1
|
Alshehri MA, Seyed MA, Panneerselvam C, Sayed SM, Shukry M. Mechanistic insights into Retama raetam's anti-proliferative and pro-apoptotic effects in A549 lung cancer cells: targeting PI3K/Akt pathway and ROS production. Toxicol Res (Camb) 2024; 13:tfae137. [PMID: 39233844 PMCID: PMC11368664 DOI: 10.1093/toxres/tfae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Lung cancer, particularly non-small cell lung cancer (NSCLC), is a leading cause of cancer-related deaths worldwide. This study investigates the molecular mechanisms behind the anti-cancer effects of the tropical desert plant Retama raetam (R. raetam) on the A549 NSCLC cell line. The research examined R. raetam's anti-proliferative effects, cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential, and cell morphology in NSCLC A549 and L-132 cells. In addition, the influence of R. raetam on DNA fragmentation, apoptotic signaling, and PI3K/Akt pathways for its anti-cancer mechanism was examined. Our results indicated that R. raetam's effects were dose- and time-dependent to exhibit anti-proliferative effects on A549 cells. R. raetam treatment promoted apoptotic cell death cycle arrest, increased apoptotic cells, depolarized the mitochondrial membrane, and induced morphological alterations in cells and nuclei. It also inhibited A549 cell migration (P < 0.05), colonization, and invasiveness. Moreover, the study demonstrated that R. raetam treatment resulted in the upregulation of Bax expression, downregulation of Bcl-2 expression, and apoptotic fragmented DNA in A549 cells. The top five bioactive compounds derived from R. raetam exhibited molecular interactions that inhibit PIK3CA and AKT1. This inhibition leads to an increased frequency of apoptosis and subsequent death of cancer cells. Additionally, R. raetam extract induced an increase in ROS formation and cytochrome c levels, indicating that its toxic effects on A549 cells involve both ROS-dependent cytotoxicity through the disruption of mitochondrial transmembrane potential ΔΨm and ROS-independent cell cycle arrest through downregulation BCL-2, PARP, E-Cadherin, PI3K, and Akt expressions pathways.
Collapse
Affiliation(s)
- Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed Ali Seyed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Chellasamy Panneerselvam
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
2
|
Chen Y, Ye Z, Chen H, Li Z. Breaking Barriers: Nanomedicine-Based Drug Delivery for Cataract Treatment. Int J Nanomedicine 2024; 19:4021-4040. [PMID: 38736657 PMCID: PMC11086653 DOI: 10.2147/ijn.s463679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024] Open
Abstract
Cataract is a leading cause of blindness globally, and its surgical treatment poses a significant burden on global healthcare. Pharmacologic therapies, including antioxidants and protein aggregation reversal agents, have attracted great attention in the treatment of cataracts in recent years. Due to the anatomical and physiological barriers of the eye, the effectiveness of traditional eye drops for delivering drugs topically to the lens is hindered. The advancements in nanomedicine present novel and promising strategies for addressing challenges in drug delivery to the lens, including the development of nanoparticle formulations that can improve drug penetration into the anterior segment and enable sustained release of medications. This review introduces various cutting-edge drug delivery systems for cataract treatment, highlighting their physicochemical properties and surface engineering for optimal design, thus providing impetus for further innovative research and potential clinical applications of anti-cataract drugs.
Collapse
Affiliation(s)
- Yilin Chen
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zi Ye
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Haixu Chen
- Institute of Geriatrics, National Clinical Research Center for Geriatrics Diseases, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zhaohui Li
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Yao Y, Zhang T, Tang M. Toxicity mechanism of engineered nanomaterials: Focus on mitochondria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123231. [PMID: 38154775 DOI: 10.1016/j.envpol.2023.123231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development of nanotechnology, engineered nanomaterials (ENMs) are widely used in various fields. This has exacerbated the environmental pollution and human exposure of ENMs. The study of toxicity of ENMs and its mechanism has become a hot research topic in recent years. Mitochondrial damage plays an important role in the toxicity of ENMs. This paper reviews the structural damage, dysfunction, and molecular level perturbations caused by different ENMs to mitochondria, including ZnO NPs, Ag NPs, TiO2 NPs, iron oxide NPs, cadmium-based quantum dots, CuO NPs, silica NPs, carbon-based nanomaterials. Among them, mitochondrial quality control plays an important role in mitochondrial damage. We further summarize the cellular level outcomes caused by mitochondrial damage, mainly including, apoptosis, ferroptosis, pyroptosis and inflammation response. In addition, we concluded that reducing mitochondrial damage at source as well as accelerating recovery from mitochondrial damage through ENMs modification and pharmacological intervention are two feasible strategies. This review further provides new insights into the mitochondrial toxicity mechanisms of ENMs and provides a new foothold for predicting human health and environmental risks of ENMs.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
4
|
Kshetrimayum V, Heisnam R, Keithellakpam OS, Radhakrishnanand P, Akula SJ, Mukherjee PK, Sharma N. Paris polyphylla Sm. Induces Reactive Oxygen Species and Caspase 3-Mediated Apoptosis in Colorectal Cancer Cells In Vitro and Potentiates the Therapeutic Significance of Fluorouracil and Cisplatin. PLANTS (BASEL, SWITZERLAND) 2023; 12:1446. [PMID: 37050072 PMCID: PMC10097216 DOI: 10.3390/plants12071446] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
Paris polyphylla Sm. (Melanthiaceae) is an essential, vulnerable herb with a wide range of traditional applications ranging from fever to cancer in various communities. The use of P. polyphylla in India is limited to traditional healers. Here, we demonstrated that P. polyphylla extract (PPE) has good phenol, flavonoid, saponin, and steroidal saponin content and anti-oxidant activity with IC50 35.12 ± 6.1 μg/mL in DPPH and 19.69 ± 6.7 μg/mL in ABTS. Furthermore, PPE induces cytotoxicity in HCT-116 with IC50 8.72 ± 0.71 μg/mL without significant cytotoxicity inthe normal human colon epithelial cell line, CCD 841 CoN. PPE inhibits the metastatic property and induces apoptosis in HCT-116, as measured by Annexin V/PI, by increasing the production of reactive oxygen species (ROS) and caspase 3 activation. PPE acts synergistically with 5FU and cisplatin in HCT-116 and potentiates their therapeutic significance. Steroidal saponins with anticancer activities were detected in PPE by HR-LCMS. The present study demonstrated that PPE induces apoptosis by increasing ROS and activating caspase 3, which was attributed to steroidal saponins. PPE can be used as a potential natural remedy for colon cancer.
Collapse
Affiliation(s)
- Vimi Kshetrimayum
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneshwar 751024, India
| | - Rameshwari Heisnam
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneshwar 751024, India
| | - Ojit Singh Keithellakpam
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
| | - Pullapanthula Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Sai Jyothi Akula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Pulok K. Mukherjee
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
| | - Nanaocha Sharma
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
| |
Collapse
|
5
|
Luo X, Xie D, Su J, Hu J. Inflammatory Genes Associated with Pristine Multi-Walled Carbon Nanotubes-Induced Toxicity in Ocular Cells. Int J Nanomedicine 2023; 18:2465-2484. [PMID: 37192896 PMCID: PMC10183194 DOI: 10.2147/ijn.s394694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
Background The wide application of multi-walled carbon nanotubes (MWCNTs) in various fields has raised enormous concerns regarding their safety for humans. However, studies on the toxicity of MWCNTs to the eye are rare and potential molecular mechanisms are completely lacking. This study was to evaluate the adverse effects and toxic mechanisms of MWCNTs on human ocular cells. Methods Human retinal pigment epithelial cells (ARPE-19) were treated with pristine MWCNTs (7-11 nm) (0, 25, 50, 100 or 200 μg/mL) for 24 hours. MWCNTs uptake into ARPE-19 cells was examined using transmission electron microscopy (TEM). The cytotoxicity was evaluated by CCK-8 assay. The death cells were detected by Annexin V-FITC/PI assay. RNA profiles in MWCNT-exposed and non-exposed cells (n = 3) were analyzed using RNA-sequencing. The differentially expressed genes (DEGs) were identified through the DESeq2 method and hub of which were filtered by weighted gene co-expression, protein-protein interaction (PPI) and lncRNA-mRNA co-expression network analyses. The mRNA and protein expression levels of crucial genes were verified using quantitative polymerase chain reaction (qPCR), colorimetric analysis, ELISA and Western blotting. The toxicity and mechanisms of MWCNTs were also validated in human corneal epithelial cells (HCE-T). Results TEM analysis indicated the internalization of MWCNTs into ARPE-19 cells to cause cell damage. Compared with untreated ARPE-19 cells, those exposed to MWCNTs exhibited significantly decreased cell viabilities in a dose-dependent manner. The percentages of apoptotic (early, Annexin V positive; late, Annexin V and PI positive) and necrotic (PI positive) cells were significantly increased after exposure to IC50 concentration (100 μg/mL). A total of 703 genes were identified as DEGs; 254 and 56 of them were, respectively, included in darkorange2 and brown1 modules that were significantly associated with MWCNT exposure. Inflammation-related genes (including CXCL8, MMP1, CASP3, FOS, CXCL2 and IL11) were screened as hub genes by calculating the topological characteristics of genes in the PPI network. Two dysregulated long non-coding RNAs (LUCAT1 and SCAT8) were shown to regulate these inflammation-related genes in the co-expression network. The mRNA levels of all eight genes were confirmed to be upregulated, while caspase-3 activity and the release of CXCL8, MMP1, CXCL2, IL11 and FOS proteins were demonstrated to be increased in MWCNT-treated ARPE-19 cells. MWCNTs exposure also can induce cytotoxicity and increase the caspase-3 activity and the expression of LUCAT1, MMP1, CXCL2, and IL11 mRNA and protein in HCE-T cells. Conclusion Our study provides promising biomarkers for monitoring MWCNT-induced eye disorders and targets for developing preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People’s Republic of China
- Correspondence: Xiaogang Luo; Jianchen Hu, Tel +86-0512-67162531, Email ;
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Jing Su
- Shanghai Institute of Spacecraft Equipment, Shanghai, 200240, People’s Republic of China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
6
|
Yang C, Yang J, Lu A, Gong J, Yang Y, Lin X, Li M, Xu H. Nanoparticles in ocular applications and their potential toxicity. Front Mol Biosci 2022; 9:931759. [PMID: 35911959 PMCID: PMC9334523 DOI: 10.3389/fmolb.2022.931759] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology has been developed rapidly in recent decades and widely applied in ocular disease therapy. Nano-drug delivery systems overcome the bottlenecks of current ophthalmic drug delivery and are characterized with strong biocompatibility, stability, efficiency, sustainability, controllability, and few side effects. Nanoparticles have been identified as a promising and generally safe ophthalmic drug-delivery system based on the toxicity assessment in animals. Previous studies have found that common nanoparticles can be toxic to the cornea, conjunctiva, and retina under certain conditions. Because of the species differences between humans and animals, advanced in vitro cell culture techniques, such as human organoids, can mimic the human organism to a certain extent, bringing nanoparticle toxicity assessment to a new stage. This review summarizes the advanced application of nanoparticles in ocular drug delivery and the potential toxicity, as well as some of the current challenges and future opportunities in nanotoxicological evaluation.
Collapse
Affiliation(s)
- Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Junling Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Ao Lu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuanxing Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xi Lin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- *Correspondence: Minghui Li, ; Haiwei Xu,
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- *Correspondence: Minghui Li, ; Haiwei Xu,
| |
Collapse
|
7
|
Pfaff A, Chernatynskaya A, Vineyard H, Ercal N. Thiol antioxidants protect human lens epithelial (HLE B-3) cells against tert-butyl hydroperoxide-induced oxidative damage and cytotoxicity. Biochem Biophys Rep 2022; 29:101213. [PMID: 35128081 PMCID: PMC8808075 DOI: 10.1016/j.bbrep.2022.101213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
Oxidative damage to lens epithelial cells plays an important role in the development of age-related cataract, and the health of the lens has important implications for overall ocular health. As a result, there is a need for effective therapeutic agents that prevent oxidative damage to the lens. Thiol antioxidants such as tiopronin or N-(2-mercaptopropionyl)glycine (MPG), N-acetylcysteine amide (NACA), N-acetylcysteine (NAC), and exogenous glutathione (GSH) may be promising candidates for this purpose, but their ability to protect lens epithelial cells is not well understood. The effectiveness of these compounds was compared by exposing human lens epithelial cells (HLE B-3) to the chemical oxidant tert-butyl hydroperoxide (tBHP) and treating the cells with each of the antioxidant compounds. MTT cell viability, apoptosis, reactive oxygen species (ROS), and levels of intracellular GSH, the most important antioxidant in the lens, were measured after treatment. All four compounds provided some degree of protection against tBHP-induced oxidative stress and cytotoxicity. Cells treated with NACA exhibited the highest viability after exposure to tBHP, as well as decreased ROS and increased intracellular GSH. Exogenous GSH also preserved viability and increased intracellular GSH levels. MPG scavenged significant amounts of ROS, and NAC increased intracellular GSH levels. Our results suggest that both scavenging ROS and increasing GSH may be necessary for effective protection of lens epithelial cells. Further, the compounds tested may be useful for the development of therapeutic strategies that aim to prevent oxidative damage to the lens.
Collapse
Key Words
- 7-AAD, 7-aminoactinomycin D
- ATCC, American Type Culture Collection
- Antioxidant
- Carboxy-H2DCFDA, 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate
- Cataract
- EMEM, Eagle's minimum essential medium
- FBS, fetal bovine serum
- FDA, United States Food and Drug Administration
- GSH, glutathione
- GSSG, glutathione disulfide
- Glutathione
- H2O2, hydrogen peroxide
- HLE B-3, human (eye) lens epithelial cell line B-3
- Lens
- MPG, N-(2-mercaptopropionyl)glycine
- MTT, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
- NAC, N-acetylcysteine
- NACA, N-acetylcysteine amide
- OH•, hydroxyl radical
- Oxidative stress
- PBS, phosphate-buffered saline
- ROS, reactive oxygen species
- Thiol
- tBHP, tert-butyl hydroperoxide
Collapse
Affiliation(s)
| | | | - Hannah Vineyard
- Department of Chemistry, Missouri University of Science & Technology, 104 Schrenk Hall, 400 W. 11th Street, Rolla, MO, 65409, USA
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science & Technology, 104 Schrenk Hall, 400 W. 11th Street, Rolla, MO, 65409, USA
| |
Collapse
|
8
|
Saifi MA, Seal S, Godugu C. Nanoceria, the versatile nanoparticles: Promising biomedical applications. J Control Release 2021; 338:164-189. [PMID: 34425166 DOI: 10.1016/j.jconrel.2021.08.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Nanotechnology has been a boon for the biomedical field due to the freedom it provides for tailoring of pharmacokinetic properties of different drug molecules. Nanomedicine is the medical application of nanotechnology for the diagnosis, treatment and/or management of the diseases. Cerium oxide nanoparticles (CNPs) are metal oxide-based nanoparticles (NPs) which possess outstanding reactive oxygen species (ROS) scavenging activities primarily due to the availability of "oxidation switch" on their surface. These NP have been found to protect from a number of disorders with a background of oxidative stress such as cancer, diabetes etc. In fact, the CNPs have been found to possess the environment-dependent ROS modulating properties. In addition, the inherent catalase, SOD, oxidase, peroxidase and phosphatase mimetic properties of CNPs provide them superiority over a number of NPs. Further, chemical reactivity of CNPs seems to be a function of their surface chemistry which can be precisely tuned by defect engineering. However, the contradictory reports make it necessary to critically evaluate the potential of CNPs, in the light of available literature. The review is aimed at probing the feasibility of CNPs to push towards the clinical studies. Further, we have also covered and censoriously discussed the suspected negative impacts of CNPs before making our way to a consensus. This review aims to be a comprehensive, authoritative, critical, and accessible review of general interest to the scientific community.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sudipta Seal
- University of Central Florida, 12760 Pegasus Drive ENG I, Suite 207, Orlando, FL 32816, USA
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Vikulina AS, Campbell J. Biopolymer-Based Multilayer Capsules and Beads Made via Templating: Advantages, Hurdles and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2502. [PMID: 34684943 PMCID: PMC8537085 DOI: 10.3390/nano11102502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
One of the undeniable trends in modern bioengineering and nanotechnology is the use of various biomolecules, primarily of a polymeric nature, for the design and formulation of novel functional materials for controlled and targeted drug delivery, bioimaging and theranostics, tissue engineering, and other bioapplications. Biocompatibility, biodegradability, the possibility of replicating natural cellular microenvironments, and the minimal toxicity typical of biogenic polymers are features that have secured a growing interest in them as the building blocks for biomaterials of the fourth generation. Many recent studies showed the promise of the hard-templating approach for the fabrication of nano- and microparticles utilizing biopolymers. This review covers these studies, bringing together up-to-date knowledge on biopolymer-based multilayer capsules and beads, critically assessing the progress made in this field of research, and outlining the current challenges and perspectives of these architectures. According to the classification of the templates, the review sequentially considers biopolymer structures templated on non-porous particles, porous particles, and crystal drugs. Opportunities for the functionalization of biopolymer-based capsules to tailor them toward specific bioapplications is highlighted in a separate section.
Collapse
Affiliation(s)
- Anna S. Vikulina
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg, 1, 14476 Potsdam, Germany
- Bavarian Polymer Institute, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Dr.-Mack-Straße, 77, 90762 Fürth, Germany
| | - Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
10
|
Akhtar MJ, Ahamed M, Alhadlaq H. Anti-Inflammatory CeO 2 Nanoparticles Prevented Cytotoxicity Due to Exogenous Nitric Oxide Donors via Induction Rather Than Inhibition of Superoxide/Nitric Oxide in HUVE Cells. Molecules 2021; 26:5416. [PMID: 34500851 PMCID: PMC8434366 DOI: 10.3390/molecules26175416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism behind the cytoprotective potential of cerium oxide nanoparticles (CeO2 NPs) against cytotoxic nitric oxide (NO) donors and H2O2 is still not clear. Synthesized and characterized CeO2 NPs significantly ameliorated the lipopolysaccharide (LPS)-induced cytokines IL-1β and TNF-α. The main goal of this study was to determine the capacities of NPs regarding signaling effects that could have occurred due to reactive oxygen species (ROS) and/or NO, since NP-induced ROS/NO did not lead to toxicity in HUVE cells. Concentrations that induced 50% cell death (i.e., IC50s) of two NO donors (DETA-NO; 1250 ± 110 µM and sodium nitroprusside (SNP); 950 ± 89 µM) along with the IC50 of H2O2 (120 ± 7 µM) were utilized to evaluate cytoprotective potential and its underlying mechanism. We determined total ROS (as a collective marker of hydrogen peroxide, superoxide radical (O2•-), hydroxyl radical, etc.) by DCFH-DA and used a O2•- specific probe DHE to decipher prominent ROS. The findings revealed that signaling effects mediated mainly by O2•- and/or NO are responsible for the amelioration of toxicity by CeO2 NPs at 100 µg/mL. The unaltered effect on mitochondrial membrane potential (MMP) due to NP exposure and, again, CeO2 NPs-mediated recovery in the loss of MMP due to exogenous NO donors and H2O2 suggested that NP-mediated O2•- production might be extra-mitochondrial. Data on activated glutathione reductase (GR) and unaffected glutathione peroxidase (GPx) activities partially explain the mechanism behind the NP-induced gain in GSH and persistent cytoplasmic ROS. The promoted antioxidant capacity due to non-cytotoxic ROS and/or NO production, rather than inhibition, by CeO2 NP treatment may allow cells to develop the capacity to tolerate exogenously induced toxicity.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hisham Alhadlaq
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
11
|
Diao L, Tang N, Zhang C, Cheng J, Zhang Z, Wang S, Wu C, Zhang L, Tao L, Li Z, Zhang Y. Avermectin induced DNA damage to the apoptosis and autophagy in human lung epithelial A549 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112129. [PMID: 33740486 DOI: 10.1016/j.ecoenv.2021.112129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Avermectin (AVM), as a biological insecticide, is widely used in agriculture and forestry production globally. However, inhalation of AVM may pose a risk, and the lung is the direct target, but the cytotoxicity of AVM on human lung cells is still unclear. Here, we attempted to elucidate the cytotoxic effect and molecular mechanism of AVM on human lung A549 cells. The results indicated that AVM inhibits cell proliferation, and enhances programmed cell death (apoptosis and autophagy). In addition, we found the AVM-treated cells showed an obvious drop in mitochondrial membrane potential and LC3-I/II, increased ROS production, DNA double-strand breaks, caspase-3/9 activated, PARP cleaved, cytochrome c and Bax/Bcl-2 content rise. The results showed that AVM induced mitochondria-related apoptosis and autophagy in lung A549 cells. These results indicate that AVM can pose a potential threat to human health by inducing DNA damage and programmed cell death.
Collapse
Affiliation(s)
- Lin Diao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ning Tang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Zhang
- Department of Pathology, UT southwestern Medical Center, Dallas, TX 75390, United States
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenhai Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Siyu Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Can Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lutong Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
12
|
Hanafy BI, Cave GWV, Barnett Y, Pierscionek BK. Nanoceria Prevents Glucose-Induced Protein Glycation in Eye Lens Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1473. [PMID: 34206140 PMCID: PMC8228845 DOI: 10.3390/nano11061473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cerium oxide nanoparticles (nanoceria) are generally known for their recyclable antioxidative properties making them an appealing biomaterial for protecting against physiological and pathological age-related changes that are caused by reactive oxygen species (ROS). Cataract is one such pathology that has been associated with oxidation and glycation of the lens proteins (crystallins) leading to aggregation and opacification. A novel coated nanoceria formulation has been previously shown to enter the human lens epithelial cells (HLECs) and protect them from oxidative stress induced by hydrogen peroxide (H2O2). In this work, the mechanism of nanoceria uptake in HLECs is studied and multiple anti-cataractogenic properties are assessed in vitro. Our results show that the nanoceria provide multiple beneficial actions to delay cataract progression by (1) acting as a catalase mimetic in cells with inhibited catalase, (2) improving reduced to oxidised glutathione ratio (GSH/GSSG) in HLECs, and (3) inhibiting the non-enzymatic glucose-induced glycation of the chaperone lens protein α-crystallin. Given the multifactorial nature of cataract progression, the varied actions of nanoceria render them promising candidates for potential non-surgical therapeutic treatment.
Collapse
Affiliation(s)
- Belal I. Hanafy
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Gareth W. V. Cave
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Yvonne Barnett
- Faculty of Heath, Education, Medicine and Social Care and Pharmaceutical Research Group, Medical Technology Research Centre, Anglia Ruskin University, Cambridgeshire CB1 1PT, UK;
| | - Barbara K. Pierscionek
- Faculty of Heath, Education, Medicine and Social Care and Pharmaceutical Research Group, Medical Technology Research Centre, Anglia Ruskin University, Cambridgeshire CB1 1PT, UK;
- School of Life Science and Education, Staffordshire University College Road, Stoke on Trent ST4 2DE, UK
| |
Collapse
|
13
|
Dal Magro R, Vitali A, Fagioli S, Casu A, Falqui A, Formicola B, Taiarol L, Cassina V, Marrano CA, Mantegazza F, Anselmi-Tamburini U, Sommi P, Re F. Oxidative Stress Boosts the Uptake of Cerium Oxide Nanoparticles by Changing Brain Endothelium Microvilli Pattern. Antioxidants (Basel) 2021; 10:antiox10020266. [PMID: 33572224 PMCID: PMC7916071 DOI: 10.3390/antiox10020266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular oxidative stress is considered a worsening factor in the progression of Alzheimer's disease (AD). Increased reactive oxygen species (ROS) levels promote the accumulation of amyloid-β peptide (Aβ), one of the main hallmarks of AD. In turn, Aβ is a potent inducer of oxidative stress. In early stages of AD, the concomitant action of oxidative stress and Aβ on brain capillary endothelial cells was observed to compromise the blood-brain barrier functionality. In this context, antioxidant compounds might provide therapeutic benefits. To this aim, we investigated the antioxidant activity of cerium oxide nanoparticles (CNP) in human cerebral microvascular endothelial cells (hCMEC/D3) exposed to Aβ oligomers. Treatment with CNP (13.9 ± 0.7 nm in diameter) restored basal ROS levels in hCMEC/D3 cells, both after acute or prolonged exposure to Aβ. Moreover, we found that the extent of CNP uptake by hCMEC/D3 was +43% higher in the presence of Aβ. Scanning electron microscopy and western blot analysis suggested that changes in microvilli structures on the cell surface, under pro-oxidant stimuli (Aβ or H2O2), might be involved in the enhancement of CNP uptake. This finding opens the possibility to exploit the modulation of endothelial microvilli pattern to improve the uptake of anti-oxidant particles designed to counteract ROS-mediated cerebrovascular dysfunctions.
Collapse
Affiliation(s)
- Roberta Dal Magro
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
- Correspondence:
| | - Agostina Vitali
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (A.V.); (U.A.-T.)
| | - Stefano Fagioli
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Alberto Casu
- NABLA Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (A.C.); (A.F.)
| | - Andrea Falqui
- NABLA Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (A.C.); (A.F.)
| | - Beatrice Formicola
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Lorenzo Taiarol
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Valeria Cassina
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Claudia Adriana Marrano
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Francesco Mantegazza
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | | | - Patrizia Sommi
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Francesca Re
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| |
Collapse
|
14
|
Synthesis of Negatively Charged CeO2 NPs and In Vitro Cytotoxicity Human Lens Epithelial (HLE) Cell Lines—Investigation for New Therapy for Cataract Treatment. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01793-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Sadidi H, Hooshmand S, Ahmadabadi A, Javad Hosseini S, Baino F, Vatanpour M, Kargozar S. Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering. Molecules 2020; 25:E4559. [PMID: 33036163 PMCID: PMC7583868 DOI: 10.3390/molecules25194559] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Several biocompatible materials have been applied for managing soft tissue lesions; cerium oxide nanoparticles (CNPs, or nanoceria) are among the most promising candidates due to their outstanding properties, including antioxidant, anti-inflammatory, antibacterial, and angiogenic activities. Much attention should be paid to the physical properties of nanoceria, since most of its biological characteristics are directly determined by some of these relevant parameters, including the particle size and shape. Nanoceria, either in bare or functionalized forms, showed the excellent capability of accelerating the healing process of both acute and chronic wounds. The skin, heart, nervous system, and ophthalmic tissues are the main targets of nanoceria-based therapies, and the other soft tissues may also be evaluated in upcoming experimental studies. For the repair and regeneration of soft tissue damage and defects, nanoceria-incorporated film, hydrogel, and nanofibrous scaffolds have been proven to be highly suitable replacements with satisfactory outcomes. Still, some concerns have remained regarding the long-term effects of nanoceria administration for human tissues and organs, such as its clearance from the vital organs. Moreover, looking at the future, it seems necessary to design and develop three-dimensional (3D) printed scaffolds containing nanoceria for possible use in the concepts of personalized medicine.
Collapse
Affiliation(s)
- Hossein Sadidi
- General Surgery Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 9176999311, Iran
| | - Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Ali Ahmadabadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad 9176999311, Iran
| | - Seyed Javad Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine,, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Morvarid Vatanpour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| |
Collapse
|
16
|
Mehta A, Scammon B, Shrake K, Bredikhin M, Gil D, Shekunova T, Baranchikov A, Ivanov V, Reukov V. Nanoceria: Metabolic interactions and delivery through PLGA-encapsulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111003. [PMID: 32993995 DOI: 10.1016/j.msec.2020.111003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
Abstract
Cerium oxide nanoparticles (nanoceria) have recyclable antioxidative activity. It has numerous potential applications in biomedical engineering, such as mitigating damage from burns, radiation, and bacterial infection. This mitigating activity is analogous to that property of metabolic enzymes such as superoxide dismutase (SOD) and catalase - scavengers of reactive oxygen species (ROS). Therefore, nanoceria can protect cells from environmental oxidative stress. This therapeutic effect prompted studies of nanoceria and metabolic enzymes as a combination therapy. The activity and structure of SOD, catalase, and lysozyme were examined in the presence of nanoceria. A complementary relationship between SOD and nanoceria motivated the present work, in which we explored a method for simultaneous delivery of SOD and nanoceria. The biocompatibility and tunable degradation of poly(lactic-co-glycolic acid) (PLGA) made it a candidate material for encapsulating both nanoceria and SOD. Cellular uptake studies were conducted along with a cytotoxicity assay. The antioxidative properties of PLGA-nanoceria-SOD particles were verified by adding H2O2 to cell culture and imaging with fluorescent markers of oxidative stress. Our results suggest that PLGA is a suitable encapsulating carrier for simultaneous delivering nanoceria and SOD together, and that this combination effectively reduces oxidative stress in vitro.
Collapse
Affiliation(s)
- Apoorva Mehta
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA.
| | - Bradley Scammon
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA.
| | - Kevin Shrake
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA.
| | - Mikhail Bredikhin
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA.
| | - Dmitry Gil
- Department of Orthopaedics, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114, USA; Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Taisiya Shekunova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow, Russia
| | - Alexander Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow, Russia
| | - Vladimir Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow, Russia.
| | - Vladimir Reukov
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA; University of Georgia, 315 Dawson Hall, Athens, GA, USA.
| |
Collapse
|
17
|
Alkhtib A, Scholey D, Carter N, Cave GW, Hanafy BI, Kempster SR, Mekapothula S, Roxborough ET, Burton EJ. Bioavailability of Methionine-Coated Zinc Nanoparticles as a Dietary Supplement Leads to Improved Performance and Bone Strength in Broiler Chicken Production. Animals (Basel) 2020; 10:E1482. [PMID: 32846875 PMCID: PMC7552270 DOI: 10.3390/ani10091482] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023] Open
Abstract
Recently, nanotechnology has been widely adopted in many fields. The goal of this study was to evaluate the potential for amino acid coated nano minerals as a supplement in broiler feed. Zinc was selected as a model mineral for this test and supplementation of nano zinc, both coated and uncoated was compared with organic and inorganic commercial forms of zinc. A total of 48 pens (8 birds each) were assigned to one of the following dietary treatments: Control, methionine-Zinc chelate (M-Zn), nano zinc oxide (Nano-ZnO), and methionine coated nano zinc oxide (M-Nano-ZnO). All experimental diets were formulated with the same total zinc, methionine, protein, and energy content with just the zinc source as a variable. Bird weight, feed intake and feed conversion ratios were recorded weekly, with three birds culled (sacrificed) at day 21 and day 35 for sampling measures. Ileal digestibility of zinc was determined at day 21 and day 35 using titanium dioxide as an inert marker. Blood serum, liver and spleen samples were collected at day 21 and day 35 and analysed for zinc content via inductively coupled plasma mass spectrometry (ICP-MS). Tibia strength and morphometrics were measured from both legs of three birds per pen at day 21 and day 35. The study was conducted at Nottingham Trent University Poultry Unit, UK. The novel method of producing nano minerals coated with amino acids was successfully tested with zinc and material produced to test in the feeding study. Methionine coated nano zinc oxide supplementation significantly improved bird weight gain and the increased feed intake of broilers compared to an inorganic zinc form. Ileal digestibility was also improved with this methionine-nano zinc. Moreover, this supplementation improved the tibia strength of broilers at the age of 21 days, though this was not observed at day 35. Therefore, M-Nano-ZnO could be used to supplement broilers to improve both performance and digestibility with a limited positive impact on bone strength. The results of the current study suggest that the amino acid coating of nano minerals can improve the digestibility of minerals which may have further implications for the field of mineral nutrition in animal feeds.
Collapse
Affiliation(s)
- Ashraf Alkhtib
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (A.A.); (D.S.)
| | - Dawn Scholey
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (A.A.); (D.S.)
| | - Nicholas Carter
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (N.C.); (B.I.H.); (S.R.J.K.); (S.M.); (E.T.R.)
| | - Gareth W.V. Cave
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (N.C.); (B.I.H.); (S.R.J.K.); (S.M.); (E.T.R.)
| | - Belal I. Hanafy
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (N.C.); (B.I.H.); (S.R.J.K.); (S.M.); (E.T.R.)
| | - Siani R.J. Kempster
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (N.C.); (B.I.H.); (S.R.J.K.); (S.M.); (E.T.R.)
| | - Subbareddy Mekapothula
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (N.C.); (B.I.H.); (S.R.J.K.); (S.M.); (E.T.R.)
| | - Eve T. Roxborough
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (N.C.); (B.I.H.); (S.R.J.K.); (S.M.); (E.T.R.)
| | - Emily J. Burton
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (A.A.); (D.S.)
| |
Collapse
|