1
|
Grzeskowiak R, Schumacher J, Omidi O, Bowers K, Cassone LMC, Abedi R, Hespel AM, Mulon PY, Anderson DE. Enhancing prosthesis stability at the cricoid cartilage in equine laryngoplasty using 3-D-printed laryngeal clamps: An ex vivo model study. Vet Surg 2024; 53:1161-1172. [PMID: 38840447 DOI: 10.1111/vsu.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Accepted: 05/05/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE To assess a three-dimensional (3-D)-printed laryngeal clamp (LC) designed to enhance the anchoring of laryngeal prostheses at the cricoid cartilage. STUDY DESIGN Ex vivo biomechanical study. SAMPLE POPULATION A total of 22 equine larynges. METHODS Two experimental groups included larynges with standard prosthetic laryngoplasty (PL; n = 10) and larynges with prosthetic laryngoplasty modified with laryngeal clamps (PLLC; n = 10). All constructs underwent 3000 cycles of tension loading and a single tension to failure. Recorded biomechanical parameters included maximum load, actuator displacement, and construct failure. Finite element analysis (FEA) was performed on one PL and one PLLC construct. RESULTS The maximum load at single tension to failure was 183.7 ± 46.8 N for the PL construct and 292.7 ± 82.3 N for the PLLC construct (p = .003). Actuator displacement at 30 N was 1.7 ± 0.5 mm and 2.7 ± 0.7 mm for the PL and PLLC constructs, respectively (p = .011). The cause of PL constructs failure was mostly tearing through the cartilage whereas the PLLC constructs failed through fracture of the cricoid cartilage (p = .000). FEA revealed an 11-fold reduction in the maximum equivalent plastic strain, a four-fold reduction in maximum compressive stress, and a two-fold increase in the volume of engaged cartilage in PLLC constructs. CONCLUSION The PLLC constructs demonstrated superior performance in biomechanical testing and FEA compared to standard PL constructs. CLINICAL SIGNIFICANCE The use of 3-D-printed laryngeal clamps may enhance the outcomes of laryngoplasty in horses. In vivo studies are necessary to determine the feasibility of performing laryngoplasty using the laryngeal clamp in horses.
Collapse
Affiliation(s)
- Remigiusz Grzeskowiak
- College of Veterinary Medicine, Large Animal Clinical Sciences, The University of Tennessee, Knoxville, Tennessee, USA
| | - Jim Schumacher
- College of Veterinary Medicine, Large Animal Clinical Sciences, The University of Tennessee, Knoxville, Tennessee, USA
| | - Omid Omidi
- Tickle College of Engineering, Mechanical, Aerospace and Biomedical Engineering, The University of Tennessee, Knoxville, Tennessee, USA
| | - Kristin Bowers
- College of Veterinary Medicine, Large Animal Clinical Sciences, The University of Tennessee, Knoxville, Tennessee, USA
| | - Lynne M C Cassone
- College of Agriculture, Food and Environment, Veterinary Diagnostic Laboratory, The University of Kentucky, Lexington, Kentucky, USA
| | - Reza Abedi
- Tickle College of Engineering, Mechanical, Aerospace and Biomedical Engineering, The University of Tennessee, Knoxville, Tennessee, USA
| | - Adrien-Maxence Hespel
- College of Veterinary Medicine, Small Animal Clinical Sciences, The University of Tennessee, Knoxville, Tennessee, USA
| | - Pierre-Yves Mulon
- College of Veterinary Medicine, Large Animal Clinical Sciences, The University of Tennessee, Knoxville, Tennessee, USA
| | - David E Anderson
- College of Veterinary Medicine, Large Animal Clinical Sciences, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
Samokhin Y, Varava Y, Diedkova K, Yanko I, Husak Y, Radwan-Pragłowska J, Pogorielova O, Janus Ł, Pogorielov M, Korniienko V. Fabrication and Characterization of Electrospun Chitosan/Polylactic Acid (CH/PLA) Nanofiber Scaffolds for Biomedical Application. J Funct Biomater 2023; 14:414. [PMID: 37623659 PMCID: PMC10455531 DOI: 10.3390/jfb14080414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
The present study demonstrates a strategy for preparing porous composite fibrous materials with superior biocompatibility and antibacterial performance. The findings reveal that the incorporation of PEG into the spinning solutions significantly influences the fiber diameters, morphology, and porous area fraction. The addition of a hydrophilic homopolymer, PEG, into the Ch/PLA spinning solution enhances the hydrophilicity of the resulting materials. The hybrid fibrous materials, comprising Ch modified with PLA and PEG as a co-solvent, along with post-treatment to improve water stability, exhibit a slower rate of degradation (stable, moderate weight loss over 16 weeks) and reduced hydrophobicity (lower contact angle, reaching 21.95 ± 2.17°), rendering them promising for biomedical applications. The antibacterial activity of the membranes is evaluated against Staphylococcus aureus and Escherichia coli, with PEG-containing samples showing a twofold increase in bacterial reduction rate. In vitro cell culture studies demonstrated that PEG-containing materials promote uniform cell attachment, comparable to PEG-free nanofibers. The comprehensive evaluation of these novel materials, which exhibit improved physical, chemical, and biological properties, highlights their potential for biomedical applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yevhen Samokhin
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.S.); (Y.V.); (K.D.); (I.Y.); (Y.H.); (O.P.)
| | - Yuliia Varava
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.S.); (Y.V.); (K.D.); (I.Y.); (Y.H.); (O.P.)
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Kateryna Diedkova
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.S.); (Y.V.); (K.D.); (I.Y.); (Y.H.); (O.P.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Iela 3, LV-1004 Riga, Latvia
| | - Ilya Yanko
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.S.); (Y.V.); (K.D.); (I.Y.); (Y.H.); (O.P.)
| | - Yevheniia Husak
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.S.); (Y.V.); (K.D.); (I.Y.); (Y.H.); (O.P.)
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Julia Radwan-Pragłowska
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland; (J.R.-P.); (Ł.J.)
| | - Oksana Pogorielova
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.S.); (Y.V.); (K.D.); (I.Y.); (Y.H.); (O.P.)
| | - Łukasz Janus
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland; (J.R.-P.); (Ł.J.)
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.S.); (Y.V.); (K.D.); (I.Y.); (Y.H.); (O.P.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Iela 3, LV-1004 Riga, Latvia
| | - Viktoriia Korniienko
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.S.); (Y.V.); (K.D.); (I.Y.); (Y.H.); (O.P.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Iela 3, LV-1004 Riga, Latvia
| |
Collapse
|
3
|
Chitosan Based Materials in Cosmetic Applications: A Review. Molecules 2023; 28:molecules28041817. [PMID: 36838805 PMCID: PMC9959028 DOI: 10.3390/molecules28041817] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
This review provides a report on the properties and recent advances in the application of chitosan and chitosan-based materials in cosmetics. Chitosan is a polysaccharide that can be obtained from chitin via the deacetylation process. Chitin most commonly is extracted from cell walls in fungi and the exoskeletons of arthropods, such as crustaceans and insects. Chitosan has attracted significant academic interest, as well as the attention of the cosmetic industry, due to its interesting properties, which include being a natural humectant and moisturizer for the skin and a rheology modifier. This review paper covers the structure of chitosan, the sources of chitosan used in the cosmetic industry, and the role played by this polysaccharide in cosmetics. Future aspects regarding applications of chitosan-based materials in cosmetics are also mentioned.
Collapse
|
4
|
Effects of Neutralization on the Physicochemical, Mechanical, and Biological Properties of Ammonium-Hydroxide-Crosslinked Chitosan Scaffolds. Int J Mol Sci 2022; 23:ijms232314822. [PMID: 36499146 PMCID: PMC9735449 DOI: 10.3390/ijms232314822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
It has been reported that chitosan scaffolds, due to their physicochemical properties, stimulate cell proliferation in different tissues of the human body. This study aimed to determine the physicochemical, mechanical, and biological properties of chitosan scaffolds crosslinked with ammonium hydroxide, with different pH values, to better understand cell behavior depending on the pH of the biomaterial. Scaffolds were either neutralized with sodium hydroxide solution, washed with distilled water until reaching a neutral pH, or kept at alkaline pH. Physicochemical characterization included scanning electron microscopy (SEM), elemental composition (EDX), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), and mechanical testing. In vitro cytotoxicity was assessed via dental-pulp stem cells' (DPSCs') biocompatibility. The results revealed that the neutralized scaffolds exhibited better cell proliferation and morphology. It was concluded that the chitosan scaffolds' high pH (due to residual ammonium hydroxide) decreases DPSCs' cell viability.
Collapse
|
5
|
Pawłowski Ł, Wawrzyniak J, Banach-Kopeć A, Cieślik BM, Jurak K, Karczewski J, Tylingo R, Siuzdak K, Zieliński A. Antibacterial properties of laser-encapsulated titanium oxide nanotubes decorated with nanosilver and covered with chitosan/Eudragit polymers. BIOMATERIALS ADVANCES 2022; 138:212950. [PMID: 35913239 DOI: 10.1016/j.bioadv.2022.212950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
To provide antibacterial properties, the titanium samples were subjected to electrochemical oxidation in the fluoride-containing diethylene glycol-based electrolyte to create a titanium oxide nanotubular surface. Afterward, the surface was covered by sputtering with silver 5 nm film, and the tops of the nanotubes were capped using laser treatment, resulting in an appearance of silver nanoparticles (AgNPs) of around 30 nm in diameter on such a modified surface. To ensure a controlled release of the bactericidal substance, the samples were additionally coated with a pH-sensitive chitosan/Eudragit 100 coating, also exhibiting bactericidal properties. The modified titanium samples were characterized using SEM, EDS, AFM, Raman, and XPS techniques. The wettability, corrosion properties, adhesion of the coating to the substrate, the release of AgNPs into solutions simulating body fluids at different pH, and antibacterial properties were further investigated. The obtained composite coatings were hydrophilic, adjacent to the surface, and corrosion-resistant. An increase in the amount of silver released as ions or metallic particles into a simulated body fluid solution at acidic pH was observed for modified samples with the biopolymer coating after three days of exposure avoiding burst effect. The proposed modification was effective against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Łukasz Pawłowski
- Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Jakub Wawrzyniak
- Center for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
| | - Adrianna Banach-Kopeć
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Bartłomiej Michał Cieślik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Kacper Jurak
- Department of Electrochemistry, Corrosion and Materials Engineering, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk. Poland
| | - Jakub Karczewski
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Robert Tylingo
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Katarzyna Siuzdak
- Center for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
| | - Andrzej Zieliński
- Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
6
|
Salazar R, Salas-Gomez V, Alvarado AA, Baykara H. Preparation, Characterization and Evaluation of Antibacterial Properties of Polylactide-Polyethylene Glycol-Chitosan Active Composite Films. Polymers (Basel) 2022; 14:polym14112266. [PMID: 35683938 PMCID: PMC9183075 DOI: 10.3390/polym14112266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Chitin is a natural biopolymer obtained from the exoskeleton of crustaceans. Chitosan is a derivative of chitin, which has antimicrobial properties and potential applications in several industries. Moreover, the composites of chitosan with other biodegradable polymers, such as polylactide (PLA) as packaging film, have shown promising results. In this study, chitosan was obtained and characterized from shrimp shells. Then, polylactide-chitosan composite films were prepared by a solvent casting technique using various amounts of chitosan (0.5–2% w/w) and polyethylene glycol as plasticizer (10% w/w). Thermal, mechanical properties, Fourier-transform infrared, scanning electron microscopy, as well as antibacterial properties of composite films were determined. It was found that adding chitosan (CH) into PLA films has a significant effect on tensile strength and no effect on thermal properties. The results showed a reduction on average of 1 log of colony-forming units against Staphylococcus aureus, while there is no antibacterial effect against Salmonella typhimurium. The study proved the antibacterial effect of CH in films of PLA against Gram-positive bacteria and appropriate mechanical properties. These films could be used for the development of biodegradable/eco-friendly food packaging prototypes, as a potential solution to replace conventional non-degradable packaging materials.
Collapse
Affiliation(s)
- Rómulo Salazar
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. BOX 09-01-5863, Guayaquil 090902, Ecuador;
- Correspondence: (R.S.); (H.B.)
| | - Veronica Salas-Gomez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. BOX 09-01-5863, Guayaquil 090902, Ecuador;
| | - Adriana A. Alvarado
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil 090902, Ecuador;
| | - Haci Baykara
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. BOX 09-01-5863, Guayaquil 090902, Ecuador;
- Escuela Superior Politécnica del Litoral, ESPOL, Center of Nanotechnology Research and Development (CIDNA), Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. BOX 09-01-5863, Guayaquil 090902, Ecuador
- Correspondence: (R.S.); (H.B.)
| |
Collapse
|
7
|
A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation. Adv Colloid Interface Sci 2022; 303:102635. [PMID: 35325601 DOI: 10.1016/j.cis.2022.102635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
Appropriate surface wettability of membranes and materials are of an extreme importance for targeting separation of mixtures/emulsions such as oil from water or conversely water from oil. The development of super-wettable membranes and materials surfaces have shown remarkable potential for recovering water from oil-water emulsion while offering maximum resistance to fouling. The availability of clean and potable water has been regarded as an important global challenge for coming human generations. Oil and gas industry is continuously producing immense quantities of waste stream regarded as produced water which contains oil dispersed in water along with other several components. Treating such immense quantities of oily wastewater is of utmost need for recovering precious water for possible reuse or safe disposal. Various technologies have been developed for targeting the separation of oil-water emulsions or mixtures to harness useful potable water and oil as products. Membrane-based separations or use of porous materials such as mesh have been explored in literature for separation of oil-water mixtures/emulsions. Given the unique features of special hydrophilicity, ease of tunability, control of molecular weight, abundant availability, and potential for commercial scale up, chitosan has been extensively used for modifying membranes/meshes or preparing composites with other materials for oil-water separations. This review has described in detail the synthesis, methods of modification and application of chitosan-based super-wettable membranes/meshes and porous materials for oil-water separation. The special wettability features including super-hydrophobicity/superoleophilicity, super-oleophobicity/super-hydrophilicity and super-hydrophilicity/underwater super-oleophobicity of various chitosan-based membranes and materials have been discussed in detail in the review. The strategies for enhancing or developing special wettability for target specific applications have also been discussed. Finally, the challenges, their respective importance have been identified along with a discussion on possible solutions to these challenges.
Collapse
|
8
|
Claus-Desbonnet H, Nikly E, Nalbantova V, Karcheva-Bahchevanska D, Ivanova S, Pierre G, Benbassat N, Katsarov P, Michaud P, Lukova P, Delattre C. Polysaccharides and Their Derivatives as Potential Antiviral Molecules. Viruses 2022; 14:426. [PMID: 35216019 PMCID: PMC8879384 DOI: 10.3390/v14020426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
In the current context of the COVID-19 pandemic, it appears that our scientific resources and the medical community are not sufficiently developed to combat rapid viral spread all over the world. A number of viruses causing epidemics have already disseminated across the world in the last few years, such as the dengue or chinkungunya virus, the Ebola virus, and other coronavirus families such as Middle East respiratory syndrome (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV). The outbreaks of these infectious diseases have demonstrated the difficulty of treating an epidemic before the creation of vaccine. Different antiviral drugs already exist. However, several of them cause side effects or have lost their efficiency because of virus mutations. It is essential to develop new antiviral strategies, but ones that rely on more natural compounds to decrease the secondary effects. Polysaccharides, which have come to be known in recent years for their medicinal properties, including antiviral activities, are an excellent alternative. They are essential for the metabolism of plants, microorganisms, and animals, and are directly extractible. Polysaccharides have attracted more and more attention due to their therapeutic properties, low toxicity, and availability, and seem to be attractive candidates as antiviral drugs of tomorrow.
Collapse
Affiliation(s)
- Hadrien Claus-Desbonnet
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
| | - Elsa Nikly
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
| | - Vanya Nalbantova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
| | - Diana Karcheva-Bahchevanska
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
| | - Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
| | - Niko Benbassat
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Medical University Sofia, 1000 Sofia, Bulgaria
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
9
|
Tanjung FA, Arifin Y, Kuswardani RA. Influence of Newly Organosolv Lignin-Based Interface Modifier on Mechanical and Thermal Properties, and Enzymatic Degradation of Polylactic Acid/Chitosan Biocomposites. Polymers (Basel) 2021; 13:polym13193355. [PMID: 34641170 PMCID: PMC8512308 DOI: 10.3390/polym13193355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
This article aimed to study the effects of chitosan fiber and a newly modifying agent, based on organosolv lignin, on mechanical and thermal performances and the enzymatic degradation of PLA/chitosan biocomposites. A newly modifying agent based on polyacrylic acid-grafted organosolv lignin (PAA-g-OSL) was synthesized via free radical copolymerization using t-butyl peroxide as the initiator. The biocomposites were prepared using an internal mixer and the hot-pressed method at various fiber loadings. The results demonstrate that the addition of chitosan fiber into PLA biocomposites remarkably decreases tensile strength and elongation at break. However, it improves the Young's modulus. The modified biocomposites clearly demonstrat an improvement in tensile strength by approximately 20%, with respect to the unmodified ones, upon the presence of PAA-g-OSL. Moreover, the thermal stability of the modified biocomposites was enhanced significantly, indicating the effectiveness of the thermal protective barrier of the lignin's aromatic structure belonging to the modifying agent during pyrolysis. In addition, a slower biodegradation rate was exhibited by the modified biocomposites, relative to the unmodified ones, that confirms the positive effects of their improved interfacial interaction, resulting in a decreased area that was degraded through enzyme hydrolysis.
Collapse
Affiliation(s)
- Faisal Amri Tanjung
- Faculty of Science and Technology, Universitas Medan Area, Medan 20223, North Sumatera, Indonesia
- Correspondence: or ; Tel.: +61-7360-168
| | - Yalun Arifin
- Department of Food Business Technology, Universitas Prasetiya Mulya, BSD Raya Utama, Tangerang 15339, Banten, Indonesia;
| | | |
Collapse
|
10
|
MAPLE Coatings Embedded with Essential Oil-Conjugated Magnetite for Anti-Biofilm Applications. MATERIALS 2021; 14:ma14071612. [PMID: 33806228 PMCID: PMC8036921 DOI: 10.3390/ma14071612] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
The present study reports on the development and evaluation of nanostructured composite coatings of polylactic acid (PLA) embedded with iron oxide nanoparticles (Fe3O4) modified with Eucalyptus (Eucalyptus globulus) essential oil. The co-precipitation method was employed to synthesize the magnetite particles conjugated with Eucalyptus natural antibiotic (Fe3O4@EG), while their composition and microstructure were investigated using grazing incidence X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The matrix-assisted pulsed laser evaporation (MAPLE) technique was further employed to obtain PLA/Fe3O4@EG thin films. Optimal experimental conditions for laser processing were established by complementary infrared microscopy (IRM) and scanning electron microscopy (SEM) investigations. The in vitro biocompatibility with eukaryote cells was proven using mesenchymal stem cells, while the anti-biofilm efficiency of composite PLA/Fe3O4@EG coatings was assessed against Gram-negative and Gram-positive pathogens.
Collapse
|
11
|
Fenice M, Gorrasi S. Advances in Chitin and Chitosan Science. Molecules 2021; 26:molecules26061805. [PMID: 33806913 PMCID: PMC8005133 DOI: 10.3390/molecules26061805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
|
12
|
Francesconi S, Steiner B, Buerstmayr H, Lemmens M, Sulyok M, Balestra GM. Chitosan Hydrochloride Decreases Fusarium graminearum Growth and Virulence and Boosts Growth, Development and Systemic Acquired Resistance in Two Durum Wheat Genotypes. Molecules 2020; 25:E4752. [PMID: 33081211 PMCID: PMC7587526 DOI: 10.3390/molecules25204752] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/26/2022] Open
Abstract
Fusarium head blight (FHB) is a devastating disease for cereals. FHB is managed by fungicides at anthesis, but their efficacy is variable. Conventional fungicides accumulate in the soil and are dangerous for animal and human health. This study assayed the antifungal ability of chitosan hydrochloride against Fusarium graminearum. Chitosan reduced F. graminearum growth and downregulated the transcript of the major genes involved in the cell growth, respiration, virulence, and trichothecenes biosynthesis. Chitosan promoted the germination rate, the root and coleoptile development, and the nitrogen balance index in two durum wheat genotypes, Marco Aurelio (FHB-susceptible) and DBC480 (FHB-resistant). Chitosan reduced FHB severity when applied on spikes or on the flag leaves. FHB severity in DBC480 was of 6% at 21 dpi after chitosan treatments compared to F. graminearum inoculated control (20%). The elicitor-like property of chitosan was confirmed by the up-regulation of TaPAL, TaPR1 and TaPR2 (around 3-fold). Chitosan decreased the fungal spread and mycotoxins accumulation. This study demonstrated that the non-toxic chitosan is a powerful molecule with the potential to replace the conventional fungicides. The combination of a moderately resistant genotype (DBC480) with a sustainable compound (chitosan) will open new frontiers for the reduction of conventional compounds in agriculture.
Collapse
Affiliation(s)
- Sara Francesconi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Barbara Steiner
- Department of Agrobiotechnology Tulln (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Straße 20, A-3430 Tulln an der Donau, Austria; (B.S.); (H.B.); (M.L.); (M.S.)
| | - Hermann Buerstmayr
- Department of Agrobiotechnology Tulln (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Straße 20, A-3430 Tulln an der Donau, Austria; (B.S.); (H.B.); (M.L.); (M.S.)
| | - Marc Lemmens
- Department of Agrobiotechnology Tulln (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Straße 20, A-3430 Tulln an der Donau, Austria; (B.S.); (H.B.); (M.L.); (M.S.)
| | - Michael Sulyok
- Department of Agrobiotechnology Tulln (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Straße 20, A-3430 Tulln an der Donau, Austria; (B.S.); (H.B.); (M.L.); (M.S.)
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| |
Collapse
|
13
|
Development of Bionanocomposites Based on PLA, Collagen and AgNPs and Characterization of Their Stability and In Vitro Biocompatibility. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bionanocomposites including poly(lactic acid) (PLA), collagen, and silver nanoparticles (AgNPs) were prepared as biocompatible and stable films. Thermal properties of the PLA-based bionanocomposites indicated an increase in the crystallinity of PLA plasticized due to a small quantity of AgNPs. The results on the stability study indicate the promising contribution of the AgNPs on the durability of PLA-based bionanocomposites. In vitro biocompatibility conducted on the mouse fibroblast cell line NCTC, clone 929, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed high values of cell viability (>80%) after cell cultivation in the presence of bionanocomposite formulations for 48 h, while the percentages of lactate dehydrogenase (LDH) released in the culture medium were reduced (<15%), indicating no damages of the cell membranes. In addition, cell cycle analysis assessed by flow cytometry indicated that all tested bionanocomposites did not affect cell proliferation and maintained the normal growth rate of cells. The obtained results recommend the potential use of PLA-based bionanocomposites for biomedical coatings.
Collapse
|