1
|
Mohamed SM, Abou-Ghadir OMF, El-Mokhtar MA, Aboraia AS, Abdel-Moty SG, Abdel-Aal ABM. Design, Synthesis and Pro-Inflammatory Activity of Palmitoylated Derivatives of Thioglycolic Acid as New Immunomodulators. Chem Biol Drug Des 2024; 104:e70029. [PMID: 39702898 DOI: 10.1111/cbdd.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
The immune system is essential for the defense against infections and is critically implicated in various disorders, including immunodeficiency, autoimmunity, inflammation and cancer. The current study includes a new design of palmitoylated derivatives of thioglycolic acids (PTGAs) capable of triggering innate immune responses. The new series were accessible through a three-step synthetic route, including N-palmitoylation, Claisen-Schmidt condensation and thia-Michael addition. Their structures were elucidated using different 1D and 2D NMR spectroscopic techniques and their purity was confirmed by elemental analysis. The most active PTGAs induced a 12-26-fold increase in the expression of TNF-α and IL-1β mRNA and triggered a marked release of NO in isolated macrophages. These levels were comparable to the responses elicited by heat-killed E. coli and S. aureus. The position of the palmitamide chain and aryl substitution had a significant effect on the TNF-α and IL-1β mRNA expression and NO release. Simulations of molecular dockings showed that the new PTGA derivatives occupy the same TLR2/TLR6 heterodimer active binding site of the microbial diacylated lipoproteins. The new immunomodulators may have a profound impact on various clinical disorders associated with dysfunctional innate immunity.
Collapse
Affiliation(s)
- Samia M Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ola M F Abou-Ghadir
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Ahmed S Aboraia
- Department of Therapeutic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Samia G Abdel-Moty
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Abu-Baker M Abdel-Aal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| |
Collapse
|
2
|
Zhang J, Fan J, Skwarczynski M, Stephenson RJ, Toth I, Hussein WM. Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. Int J Nanomedicine 2022; 17:869-900. [PMID: 35241913 PMCID: PMC8887913 DOI: 10.2147/ijn.s269986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HPVs), such as HPV-16 and HPV-18, can induce cervical cancer in humans. The disease carries high morbidity and mortality among females worldwide. Inoculation with prophylactic HPV vaccines, such as Gardasil® or Cervarix®, is the predominant method of preventing cervical cancer in females 6 to 26 years of age. However, despite the availability of commercial prophylactic HPV vaccines, no therapeutic HPV vaccines to eliminate existing HPV infections have been approved. Peptide-based vaccines, which form one of the most potent vaccine platforms, have been broadly investigated to overcome this shortcoming. Peptide-based vaccines are especially effective in inducing cellular immune responses and eradicating tumor cells when combined with nanoscale adjuvant particles and delivery systems. This review summarizes progress in the development of peptide-based nanovaccines against HPV infection.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Correspondence: Waleed M Hussein, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia, Tel +61 7 3365 2782, Email
| |
Collapse
|
3
|
Kaur A, Piplani S, Kaushik D, Fung J, Sakala IG, Honda-Okubo Y, Mehta SK, Petrovsky N, Salunke DB. Stereoisomeric Pam2CS Based TLR2 Agonists: Synthesis, Structural Modelling and Activity as Vaccine Adjuvants. RSC Med Chem 2022; 13:622-637. [PMID: 35694694 PMCID: PMC9132229 DOI: 10.1039/d1md00372k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Lipopeptides including diacylated Pam2CSK4 as well as triacylated Pam3CSK4 act as ligands of Toll-like receptor (TLR)-2, a promising target for the development of vaccine adjuvants. The highly investigated Pam2CSK4 and...
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
| | - Sakshi Piplani
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Deepender Kaushik
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
| | - Johnson Fung
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Isaac G Sakala
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Surinder K Mehta
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
- National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University Chandigarh India
| |
Collapse
|
4
|
Antioxidant and Anti-Inflammatory Effects of Zingiber officinale roscoe and Allium subhirsutum: In Silico, Biochemical and Histological Study. Foods 2021; 10:foods10061383. [PMID: 34203950 PMCID: PMC8232813 DOI: 10.3390/foods10061383] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
In this study, the antioxidant and anti-inflammatory effects of Zingiber officinale roscoe and Allium subhirsutum aqueous extracts were examined in a carrageenan-induced acute inflammation model. Some markers of inflammation such as hematological parameters, fibrinogen and C-reactive protein were measured. Variables reflecting oxidative stress included thiobarbituric acid reactive substances (TBARS), advanced oxidation of protein products (AOPP), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione were determined in both inflamed foci and erythrocytes. The in silico molecular docking simulation showed that the main components of Zingiber officinale roscoe and Allium subhirsutum bound to toll-like receptor 6 (TLR6) with high affinities. Moreover, histological examinations of paw edema were carried out. Both Zingiber officinale roscoe and Allium subhirsutum ameliorated the induced inflammation and oxidative stress status as outlined by anti-edematous, antioxidant and anti-inflammatory activities. Our investigation lends pharmacological support to the medical uses of these spices in the management of inflammatory disorders and oxidative damage. The results of the in silico assay satisfactory explain the in vivo effects as compared with indomethacin.
Collapse
|
5
|
Owen AM, Fults JB, Patil NK, Hernandez A, Bohannon JK. TLR Agonists as Mediators of Trained Immunity: Mechanistic Insight and Immunotherapeutic Potential to Combat Infection. Front Immunol 2021; 11:622614. [PMID: 33679711 PMCID: PMC7930332 DOI: 10.3389/fimmu.2020.622614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Despite advances in critical care medicine, infection remains a significant problem that continues to be complicated with the challenge of antibiotic resistance. Immunocompromised patients are highly susceptible to development of severe infection which often progresses to the life-threatening condition of sepsis. Thus, immunotherapies aimed at boosting host immune defenses are highly attractive strategies to ward off infection and protect patients. Recently there has been mounting evidence that activation of the innate immune system can confer long-term functional reprogramming whereby innate leukocytes mount more robust responses upon secondary exposure to a pathogen for more efficient clearance and host protection, termed trained immunity. Toll-like receptor (TLR) agonists are a class of agents which have been shown to trigger the phenomenon of trained immunity through metabolic reprogramming and epigenetic modifications which drive profound augmentation of antimicrobial functions. Immunomodulatory TLR agonists are also highly beneficial as vaccine adjuvants. This review provides an overview on TLR signaling and our current understanding of TLR agonists which show promise as immunotherapeutic agents for combating infection. A brief discussion on our current understanding of underlying mechanisms is also provided. Although an evolving field, TLR agonists hold strong therapeutic potential as immunomodulators and merit further investigation for clinical translation.
Collapse
Affiliation(s)
- Allison M Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jessica B Fults
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Briquez PS, Hauert S, de Titta A, Gray LT, Alpar AT, Swartz MA, Hubbell JA. Engineering Targeting Materials for Therapeutic Cancer Vaccines. Front Bioeng Biotechnol 2020; 8:19. [PMID: 32117911 PMCID: PMC7026271 DOI: 10.3389/fbioe.2020.00019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Therapeutic cancer vaccines constitute a valuable tool to educate the immune system to fight tumors and prevent cancer relapse. Nevertheless, the number of cancer vaccines in the clinic remains very limited to date, highlighting the need for further technology development. Recently, cancer vaccines have been improved by the use of materials, which can strongly enhance their intrinsic properties and biodistribution profile. Moreover, vaccine efficacy and safety can be substantially modulated through selection of the site at which they are delivered, which fosters the engineering of materials capable of targeting cancer vaccines to specific relevant sites, such as within the tumor or within lymphoid organs, to further optimize their immunotherapeutic effects. In this review, we aim to give the reader an overview of principles and current strategies to engineer therapeutic cancer vaccines, with a particular focus on the use of site-specific targeting materials. We will first recall the goal of therapeutic cancer vaccination and the type of immune responses sought upon vaccination, before detailing key components of cancer vaccines. We will then present how materials can be engineered to enhance the vaccine's pharmacokinetic and pharmacodynamic properties. Finally, we will discuss the rationale for site-specific targeting of cancer vaccines and provide examples of current targeting technologies.
Collapse
Affiliation(s)
- Priscilla S. Briquez
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Sylvie Hauert
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | | | - Laura T. Gray
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Aaron T. Alpar
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, United States
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|