops atrox, the most important snake involved in human envenomings in the amazon: How venomics contributes to the knowledge of snake biology and clinical toxinology. Toxicon X 2020; 6:100037. [PMID: 32550592 PMCID: PMC7285970 DOI: 10.1016/j.toxcx.2020.100037] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 01/22/2023] Open
Abstract
Bothrops atrox snakes are mostly endemic of the Amazon rainforest and is certainly the South American pit viper responsible for most of the snakebites in the region. The composition of B. atrox venom is significantly known and has been used to trace the relevance of the venom phenotype for snake biology and for the impacts in the clinics of human patients involved in accidents by B. atrox. However, in spite of the wide distribution and the great medical relevance of B. atrox snakes, B. atrox taxonomy is not fully resolved and the impacts of the lack of taxonomic resolution on the studies focused on venom or envenoming are currently unknown. B. atrox venom presents different degrees of compositional variability and is generally coagulotoxic, inducing systemic hematological disturbances and local tissue damage in snakebite patients. Antivenoms are the effective therapy for attenuating the clinical signs. This review brings a comprehensive discussion of the literature concerning B. atrox snakes encompassing from snake taxonomy, diet and venom composition, towards clinical aspects of snakebite patients and efficacy of the antivenoms. This discussion is highly supported by the contributions that venomics and antivenomics added for the advancement of knowledge of B. atrox snakes, their venoms and the treatment of accidents they evoke.
Collapse
Affiliation(s)
- Wuelton Marcelo Monteiro
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Jorge Carlos Contreras-Bernal
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Pedro Ferreira Bisneto
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Jacqueline Sachett
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Alfredo da Matta, Manaus, Brazil
| | - Iran Mendonça da Silva
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Marcus Lacerda
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas & Maria Deane, Manaus, Brazil
| | - Allyson Guimarães da Costa
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Hematologia e Hemoterapia do Amazonas, Manaus, Brazil
| | - Fernando Val
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Lisele Brasileiro
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Marco Aurélio Sartim
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Sâmella Silva-de-Oliveira
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Paulo Sérgio Bernarde
- Laboratório de Herpetologia, Centro Multidisciplinar, Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, AC, Brazil
| | - Igor L. Kaefer
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | | | | | - Ana Maria Moura-da-Silva
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Butantan, São Paulo, Brazil
| |
Collapse
|