1
|
Gkikas G, Katsiris D, Vitsos A, Gioran A, Ieronymaki D, Kostaki M, Ladopoulos G, Ioannidou V, Theodoraki E, Chondrogianni N, Sfiniadakis I, Papaioannou GT, Rallis MC. Comparative Study of Cutaneous Squamous Cell Carcinogenesis in Different Hairless Murine Models. Cancers (Basel) 2024; 16:3546. [PMID: 39456640 PMCID: PMC11506169 DOI: 10.3390/cancers16203546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: In recent decades, a significant global increase in the incidence of non-melanoma skin cancer has been observed. To explore the pathogenesis of and potential therapeutic approaches for squamous cell carcinoma, various in vivo studies using mouse models have been conducted. However, investigations comparing different hairless mouse models, with or without melanin, as well as models with hypercholesterolemia and immunosuppression, in terms of their ability to induce squamous cell carcinoma have yet to be undertaken. Methods: Four mouse strains, namely SKH-hr1, SKH-hr2, SKH-hr2+ApoE, and immunodeficient Nude (Foxn1 knockout), were exposed to UVA and UVB radiation three times per week, initially to 1 Minimal Erythemal Dose (MED), incrementally increased weekly to a maximum dose of 3 MED. Clinical evaluation, photodocumentation, and biophysical parameters were monitored, along with proteasome protein activity and histopathological assessments. Results: The SKH-hr1 model primarily developed actinic keratosis without significant progression to invasive squamous cell carcinoma (SCC), while the SKH-hr2 and SKH-hr2+ApoE models exhibited a higher likelihood and intensity of papilloma and aggressive SCC formation, with the latter showing upregulated proteasome activity. Histopathological analysis confirmed the presence of poorly differentiated, invasive SCCs in the SKH-hr2 and SKH-hr2+ApoE models, contrasting with the less aggressive SCCs in the Nude mice and the mixed lesions observed in the SKH-hr1 mice. Conclusions: The SKH-hr2+ApoE and SKH-hr2 mice were identified as the most suitable for further exploration of squamous cell carcinogenesis. In contrast, the SKH-hr1 mice were found to be the least suitable, even though they are albino. Notably, proteasome analysis revealed a potential role of proteasome activity in squamous cell carcinogenesis.
Collapse
Affiliation(s)
- Georgios Gkikas
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece; (G.G.); (D.K.); (A.V.); (D.I.); (M.K.); (G.L.); (V.I.); (E.T.)
| | - Dimitrios Katsiris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece; (G.G.); (D.K.); (A.V.); (D.I.); (M.K.); (G.L.); (V.I.); (E.T.)
| | - Andreas Vitsos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece; (G.G.); (D.K.); (A.V.); (D.I.); (M.K.); (G.L.); (V.I.); (E.T.)
| | - Anna Gioran
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (A.G.); (N.C.)
| | - Dimitra Ieronymaki
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece; (G.G.); (D.K.); (A.V.); (D.I.); (M.K.); (G.L.); (V.I.); (E.T.)
| | - Maria Kostaki
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece; (G.G.); (D.K.); (A.V.); (D.I.); (M.K.); (G.L.); (V.I.); (E.T.)
| | - Georgios Ladopoulos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece; (G.G.); (D.K.); (A.V.); (D.I.); (M.K.); (G.L.); (V.I.); (E.T.)
| | - Vaya Ioannidou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece; (G.G.); (D.K.); (A.V.); (D.I.); (M.K.); (G.L.); (V.I.); (E.T.)
| | - Elisavet Theodoraki
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece; (G.G.); (D.K.); (A.V.); (D.I.); (M.K.); (G.L.); (V.I.); (E.T.)
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Chemical Biology, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (A.G.); (N.C.)
| | - Ioannis Sfiniadakis
- Pathologoanatomic Laboratory, Naval Hospital of Athens, 11521 Athens, Greece;
| | - Georgios T. Papaioannou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece; (G.G.); (D.K.); (A.V.); (D.I.); (M.K.); (G.L.); (V.I.); (E.T.)
| | - Michail Christou Rallis
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece; (G.G.); (D.K.); (A.V.); (D.I.); (M.K.); (G.L.); (V.I.); (E.T.)
| |
Collapse
|
2
|
Tsoneva E, Dimitrova P, Metodiev M, Shivarov V, Vasileva-Slaveva M, Yordanov A, Kostov S. Utility of expression of 4-hydroxynonenal tested by immunohistochemistry for cervical cancer. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2024; 23:6-13. [PMID: 38690070 PMCID: PMC11056727 DOI: 10.5114/pm.2024.136356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 05/02/2024]
Abstract
Introduction Cervical cancer (CC) is a leading cause of mortality in women around the world, with the highest incidence rate still being in developing countries. The most common aetiological factor is infection with high-risk human papilloma virus viral strains. Oxidative stress through generation of reactive oxygen species leads to lipid peroxidation and DNA damage. Studies show that reactive lipid electrophiles such as 4-hydroxynonenal (4-HNE) produced in the process play an important role in cancer signalling pathways and are a good biomarker for oxidative stress. We aim to investigate the prognostic role of 4-HNE as a biomarker for oxidative stress in patients in early and advanced stages of CC measured by immunohistochemistry. Material and methods This is a retrospective study of 69 patients treated at our Department of Oncogynaecology. Paraffin embedded tumour tissues were immunohistochemically tested for the levels of expression of 4-HNE. The results for H-score, Allred score, and combined score were investigated for association with tumour size, lymph node status, andInternational Federation of Gynaecology and Obstetrics stage. Results 4-hydroxynonenal showed higher expression in more advanced stages of CC and in cases with involved lymph nodes. Tumour size was not associated with the levels of 4-HNE. Conclusions To best of our knowledge, this is the first study to use immunohistochemistry to examine the expression of 4-HNE as a prognostic factor in CC. The 3 score systems showed similar results. The pattern of 4-HNE histological appearance is dependent on the histological origin of cancer and is not universal.
Collapse
Affiliation(s)
| | - Polina Dimitrova
- Department of Pathology, Medical University Pleven, Pleven, Bulgaria
| | | | | | | | - Angel Yordanov
- Department of Gynaecological Oncology, Medical University Pleven, Pleven, Bulgaria
| | - Stoyan Kostov
- Department of Gynaecology, Medical University Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| |
Collapse
|
3
|
Lin HY, Zhu X, Mazumder HOR, Ronis M, Pedersen KB, Hagensee M. Serum oxidative biomarkers associated with genital HPV infection and cervical lesions in women. J Med Virol 2024; 96:e29362. [PMID: 38180249 PMCID: PMC10845121 DOI: 10.1002/jmv.29362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Human papillomavirus (HPV) infection is a major cause of cervical cancer. Studies showed HPV carcinogenesis may be induced by oxidative stress affecting the host immune system. The objective of this study is to evaluate levels of four circulating oxidative stress biomarkers associated with the HPV infection, persistence, and cervical lesion status in women. The three serum biomarkers measuring oxidative damage to biomolecules (8-oxodG, 8-oxo-7,8-dihydro-2'-deoxyguanosine [8-oxodG] for DNA, 4-hydroxy-2-nonenal [4-HNE] for lipid, and protein carbonyl [PC] for protein) and one antioxidant (glutathione, GSH) collected from 38 women were evaluated. The PC levels were significantly higher for women with oncogenic HPV infection (p = 0.047) and persistence (p = 0.053) based on the unadjusted linear model. In particular, women with ≥3 oncogenic HPV types had a higher PC level than those without HPV infection (p = 0.041). Women with low-grade squamous intraepithelial lesions showed an elevated PC (p = 0.058). These trends remained similar after adjusting for age. The GSH levels were lower for women infected with ≥3 oncogenic HPV types based on age-adjusted results (p = 0.061). This study supported that serum PC was associated with HPV infection, persistence, and cervical lesions, so it can potentially be used to monitor HPV carcinogenesis. Further large-scale studies will be needed to confirm these findings.
Collapse
Affiliation(s)
- Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana
State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Xiaodan Zhu
- Biostatistics Program, School of Public Health, Louisiana
State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Harun Or Rashid Mazumder
- Biostatistics Program, School of Public Health, Louisiana
State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Martin Ronis
- Department of Pharmacology & Experimental Therapeutics,
School of Medicine, Louisiana State University Health Sciences Center, New Orleans,
Louisiana, USA
| | - Kim Brint Pedersen
- Department of Pharmacology & Experimental Therapeutics,
School of Medicine, Louisiana State University Health Sciences Center, New Orleans,
Louisiana, USA
| | - Michael Hagensee
- Section of Infection Diseases, Department of Medicine,
School of Medicine, Louisiana State University Health Sciences Center, New Orleans,
Louisiana, USA
| |
Collapse
|
4
|
Moldogazieva NT, Zavadskiy SP, Astakhov DV, Terentiev AA. Lipid peroxidation: Reactive carbonyl species, protein/DNA adducts, and signaling switches in oxidative stress and cancer. Biochem Biophys Res Commun 2023; 687:149167. [PMID: 37939506 DOI: 10.1016/j.bbrc.2023.149167] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Under the exposure of lipids to reactive oxygen species (ROS), lipid peroxidation proceeds non-enzymatically and generates an extremely heterogeneous mixture of reactive carbonyl species (RCS). Among them, HNE, HHE, MDA, methylglyoxal, glyoxal, and acrolein are the most studied and/or abundant ones. Over the last decades, significant progress has been achieved in understanding mechanisms of RCS generation, protein/DNA adduct formation, and their identification and quantification in biological samples. In our review, we critically discuss the advancements in understanding the roles of RCS-induced protein/DNA modifications in signaling switches to provide adaptive cell response under physiological and oxidative stress conditions. At non-toxic concentrations, RCS modify susceptible Cys residue in c-Src to activate MAPK signaling and Cys, Lys, and His residues in PTEN to cause its reversible inactivation, thereby stimulating PI3K/PKB(Akt) pathway. RCS toxic concentrations cause irreversible Cys modifications in Keap1 and IKKβ followed by stabilization of Nrf2 and activation of NF-κB, respectively, for their nuclear translocation and antioxidant gene expression. Dysregulation of these mechanisms causes diseases including cancer. Alterations in RCS, RCS detoxifying enzymes, RCS-modified protein/DNA adducts, and signaling pathways have been implicated in various cancer types.
Collapse
Affiliation(s)
- Nurbubu T Moldogazieva
- Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya Street, Moscow, Russia.
| | - Sergey P Zavadskiy
- Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya Street, Moscow, Russia
| | - Dmitry V Astakhov
- Department of Biochemistry, Institute of Biodesign and Complex Systems Modelling, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya Str., Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, 1 Ostrovityanov Street, Moscow, Russia
| |
Collapse
|
5
|
Piciu F, Balas M, Badea MA, Cucu D. TRP Channels in Tumoral Processes Mediated by Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:1327. [PMID: 37507867 PMCID: PMC10376197 DOI: 10.3390/antiox12071327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The channels from the superfamily of transient receptor potential (TRP) activated by reactive oxygen species (ROS) can be defined as redox channels. Those with the best exposure of the cysteine residues and, hence, the most sensitive to oxidative stress are TRPC4, TRPC5, TRPV1, TRPV4, and TRPA1, while others, such as TRPC3, TRPM2, and TRPM7, are indirectly activated by ROS. Furthermore, activation by ROS has different effects on the tumorigenic process: some TRP channels may, upon activation, stimulate proliferation, apoptosis, or migration of cancer cells, while others inhibit these processes, depending on the cancer type, tumoral microenvironment, and, finally, on the methods used for evaluation. Therefore, using these polymodal proteins as therapeutic targets is still an unmet need, despite their draggability and modulation by simple and mostly unharmful compounds. This review intended to create some cellular models of the interaction between oxidative stress, TRP channels, and inflammation. Although somewhat crosstalk between the three actors was rather theoretical, we intended to gather the recently published data and proposed pathways of cancer inhibition using modulators of TRP proteins, hoping that the experimental data corroborated clinical information may finally bring the results from the bench to the bedside.
Collapse
Affiliation(s)
- Florentina Piciu
- Department of Anatomy, Animal Physiology and Biophysics (DAFAB), Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, 050663 Bucharest, Romania
| | - Dana Cucu
- Department of Anatomy, Animal Physiology and Biophysics (DAFAB), Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
6
|
Ng PY, Nafi SNM, Jalil NAC, Kueh YC, Lee YY, Zin AAM. Immunohistochemical expression of apolipoprotein B and 4-hydroxynonenal proteins in colorectal carcinoma patients: a retrospective study. Croat Med J 2023; 64. [PMID: 36864816 PMCID: PMC10028567 DOI: 10.3325/cmj.2023.64.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
AIM To assess the association of the expression of apolipoprotein B (apoB) and 4-hydroxynonenal (4HNE) with the clinicopathological data of patients with colorectal cancer (CRC). METHODS We obtained 80 CRC histopathological specimens sent to the Pathology Laboratory of Hospital Universiti Sains Malaysia from 2015 to 2019. Data on demographic factors, body mass index (BMI), and clinicopathological characteristics were also collected. Formalin-fixed paraffin-embedded tissues were stained by using an optimized immunohistochemical protocol. RESULTS Patients were mostly older than 50 years, male, Malay, and overweight or obese. A high apoB expression was observed in 87.5% CRC samples (70/80), while a high 4HNE expression was observed in only 17.5% (14/80) of CRCs. The expression of apoB was significantly associated with the sigmoid and rectosigmoid tumor sites (p =0.001) and tumor size 3-5 cm (p =0.005). 4HNE expression was significantly associated with tumor size 3-5 cm (p =0.045). Other variables were not significantly associated with the expression of either marker. CONCLUSION ApoB and 4HNE proteins may play a role in promoting CRC carcinogenesis.
Collapse
Affiliation(s)
| | - Siti Norasikin Mohd Nafi
- Siti Norasikin Mohd Nafi, Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia,
| | | | | | | | | |
Collapse
|
7
|
Ng PY, Nafi SNM, Jalil NAC, Kueh YC, Lee YY, Zin AAM. Immunohistochemical expression of apolipoprotein B and 4-hydroxynonenal proteins in colorectal carcinoma patients: a retrospective study. Croat Med J 2023; 64:29-36. [PMID: 36864816 PMCID: PMC10028567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
AIM To assess the association of the expression of apolipoprotein B (apoB) and 4-hydroxynonenal (4HNE) with the clinicopathological data of patients with colorectal cancer (CRC). METHODS We obtained 80 CRC histopathological specimens sent to the Pathology Laboratory of Hospital Universiti Sains Malaysia from 2015 to 2019. Data on demographic factors, body mass index (BMI), and clinicopathological characteristics were also collected. Formalin-fixed paraffin-embedded tissues were stained by using an optimized immunohistochemical protocol. RESULTS Patients were mostly older than 50 years, male, Malay, and overweight or obese. A high apoB expression was observed in 87.5% CRC samples (70/80), while a high 4HNE expression was observed in only 17.5% (14/80) of CRCs. The expression of apoB was significantly associated with the sigmoid and rectosigmoid tumor sites (p =0.001) and tumor size 3-5 cm (p =0.005). 4HNE expression was significantly associated with tumor size 3-5 cm (p =0.045). Other variables were not significantly associated with the expression of either marker. CONCLUSION ApoB and 4HNE proteins may play a role in promoting CRC carcinogenesis.
Collapse
Affiliation(s)
| | - Siti Norasikin Mohd Nafi
- Siti Norasikin Mohd Nafi, Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia,
| | | | | | | | | |
Collapse
|
8
|
Cui K, Liu N, Sun Y, Sun G, Wang S, Yang M, Wang X, Zhou D, Ge Y, Wang D, Wang M. Effect of drying processes on the occurrence of lipid oxidation-derived 4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal in Spanish mackerel ( Scomberomorus niphonius). Food Sci Nutr 2023; 11:1013-1023. [PMID: 36789073 PMCID: PMC9922132 DOI: 10.1002/fsn3.3138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, dry-cured Spanish mackerel (Scomberomorus niphonius, DCSM) was prepared via three different methods (hot-air drying, cold-air drying, and sun drying). The content of 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) derived from lipid oxidation in whole processes was investigated by HPLC-MS/MS. The changes in fatty acid composition were detected by GC-MS, and the degree of lipid oxidation was evaluated by the levels of acid values (AV), peroxide values (POV), and thiobarbituric acid-reactive substances (TBARS). The results showed that the drying process significantly accelerated lipid oxidation in DCSM. The contents of HHE and HNE were significantly increased after processing. The content of HHE was higher by 18.44-, 13.45-, and 16.32-folds compared with that of HNE after three different processes, respectively. The HHE and HNE contents fluctuated upward during the hot-air and cold-air drying process. However, the contents of HHE and HNE increased time-dependent during the sun drying process, with the highest values of 86.33 ± 10.54 and 5.29 ± 0.54 mg/kg fish among the three different processes. Besides, there was a significant positive correlation between HHE contents and n-3 fatty acids content in hot-air drying and sun drying processes (Pearson's r = .991/.996), and HNE occurrence was closely related to n-6 fatty acid content in sun drying process (Pearson's r = .989). Regression analysis indicated that the content of HHE and TOTOXTBA values in DCSM showed good linear relationships (R 2 value = .907), which suggested that the content of HHE could be used to estimate the oxidative deterioration of dry-cured fish products.
Collapse
Affiliation(s)
- Kexin Cui
- Chinese Academy of Fishery Sciences Yellow Sea Fisheries Research InstituteQingdaoChina
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Nan Liu
- Chinese Academy of Fishery Sciences Yellow Sea Fisheries Research InstituteQingdaoChina
| | - Yong Sun
- Chinese Academy of Fishery Sciences Yellow Sea Fisheries Research InstituteQingdaoChina
| | - Guohui Sun
- Chinese Academy of Fishery Sciences Yellow Sea Fisheries Research InstituteQingdaoChina
| | - Shanshan Wang
- Chinese Academy of Fishery Sciences Yellow Sea Fisheries Research InstituteQingdaoChina
| | - Min Yang
- Chinese Academy of Fishery Sciences Yellow Sea Fisheries Research InstituteQingdaoChina
| | - Xiaoli Wang
- Chinese Academy of Fishery Sciences Yellow Sea Fisheries Research InstituteQingdaoChina
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Deqing Zhou
- Chinese Academy of Fishery Sciences Yellow Sea Fisheries Research InstituteQingdaoChina
| | - Yinggang Ge
- Chinese Academy of Fishery Sciences Yellow Sea Fisheries Research InstituteQingdaoChina
| | | | | |
Collapse
|
9
|
Trifunovic S, Smiljanić K, Sickmann A, Solari FA, Kolarevic S, Divac Rankov A, Ljujic M. Electronic cigarette liquids impair metabolic cooperation and alter proteomic profiles in V79 cells. Respir Res 2022; 23:191. [PMID: 35840976 PMCID: PMC9285873 DOI: 10.1186/s12931-022-02102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Background Although still considered a safer alternative to classical cigarettes, growing body of work points to harmful effects of electronic cigarettes (e-cigarettes) affecting a range of cellular processes. The biological effect of e-cigarettes needs to be investigated in more detail considering their widespread use. Methods In this study, we treated V79 lung fibroblasts with sub-cytotoxic concentration of e-cigarette liquids, with and without nicotine. Mutagenicity was evaluated by HPRT assay, genotoxicity by comet assay and the effect on cellular communication by metabolic cooperation assay. Additionally, comprehensive proteome analysis was performed via high resolution, parallel accumulation serial fragmentation-PASEF mass spectrometry. Results E-cigarette liquid concentration used in this study showed no mutagenic or genotoxic effect, however it negatively impacted metabolic cooperation between V79 cells. Both e-cigarette liquids induced significant depletion in total number of proteins and impairment of mitochondrial function in treated cells. The focal adhesion proteins were upregulated, which is in accordance with the results of metabolic cooperation assay. Increased presence of posttranslational modifications (PTMs), including carbonylation and direct oxidative modifications, was observed. Data are available via ProteomeXchange with identifier PXD032071. Conclusions Our study revealed impairment of metabolic cooperation as well as significant proteome and PTMs alterations in V79 cells treated with e-cigarette liquid warranting future studies on e-cigarettes health impact. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02102-w.
Collapse
Affiliation(s)
- Sara Trifunovic
- Biology of Robustness Group, Mediterranean Institute for Life Sciences, Split, Croatia.
| | - Katarina Smiljanić
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, University of Belgrade, Faculty of Chemistry, Studentski Trg 12-14, 11000, Belgrade, Serbia
| | - Albert Sickmann
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Bunsen-Kirchhoff-Straße 11, Dortmund, Germany.,Medizinische Fakultät, Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, 44801, Bochum, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, AB243FX, Scotland, UK
| | - Fiorella A Solari
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Bunsen-Kirchhoff-Straße 11, Dortmund, Germany
| | - Stoimir Kolarevic
- Department of Hydroecology and Water Protection, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Divac Rankov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Mila Ljujic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Oxidative Stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the Pathogenesis and Treatment of Aging-related Diseases. J Immunol Res 2022; 2022:2233906. [PMID: 35411309 PMCID: PMC8994689 DOI: 10.1155/2022/2233906] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 02/09/2022] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress plays an important role in the development of aging-related diseases by accelerating the lipid peroxidation of polyunsaturated fatty acids in the cell membrane, resulting in the production of aldehydes, such as malondialdehyde and 4-hydroxy-2-nonenal (4-HNE) and other toxic substances. The compound 4-HNE forms adducts with DNA or proteins, disrupting many cell signaling pathways including the regulation of apoptosis signal transduction pathways. The binding of proteins to 4-HNE (4-HNE-protein) acts as an important marker of lipid peroxidation, and its increasing concentration in brain tissues and fluids because of aging, ultimately gives rise to some hallmark disorders, such as neurodegenerative diseases (Alzheimer's and Parkinson's diseases), ophthalmic diseases (dry eye, macular degeneration), hearing loss, and cancer. This review aims to describe the physiological origin of 4-HNE, elucidate its toxicity in aging-related diseases, and discuss the detoxifying effect of aldehyde dehydrogenase and glutathione in 4-HNE-driven aging-related diseases.
Collapse
|
11
|
Henrik SZŐKE, István BÓKKON, David M, Jan V, Ágnes K, Zoltán K, Ferenc F, Tibor K, László SL, Ádám D, Odilia M, Andrea K. The innate immune system and fever under redox control: A Narrative Review. Curr Med Chem 2022; 29:4324-4362. [DOI: 10.2174/0929867329666220203122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
ABSTRACT:
In living cells, redox potential is vitally important for normal physiological processes that are closely regulated by antioxidants, free amino acids and proteins that either have reactive oxygen and nitrogen species capture capability or can be compartmentalized. Although hundreds of experiments support the regulatory role of free radicals and their derivatives, several authors continue to claim that these perform only harmful and non-regulatory functions. In this paper we show that countless intracellular and extracellular signal pathways are directly or indirectly linked to regulated redox processes. We also briefly discuss how artificial oxidative stress can have important therapeutic potential and the possible negative effects of popular antioxidant supplements.
Next, we present the argument supported by a large number of studies that several major components of innate immunity, as well as fever, is also essentially associated with regulated redox processes. Our goal is to point out that the production of excess or unregulated free radicals and reactive species can be secondary processes due to the perturbed cellular signal pathways. However, researchers on pharmacology should consider the important role of redox mechanisms in the innate immune system and fever.
Collapse
Affiliation(s)
- SZŐKE Henrik
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - BÓKKON István
- Neuroscience and Consciousness Research Department, Vision Research Institute,
Lowell, MA, USA
| | - martin David
- Department of Human Medicine, University Witten/Herdecke, Witten, Germany
| | - Vagedes Jan
- University Children’s Hospital, Tuebingen University, Tuebingen, Germany
| | - kiss Ágnes
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - kovács Zoltán
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - fekete Ferenc
- Department of Nyerges Gábor Pediatric Infectology, Heim Pál National Pediatric Institute, Budapest, Hungary
| | - kocsis Tibor
- Department of Clinical Governance, Hungarian National Ambulance Service, Budapest, Hungary
| | | | | | | | - kisbenedek Andrea
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
12
|
Zarkovic N, Jakovcevic A, Mataic A, Jaganjac M, Vukovic T, Waeg G, Zarkovic K. Post-mortem Findings of Inflammatory Cells and the Association of 4-Hydroxynonenal with Systemic Vascular and Oxidative Stress in Lethal COVID-19. Cells 2022; 11:cells11030444. [PMID: 35159254 PMCID: PMC8834180 DOI: 10.3390/cells11030444] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
A recent comparison of clinical and inflammatory parameters, together with biomarkers of oxidative stress, in patients who died from aggressive COVID-19 and survivors suggested that the lipid peroxidation product 4-hydroxynonenal (4-HNE) might be detrimental in lethal SARS-CoV-2 infection. The current study further explores the involvement of inflammatory cells, systemic vascular stress, and 4-HNE in lethal COVID-19 using specific immunohistochemical analyses of the inflammatory cells within the vital organs obtained by autopsy of nine patients who died from aggressive SAR-CoV-2 infection. Besides 4-HNE, myeloperoxidase (MPO) and mitochondrial superoxide dismutase (SOD2) were analyzed alongside standard leukocyte biomarkers (CDs). All the immunohistochemical slides were simultaneously prepared for each analyzed biomarker. The results revealed abundant 4-HNE in the vital organs, but the primary origin of 4-HNE was sepsis-like vascular stress, not an oxidative burst of the inflammatory cells. In particular, inflammatory cells were often negative for 4-HNE, while blood vessels were always very strongly immunopositive, as was edematous tissue even in the absence of inflammatory cells. The most affected organs were the lungs with diffuse alveolar damage and the brain with edema and reactive astrocytes, whereas despite acute tubular necrosis, 4-HNE was not abundant in the kidneys, which had prominent SOD2. Although SOD2 in most cases gave strong immunohistochemical positivity similar to 4-HNE, unlike 4-HNE, it was always limited to the cells, as was MPO. Due to their differential expressions in blood vessels, inflammatory cells, and the kidneys, we think that SOD2 could, together with 4-HNE, be a potential link between a malfunctioning immune system, oxidative stress, and vascular stress in lethal COVID-19.
Collapse
Affiliation(s)
- Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Ruder Boskovic Institute, HR-10000 Zagreb, Croatia; (M.J.); (T.V.)
- Correspondence:
| | - Antonia Jakovcevic
- Clinical Hospital Centre Zagreb, Division of Pathology, HR-10000 Zagreb, Croatia; (A.J.); (A.M.); (K.Z.)
| | - Ana Mataic
- Clinical Hospital Centre Zagreb, Division of Pathology, HR-10000 Zagreb, Croatia; (A.J.); (A.M.); (K.Z.)
| | - Morana Jaganjac
- Laboratory for Oxidative Stress (LabOS), Ruder Boskovic Institute, HR-10000 Zagreb, Croatia; (M.J.); (T.V.)
| | - Tea Vukovic
- Laboratory for Oxidative Stress (LabOS), Ruder Boskovic Institute, HR-10000 Zagreb, Croatia; (M.J.); (T.V.)
| | - Georg Waeg
- Institute of Molecular Biosciences, Karl Franzens University, A-8010 Graz, Austria;
| | - Kamelija Zarkovic
- Clinical Hospital Centre Zagreb, Division of Pathology, HR-10000 Zagreb, Croatia; (A.J.); (A.M.); (K.Z.)
- Division of Pathology, University of Zagreb School of Medicine, HR-10000 Zagreb, Croatia
| |
Collapse
|
13
|
Žarković N, Orehovec B, Milković L, Baršić B, Tatzber F, Wonisch W, Tarle M, Kmet M, Mataić A, Jakovčević A, Vuković T, Talić D, Waeg G, Lukšić I, Skrzydlewska E, Žarković K. Preliminary Findings on the Association of the Lipid Peroxidation Product 4-Hydroxynonenal with the Lethal Outcome of Aggressive COVID-19. Antioxidants (Basel) 2021; 10:antiox10091341. [PMID: 34572973 PMCID: PMC8472532 DOI: 10.3390/antiox10091341] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/23/2023] Open
Abstract
Major findings of the pilot study involving 21 critically ill patients during the week after admission to the critical care unit specialized for COVID-19 are presented. Fourteen patients have recovered, while seven passed away. There were no differences between them in respect to clinical or laboratory parameters monitored. However, protein adducts of the lipid peroxidation product 4-hydroxynonenal (HNE) were higher in the plasma of the deceased patients, while total antioxidant capacity was below the detection limit for the majority of sera samples in both groups. Moreover, levels of the HNE-protein adducts were constant in the plasma of the deceased patients, while in survivors, they have shown prominent and dynamic variations, suggesting that survivors had active oxidative stress response mechanisms reacting to COVID-19 aggression, which were not efficient in patients who died. Immunohistochemistry revealed the abundant presence of HNE-protein adducts in the lungs of deceased patients indicating that HNE is associated with the lethal outcome. It seems that HNE was spreading from the blood vessels more than being a consequence of pneumonia. Due to the limitations of the relatively small number of patients involved in this study, further research on HNE and antioxidants is needed. This might allow a better understanding of COVID-19 and options for utilizing antioxidants by personalized, integrative biomedicine approach to prevent the onset of HNE-mediated vitious circle of lipid peroxidation in patients with aggressive inflammatory diseases.
Collapse
Affiliation(s)
- Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Ruđer Bošković Institute, 10000 Zagreb, Croatia; (L.M.); (T.V.); (D.T.)
- Correspondence: ; Tel.: +385-1-4571212
| | - Biserka Orehovec
- Clinical Hospital Dubrava, 10000 Zagreb, Croatia; (B.O.); (B.B.); (M.T.); (M.K.); (I.L.)
| | - Lidija Milković
- Laboratory for Oxidative Stress (LabOS), Ruđer Bošković Institute, 10000 Zagreb, Croatia; (L.M.); (T.V.); (D.T.)
| | - Bruno Baršić
- Clinical Hospital Dubrava, 10000 Zagreb, Croatia; (B.O.); (B.B.); (M.T.); (M.K.); (I.L.)
| | - Franz Tatzber
- Omnignostica Ltd., 3421 Höflein an der Donau, Austria; (F.T.); (W.W.)
| | - Willibald Wonisch
- Omnignostica Ltd., 3421 Höflein an der Donau, Austria; (F.T.); (W.W.)
| | - Marko Tarle
- Clinical Hospital Dubrava, 10000 Zagreb, Croatia; (B.O.); (B.B.); (M.T.); (M.K.); (I.L.)
| | - Marta Kmet
- Clinical Hospital Dubrava, 10000 Zagreb, Croatia; (B.O.); (B.B.); (M.T.); (M.K.); (I.L.)
| | - Ana Mataić
- Department of Pathology, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia; (A.M.); (A.J.); (K.Ž.)
| | - Antonia Jakovčević
- Department of Pathology, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia; (A.M.); (A.J.); (K.Ž.)
| | - Tea Vuković
- Laboratory for Oxidative Stress (LabOS), Ruđer Bošković Institute, 10000 Zagreb, Croatia; (L.M.); (T.V.); (D.T.)
| | - Danijela Talić
- Laboratory for Oxidative Stress (LabOS), Ruđer Bošković Institute, 10000 Zagreb, Croatia; (L.M.); (T.V.); (D.T.)
| | - Georg Waeg
- Institute of Molecular Biosciences, Karl Franzens University, 8010 Graz, Austria;
| | - Ivica Lukšić
- Clinical Hospital Dubrava, 10000 Zagreb, Croatia; (B.O.); (B.B.); (M.T.); (M.K.); (I.L.)
- Department of Pathology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Elzbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Kamelija Žarković
- Department of Pathology, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia; (A.M.); (A.J.); (K.Ž.)
- Department of Pathology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Cruz-Gregorio A, Aranda-Rivera AK, Ortega-Lozano AJ, Pedraza-Chaverri J, Mendoza-Hoffmann F. Lipid metabolism and oxidative stress in HPV-related cancers. Free Radic Biol Med 2021; 172:226-236. [PMID: 34129929 DOI: 10.1016/j.freeradbiomed.2021.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
High-risk human papillomavirus (HR-HPVs) are associated with the development of cervical, anus, vagina, vulva, penis, and oropharynx cancer. HR-HPVs target and modify the function of different cell biomolecules such as glucose, amino acids, lipids, among others. The latter induce cell proliferation, cell death evasion, and genomic instability resulting in cell transformation. Moreover, lipids are essential biomolecules in HR-HPVs infection and cell vesicular trafficking. They are also critical in producing cellular energy, the epithelial-mesenchymal transition (EMT) process, and therapy resistance of HPV-related cancers. HPV proteins induce oxidative stress (OS), which in turn promotes lipid peroxidation and cell damage, resulting in cell death such as apoptosis, autophagy, and ferroptosis. HR-HPV-related cancer cells cope with OS and lipid peroxidation, preventing cell death; however, these cells are sensitized by OS, which could be used as a target for redox therapies to induce their elimination. This review focuses on the role of lipids in HR-HPV infection and HPV-related cancer development, maintenance, resistance to therapy, and the possible treatments associated with lipids. Furthermore, we emphasize the significant role of OS in lipid peroxidation to induce cell death through apoptosis, autophagy, and ferroptosis to eliminate HPV-related cancers.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - Ariadna Jazmin Ortega-Lozano
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Francisco Mendoza-Hoffmann
- IHuman Institute, ShanghaiTech University, China; Laboratorio F-206, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Lipid peroxidation in brain tumors. Neurochem Int 2021; 149:105118. [PMID: 34197897 DOI: 10.1016/j.neuint.2021.105118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
There is a lot of evidence showing that lipid peroxidation plays very important role in development of various diseases, including neurodegenerative diseases and brain tumors. Lipid peroxidation is achieved by two main pathways, by enzymatic or by non-enzymatic oxidation, respectively. In this paper, we focus on non-enzymatic, self-catalyzed chain reaction of poly-unsaturated fatty acid (PUFA) peroxidation generating reactive aldehydes, notably 4-hydroxynonenal (4-HNE), which acts as second messenger of free radicals and as growth regulating factor. It might originate from astrocytes as well as from blood vessels, even within the blood-brain barrier (BBB), which is in case of brain tumors transformed into the blood-brain-tumor barrier (BBTB). The functionality of the BBB is strongly affected by 4-HNE because it forms relatively stable protein adducts thus allowing the persistence and the spread of lipid peroxidation, as revealed by immunohistochemical findings. Because 4-HNE can act as a regulator of vital functions of normal and of malignant cells acting in the cell type- and concentration-dependent manners, the bioactivities of this product of lipid peroxidation be should further studied to reveal if it acts as a co-factor of carcinogenesis or as natural factor of defense against primary brain tumors and metastatic cancer.
Collapse
|