1
|
Zhou X, Chen Y, Kang X, Zhao A, Yang S. Transcriptome and Proteome Analyses Revealed Differences in JEV-Infected PK-15 Cells in Response to Ferroptosis Agonists and Antagonists. Animals (Basel) 2024; 14:3516. [PMID: 39682481 DOI: 10.3390/ani14233516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Epidemic encephalitis B caused by Japanese encephalitis virus (JEV) is a common zoonotic disease that poses threats to both pigs and humans. The cellular defense mechanism is closely tied to the body's resistance to viral invasion. Regulated cell death, such as ferroptosis, is a strategy employed by host cells to defend against viral invasions. To understand the effect of ferroptosis on the proliferation of JEV, experimentally infected PK15 cells were treated with a ferroptosis agonist or antagonist. The results indicated that the ferroptosis agonist can suppress JEV proliferation, whereas the ferroptosis antagonist promotes JEV proliferation. Functional enrichment analysis showed that the ferroptosis agonist Erastin and antagonist SP600125 could affect JEV proliferation through the TNF, IL-17, Toll-like receptor, PI3K-AKT, and chemokine signaling pathways, as well as ECM-receptor interactions. Combined transcriptome and proteome analyses revealed 31 important genes, which are significantly associated with ferroptosis and the inflammatory response. Our results provide a better understanding of the molecular mechanisms through which ferroptosis affects the proliferation of JEV.
Collapse
Affiliation(s)
- Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| | - Yiwei Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| | - Xinyao Kang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| |
Collapse
|
2
|
Eker F, Duman H, Ertürk M, Karav S. The potential of lactoferrin as antiviral and immune-modulating agent in viral infectious diseases. Front Immunol 2024; 15:1402135. [PMID: 39620218 PMCID: PMC11604709 DOI: 10.3389/fimmu.2024.1402135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Emerging infectious diseases are caused by unpredictable viruses with the dangerous potential to trigger global pandemics. These viruses typically initiate infection by utilizing the anionic structures of host cell surface receptors to gain entry. Lactoferrin (Lf) is a multifunctional glycoprotein with multiple properties such as antiviral, anti-inflammatory and antioxidant activities. Due to its cationic structure, Lf naturally interacts with certain host cell receptors, such as heparan sulfate proteoglycans, as well as viral particles and other receptors that are targeted by viruses. Therefore, Lf may interfere with virus-host cell interactions by acting as a receptor competitor for viruses. Herein we summarize studies in which this competition was investigated with SARS-CoV-2, Zika, Dengue, Hepatitis and Influenza viruses in vitro. These studies have demonstrated not only Lf's competitive properties, but also its potential intracellular impact on host cells, such as enhancing cell survival and reducing infection efficiency by inhibiting certain viral enzymes. In addition, the immunomodulatory effect of Lf is highlighted, as it can influence the activity of specific immune cells and regulate cytokine release, thereby enhancing the host's response to viral infections. Collectively, these properties promote the potential of Lf as a promising candidate for research in viral infectious diseases.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | | | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
3
|
Kaplan M, Baktıroğlu M, Kalkan AE, Canbolat AA, Lombardo M, Raposo A, de Brito Alves JL, Witkowska AM, Karav S. Lactoferrin: A Promising Therapeutic Molecule against Human Papillomavirus. Nutrients 2024; 16:3073. [PMID: 39339673 PMCID: PMC11435110 DOI: 10.3390/nu16183073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Lactoferrin is a multifunctional glycoprotein naturally found in mammalian secretions, predominantly in colostrum and milk. As a key component of dairy foods, lactoferrin enhances viral protection and boosts human health, owing to its fundamental properties including antiviral, anti-inflammatory, and immune-modulatory effects. Importantly, the antiviral effect of lactoferrin has been shown against a range of viruses causing serious infections and threatening human health. One of the viruses that lactoferrin exerts significant antiviral effects on is the human papillomavirus (HPV), which is the most prevalent transmitted infection affecting a myriad of people around the world. Lactoferrin has a high potential to inhibit HPV via different mechanisms, including direct binding to viral envelope proteins or their cell receptors, thereby hindering viral entry and immune stimulation by triggering the release of some immune-related molecules through the body, such as lymphocytes. Along with HPV, lactoferrin also can inhibit a range of viruses including coronaviruses and hepatitis viruses in the same manner. Here, we overview the current knowledge of lactoferrin and its effects on HPV and other viral infections.
Collapse
Affiliation(s)
- Merve Kaplan
- Theoretical and Physical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 2JD, UK;
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey; (A.E.K.); (A.A.C.)
| | - Merve Baktıroğlu
- Department of Gynecological Oncology, Istanbul University, Istanbul 34452, Turkey;
- Canakkale Mehmet Akif Ersoy Government Hospital, Canakkale 17110, Turkey
| | - Arda Erkan Kalkan
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey; (A.E.K.); (A.A.C.)
| | - Ahmet Alperen Canbolat
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey; (A.E.K.); (A.A.C.)
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di 11 Val Cannuta 247, 00166 Rome, Italy;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey; (A.E.K.); (A.A.C.)
| |
Collapse
|
4
|
Abdel-Wahhab KG, Ashry M, Hassan LK, El-Azma MH, Elqattan GM, Gadelmawla MHA, Mannaa FA. Hepatic and immune modulatory effectiveness of lactoferrin loaded Selenium nanoparticles on bleomycin induced hepatic injury. Sci Rep 2024; 14:21066. [PMID: 39256408 PMCID: PMC11387485 DOI: 10.1038/s41598-024-70894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
This study aimed to estimate the hepatic and immune ameliorating potential of extracted bovine lactoferrin (LF), Selenium nanoparticles (SeNPs) or their combination (LF/SeNPs) against bleomycin (BLM) induced hepatic injury. Fifty adult male rats (160-200 g) were equally divided into five groups: (1) the saline control group, (2) BLM-injected (15 mg/kg twice a week, ip), and (3-5) groups treated orally with LF (200 mg/kg/day), SeNPs (0.0486 mg/kg/day) or LF/SeNPs combination (200.0486 mg/kg/day) for 6 weeks post BLM-intoxication. Blood and liver samples were subjected to biochemical, histopathological, and immunohistochemical analyses. The results revealed that BLM caused a significant increase in hepatic lipid peroxidation and nitric oxide, as well as serum markers of liver functions (AST, ALT and GGT activities), and levels of GM-CSF, CD4, TNF-α, IL-1β, TGF-β1, fibronectin, triglycerides, cholesterol and LDL-C. Additionally, hepatic glutathione, Na+/K+-ATPase, and glutathione peroxidase, as well as serum HDL-C, total protein and albumin levels were significantly reduced. Moreover, BLM injection resulted in marked histopathological alterations and severe expression of caspase 3. Post-treatment of BLM-intoxicated rats with LF, SeNPs or LF/SeNPs combination obviously improved the BLM-induced hepatic damages; this was achieved from the marked modulations in the mentioned parameters, besides improving the histopathological hepatic architecture. It is worth mentioning that LF/SeNPs exerted the greatest potency. In conclusion, the obtained results demonstrated that LF, SeNPs and LF/SeNPs succeeded in attenuating the BLM-induced hepatic dysfunction. Therefore, these supplements might be used to protect against drug-associated side effects.
Collapse
Affiliation(s)
| | - Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit, Egypt
| | - Laila K Hassan
- Dairy Department, National Research Centre, Giza, 12622, Egypt.
| | - Marwa H El-Azma
- Medical Physiology Department, National Research Centre, Giza, 12622, Egypt
| | - Ghada M Elqattan
- Medical Physiology Department, National Research Centre, Giza, 12622, Egypt
| | | | - Fathia A Mannaa
- Medical Physiology Department, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
5
|
Pereira TA, Espósito BP. Can iron chelators ameliorate viral infections? Biometals 2024; 37:289-304. [PMID: 38019378 DOI: 10.1007/s10534-023-00558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
The redox reactivity of iron is a double-edged sword for cell functions, being either essential or harmful depending on metal concentration and location. Deregulation of iron homeostasis is associated with several clinical conditions, including viral infections. Clinical studies as well as in silico, in vitro and in vivo models show direct effects of several viruses on iron levels. There is support for the strategy of iron chelation as an alternative therapy to inhibit infection and/or viral replication, on the rationale that iron is required for the synthesis of some viral proteins and genes. In addition, abnormal iron levels can affect signaling immune response. However, other studies report different effects of viral infections on iron homeostasis, depending on the class and genotype of the virus, therefore making it difficult to predict whether iron chelation would have any benefit. This review brings general aspects of the relationship between iron homeostasis and the nonspecific immune response to viral infections, along with its relevance to the progress or inhibition of the inflammatory process, in order to elucidate situations in which the use of iron chelators could be efficient as antivirals.
Collapse
|
6
|
Zhang W, Sun J, Liu F, Li S, Wang X, Su L, Liu G. Alleviative Effect of Lactoferrin Interventions Against the Hepatotoxicity Induced by Titanium Dioxide Nanoparticles. Biol Trace Elem Res 2024; 202:624-642. [PMID: 37191759 DOI: 10.1007/s12011-023-03702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The current study was designed to investigate the alleviative effect of lactoferrin interventions against the hepatotoxicity induced by titanium dioxide nanoparticles (TiO2-NPs). Thirty male Wistar rats were divided into six groups with 5 rats in each group. The first and second groups were intragastrically administered normal saline and TiO2-NPs (100 mg/kg body weight) as the negative control (NC) and TiO2-NP groups. The third, fourth, and fifth groups were intragastrically administered lactoferrin at concentrations of 100, 200, and 400 mg/kg body weight in addition to TiO2-NPs (100 mg/kg body weight). The sixth group was intragastrically administered Fuzheng Huayu (FZHY) capsules at a concentration of 4.6 g/kg body weight in addition to TiO2-NPs (100 mg/kg body weight) as the positive control group. After treatment for 4 weeks, the concentrations of lactoferrin were optimized based on the liver index and function results. Subsequently, the alleviative effects of lactoferrin interventions against TiO2-NP-induced hepatotoxicity in rat liver tissues, including the effects on histological damage, oxidative stress-related damage, inflammation, fibrosis, DNA damage, apoptosis, and gene expression, were investigated using histopathological, biochemical, and transcriptomic assays. The results showed that 200 mg/kg lactoferrin interventions for 4 weeks not only ameliorated the liver dysfunction and histopathological damage caused by TiO2-NP exposure but also inhibited the oxidative stress-related damage, inflammation, fibrosis, DNA damage, and apoptosis in the liver tissues of TiO2-NP-exposed rats. The transcriptomic results confirmed that the alleviative effect of lactoferrin interventions against the TiO2-NP exposure-induced hepatotoxicity was related to the activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Wenqi Zhang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Jiaxin Sun
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Fangyuan Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Shubin Li
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Xianjue Wang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
7
|
Li Z, Li W, Lu J, Liu Z, Lin X, Liu Y. Quantitative Proteomics Analysis Reveals the Effect of a MarR Family Transcriptional Regulator AHA_2124 on Aeromonas hydrophila. BIOLOGY 2023; 12:1473. [PMID: 38132299 PMCID: PMC10740729 DOI: 10.3390/biology12121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The transcriptional regulators of the MarR family play an important role in diverse bacterial physiologic functions, whereas their effect and intrinsic regulatory mechanism on the aquatic pathogenic bacterium Aeromonas hydrophila are, clearly, still unknown. In this study, we firstly constructed a deletion strain of AHA_2124 (ΔAHA_2124) of a MarR family transcriptional regulator in Aeromonas hydrophila ATCC 7966 (wild type), and found that the deletion of AHA_2124 caused significantly enhanced hemolytic activity, extracellular protease activity, and motility when compared with the wild type. The differentially abundant proteins (DAPs) were compared by using data-independent acquisition (DIA), based on a quantitative proteomics technology, between the ΔAHA_2124 strain and wild type, and there were 178 DAPs including 80 proteins up-regulated and 98 proteins down-regulated. The bioinformatics analysis showed that the deletion of gene AHA_2124 led to some changes in the abundance of proteins related to multiple biological processes, such as translation, peptide transport, and oxidation and reduction. These results provided a theoretical basis for better exploring the regulatory mechanism of the MarR family transcriptional regulators of Aeromonas hydrophila on bacterial physiological functions.
Collapse
Affiliation(s)
- Zhen Li
- Zhangzhou Health Vocational College, Zhangzhou 363000, China;
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
| | - Wanxin Li
- School of Public Health, Fujian Medical University, Fuzhou 350122, China;
| | - Jinlian Lu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziqiu Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanling Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Ianiro G, D'Ezio V, Carpinelli L, Casella C, Bonaccorsi di Patti MC, Rosa L, Valenti P, Colasanti M, Musci G, Cutone A, Persichini T. Iron Saturation Drives Lactoferrin Effects on Oxidative Stress and Neurotoxicity Induced by HIV-1 Tat. Int J Mol Sci 2023; 24:ijms24097947. [PMID: 37175651 PMCID: PMC10178013 DOI: 10.3390/ijms24097947] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The Trans-Activator of Transcription (Tat) of Human Immunodeficiency Virus (HIV-1) is involved in virus replication and infection and can promote oxidative stress in human astroglial cells. In response, host cells activate transcription of antioxidant genes, including a subunit of System Xc- cystine/glutamate antiporter which, in turn, can trigger glutamate-mediated excitotoxicity. Here, we present data on the efficacy of bovine Lactoferrin (bLf), both in its native (Nat-bLf) and iron-saturated (Holo-bLf) forms, in counteracting oxidative stress in U373 human astroglial cells constitutively expressing the viral protein (U373-Tat). Our results show that, dependent on iron saturation, both Nat-bLf and Holo-bLf can boost host antioxidant response by up-regulating System Xc- and the cell iron exporter Ferroportin via the Nuclear factor erythroid 2-related factor (Nrf2) pathway, thus reducing Reactive Oxygen Species (ROS)-mediated lipid peroxidation and DNA damage in astrocytes. In U373-Tat cells, both forms of bLf restore the physiological internalization of Transferrin (Tf) Receptor 1, the molecular gate for Tf-bound iron uptake. The involvement of astrocytic antioxidant response in Tat-mediated neurotoxicity was evaluated in co-cultures of U373-Tat with human neuronal SH-SY5Y cells. The results show that the Holo-bLf exacerbates Tat-induced excitotoxicity on SH-SY5Y, which is directly dependent on System-Xc- upregulation, thus highlighting the mechanistic role of iron in the biological activities of the glycoprotein.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Veronica D'Ezio
- Department of Science, University "ROMA TRE", 00146 Rome, Italy
| | | | - Cecilia Casella
- Department of Science, University "ROMA TRE", 00146 Rome, Italy
| | | | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Roma, 00185 Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Roma, 00185 Rome, Italy
| | - Marco Colasanti
- Department of Science, University "ROMA TRE", 00146 Rome, Italy
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | | |
Collapse
|
9
|
Wu Z(E, Xu D, Hu PJH, Huang TS. A hierarchical multilabel graph attention network method to predict the deterioration paths of chronic hepatitis B patients. J Am Med Inform Assoc 2023; 30:846-858. [PMID: 36794643 PMCID: PMC10114116 DOI: 10.1093/jamia/ocad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/26/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE Estimating the deterioration paths of chronic hepatitis B (CHB) patients is critical for physicians' decisions and patient management. A novel, hierarchical multilabel graph attention-based method aims to predict patient deterioration paths more effectively. Applied to a CHB patient data set, it offers strong predictive utilities and clinical value. MATERIALS AND METHODS The proposed method incorporates patients' responses to medications, diagnosis event sequences, and outcome dependencies to estimate deterioration paths. From the electronic health records maintained by a major healthcare organization in Taiwan, we collect clinical data about 177 959 patients diagnosed with hepatitis B virus infection. We use this sample to evaluate the proposed method's predictive efficacy relative to 9 existing methods, as measured by precision, recall, F-measure, and area under the curve (AUC). RESULTS We use 20% of the sample as holdouts to test each method's prediction performance. The results indicate that our method consistently and significantly outperforms all benchmark methods. It attains the highest AUC, with a 4.8% improvement over the best-performing benchmark, as well as 20.9% and 11.4% improvements in precision and F-measures, respectively. The comparative results demonstrate that our method is more effective for predicting CHB patients' deterioration paths than existing predictive methods. DISCUSSION AND CONCLUSION The proposed method underscores the value of patient-medication interactions, temporal sequential patterns of distinct diagnosis, and patient outcome dependencies for capturing dynamics that underpin patient deterioration over time. Its efficacious estimates grant physicians a more holistic view of patient progressions and can enhance their clinical decision-making and patient management.
Collapse
Affiliation(s)
- Zejian (Eric) Wu
- Department of Operations and Information Systems, David Eccles School of Business, University of Utah, Salt Lake City, Utah, USA
| | - Da Xu
- Department of Information Systems, College of Business, California State University Long Beach, Long Beach, California, USA
| | - Paul Jen-Hwa Hu
- Department of Operations and Information Systems, David Eccles School of Business, University of Utah, Salt Lake City, Utah, USA
| | - Ting-Shuo Huang
- Department of General Surgery, Keelung Chang Gung Memorial Hospital, Keelung City, Taiwan
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung City, Taiwan
| |
Collapse
|
10
|
de Souza Aquino J, Batista KS, Araujo-Silva G, dos Santos DC, de Brito NJN, López JA, da Silva JA, das Graças Almeida M, Pincheira CG, Magnani M, de Pontes Pessoa DCN, Stamford TLM. Antioxidant and Lipid-Lowering Effects of Buriti Oil ( Mauritia flexuosa L.) Administered to Iron-Overloaded Rats. Molecules 2023; 28:2585. [PMID: 36985557 PMCID: PMC10056315 DOI: 10.3390/molecules28062585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The indiscriminate use of oral ferrous sulfate (FeSO4) doses induces significant oxidative damage to health. However, carotene-rich foods such as buriti oil can help the endogenous antioxidant defense and still maintain other body functions. This study aimed to assess the effects of buriti oil intake in iron-overloaded rats by FeSO4 administration. Buriti oil has β-carotene (787.05 mg/kg), α-tocopherol (689.02 mg/kg), and a predominance of monounsaturated fatty acids (91.30 g/100 g). Wistar rats (n = 32) were subdivided into two control groups that were fed a diet containing either soybean or buriti oil; and two groups which received a high daily oral dose of FeSO4 (60 mg/kg body weight) and fed a diet containing either soybean (SFe) or buriti oil (Bfe). The somatic and hematological parameters, serum lipids, superoxide dismutase (SOD), and glutathione peroxidase (GPx) were determined after 17 days of iron overload. Somatic parameters were similar among groups. BFe showed a decrease in low-density lipoprotein (38.43%) and hemoglobin (7.51%); an increase in monocytes (50.98%), SOD activity in serum (87.16%), and liver (645.50%) hepatic GPx (1017.82%); and maintained serum GPx compared to SFe. Buriti oil showed systemic and hepatic antioxidant protection in iron-overloaded rats, which may be related to its high carotenoid, tocopherol, and fatty acid profile.
Collapse
Affiliation(s)
- Jailane de Souza Aquino
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Kamila Sabino Batista
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá (UEAP), Macapá 68900-070, AP, Brazil
- Experimental Nutrition Research Group, Vive Sano University Institute (IUVS), São Paulo 04304-000, SP, Brazil
| | - Darlan Coutinho dos Santos
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá (UEAP), Macapá 68900-070, AP, Brazil
| | | | - Jorge A. López
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá (UEAP), Macapá 68900-070, AP, Brazil
| | - João Andrade da Silva
- Department of Food Technology, Center for Technology and Regional Development, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Maria das Graças Almeida
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Carla Guzmán Pincheira
- Experimental Nutrition Research Group, Vive Sano University Institute (IUVS), São Paulo 04304-000, SP, Brazil
- College of Health Care Sciences, Concepción Campus, San Sebastian University, Concepción 4030000, Chile
| | - Marciane Magnani
- Laboratory of Microbial Processes in Food, Department of Food Engineering, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | | | | |
Collapse
|
11
|
Regueiro U, López-López M, Varela-Fernández R, Otero-Espinar FJ, Lema I. Biomedical Applications of Lactoferrin on the Ocular Surface. Pharmaceutics 2023; 15:pharmaceutics15030865. [PMID: 36986726 PMCID: PMC10052036 DOI: 10.3390/pharmaceutics15030865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Lactoferrin (LF) is a first-line defense protein with a pleiotropic functional pattern that includes anti-inflammatory, immunomodulatory, antiviral, antibacterial, and antitumoral properties. Remarkably, this iron-binding glycoprotein promotes iron retention, restricting free radical production and avoiding oxidative damage and inflammation. On the ocular surface, LF is released from corneal epithelial cells and lacrimal glands, representing a significant percentage of the total tear fluid proteins. Due to its multifunctionality, the availability of LF may be limited in several ocular disorders. Consequently, to reinforce the action of this highly beneficial glycoprotein on the ocular surface, LF has been proposed for the treatment of different conditions such as dry eye, keratoconus, conjunctivitis, and viral or bacterial ocular infections, among others. In this review, we outline the structure and the biological functions of LF, its relevant role at the ocular surface, its implication in LF-related ocular surface disorders, and its potential for biomedical applications.
Collapse
Affiliation(s)
- Uxía Regueiro
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Maite López-López
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Rubén Varela-Fernández
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| | - Isabel Lema
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Galician Institute of Ophthalmology (INGO), Conxo Provincial Hospital, 15706 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| |
Collapse
|
12
|
Kaczyńska K, Jampolska M, Wojciechowski P, Sulejczak D, Andrzejewski K, Zając D. Potential of Lactoferrin in the Treatment of Lung Diseases. Pharmaceuticals (Basel) 2023; 16:192. [PMID: 37259341 PMCID: PMC9960651 DOI: 10.3390/ph16020192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 11/07/2023] Open
Abstract
Lactoferrin (LF) is a multifunctional iron-binding glycoprotein that exhibits a variety of properties, such as immunomodulatory, anti-inflammatory, antimicrobial, and anticancer, that can be used to treat numerous diseases. Lung diseases continue to be the leading cause of death and disability worldwide. Many of the therapies currently used to treat these diseases have limited efficacy or are associated with side effects. Therefore, there is a constant pursuit for new drugs and therapies, and LF is frequently considered a therapeutic agent and/or adjunct to drug-based therapies for the treatment of lung diseases. This article focuses on a review of the existing and most up-to-date literature on the contribution of the beneficial effects of LF on the treatment of lung diseases, including asthma, viral infections, cystic fibrosis, or lung cancer, among others. Although in vitro and in vivo studies indicate significant potency of LF in the treatment of the listed diseases, only in the case of respiratory tract infections do human studies seem to confirm them by demonstrating the effectiveness of LF in reducing episodes of illness and shortening the recovery period. For lung cancer, COVID-19 and sepsis, the reports are conflicting, and for other diseases, there is a paucity of human studies conclusively confirming the beneficial effects of LF.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Monika Jampolska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dominika Zając
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
13
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
14
|
Einerhand AWC, van Loo-Bouwman CA, Weiss GA, Wang C, Ba G, Fan Q, He B, Smit G. Can Lactoferrin, a Natural Mammalian Milk Protein, Assist in the Battle against COVID-19? Nutrients 2022; 14:nu14245274. [PMID: 36558432 PMCID: PMC9782828 DOI: 10.3390/nu14245274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Notwithstanding mass vaccination against specific SARS-CoV-2 variants, there is still a demand for complementary nutritional intervention strategies to fight COVID-19. The bovine milk protein lactoferrin (LF) has attracted interest of nutraceutical, food and dairy industries for its numerous properties-ranging from anti-viral and anti-microbial to immunological-making it a potential functional ingredient in a wide variety of food applications to maintain health. Importantly, bovine LF was found to exert anti-viral activities against several types of viruses, including certain SARS-CoV-2 variants. LF's potential effect on COVID-19 patients has seen a rapid increase of in vitro and in vivo studies published, resulting in a model on how LF might play a role during different phases of SARS-CoV-2 infection. Aim of this narrative review is two-fold: (1) to highlight the most relevant findings concerning LF's anti-viral, anti-microbial, iron-binding, immunomodulatory, microbiota-modulatory and intestinal barrier properties that support health of the two most affected organs in COVID-19 patients (lungs and gut), and (2) to explore the possible underlying mechanisms governing its mode of action. Thanks to its potential effects on health, bovine LF can be considered a good candidate for nutritional interventions counteracting SARS-CoV-2 infection and related COVID-19 pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Caiyun Wang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
| | - Genna Ba
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Qicheng Fan
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Baoping He
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Gerrit Smit
- Yili Innovation Center Europe, 6708 WH Wageningen, The Netherlands
| |
Collapse
|
15
|
Zhou J, Tan Y, Hu L, Fu J, Li D, Chen J, Long Y. Inhibition of HSPA8 by rifampicin contributes to ferroptosis via enhancing autophagy. Liver Int 2022; 42:2889-2899. [PMID: 36254713 DOI: 10.1111/liv.15459] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Rifampicin is the most common pathogenic factor in anti-tuberculosis drug-induced liver injury (AT-DILI), the mechanisms that it promotes hepatocyte damage in AT-DILI are not yet to be thoroughly elucidated. In this study, we investigated the potential molecular mechanisms for ferroptosis involving rifampicin hepatotoxicity. METHODS Animal and cell injury models of rifampicin were constructed, and the toxicity of rifampicin was assessed by physicochemical staining and cell viability assay. Next, flow cytometry was employed to detect changes in ferroptosis-related markers, and Western blotting was used to detect protein expression. Then, the important role of autophagy and ferroptosis was verified with small molecule compound intervention. RESULTS We found that ferritinophagy-induced ferroptosis participates in the toxicity of rifampicin, and the mechanism is that rifampicin precisely activates high-throughput autophagy, which leads to the massive degradation of ferritin and the increase of free iron. Moreover, rifampicin exhibited conspicuous inhibition of Human 71 kDa heat shock cognate protein (HSPA8) that is intimately associated with Microtubule-associated protein light chain 3 isoform B (LC3B) expression, in turn, HSPA8 inducer attenuated intracellular autophagy flux. Of note, inducing HSPA8 or inhibition of autophagy and ferroptosis considerably relieved the hepatotoxicity of rifampicin in mouse model. CONCLUSIONS The present study highlights the crucial roles of the HSPA8 and autophagy in ferroptotic cell death driving by rifampicin, particularly illumines multiple promising regulatory nodes for therapeutic interventions in diseases involving AT-DILI.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Yingzheng Tan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Lingli Hu
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Jingli Fu
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Dan Li
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Jun Chen
- Department of Liver Diseases, Third Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yunzhu Long
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
16
|
Enzyme-Linked Aptamer Kits for Rapid, Visual, and Sensitive Determination of Lactoferrin in Dairy Products. Foods 2022; 11:foods11233763. [PMID: 36496570 PMCID: PMC9736959 DOI: 10.3390/foods11233763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Lactoferrin (Lf), as a popular nutritional fortification in dairy products, has the ability regulate the body's immune system and function as a broad-spectrum antibacterial, which is of great significance to the growth and development of infants and children. Herein, an indirect competitive enzyme-linked aptamer assay (ELAA) kit was established for rapid, sensitive, and visual determination of Lf in dairy products. In the construction, the Lf aptamer was conjugated with horseradish peroxidase (HRP) as the recognition probe and aptamer complementary strand (cDNA) were anchored onto the microplate as the capture probe. The recognition probes were first mixed with a sample solution and specifically bound with the contained Lf, then added into the microplate in which the free recognition probes in the mixture were captured by the capture probe. After washing, the remaining complex of cDNA/Aptamer/HRP in the microplate was conducted with a chromogenic reaction through HRP, efficiently catalyzing the substrate 3, 3', 5, 5'-tetramethylbenzidine (TMB), therefore the color shade would directly reflect Lf concentration. Under the optimization conditions, a good linear relationship (R2, 0.9901) was obtained in the wide range of 25-500 nM with the detection limit of 14.01 nM and a good specificity, as well as the reliable recoveries. Furthermore, the ELAA kits achieved the Lf determination with an accuracy of 79.71~116.99% in eleven samples, which consisted of three kinds of dairy products: including goat milk powder, cow milk powder, and nutrition drop. Moreover, the results were also validated by the high-performance capillary electrophoresis (HPCE) method. The ELAA kit provides a simple and convenient determination for Lf in dairy products, and it is highly expected to be commercialized.
Collapse
|
17
|
Darvishi-Khezri H, Aliasgharian A, Naderisorki M, Kosaryan M, Ghazaiean M, Fallah H, Zahedi M, Karami H. Ferritin thresholds for cardiac and liver hemosiderosis in β-thalassemia patients: a diagnostic accuracy study. Sci Rep 2022; 12:17996. [PMID: 36289264 PMCID: PMC9606378 DOI: 10.1038/s41598-022-22234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Ferritin is frequently used to screen some dire consequences of iron overload in β-thalassemia patients. The study aimed to define the best cutoff point of ferritin to screen for cardiac and liver hemosiderosis in these cases. This was a registry-based study on β-thalassemia patients living throughout Mazandaran province, Iran (n = 1959). In this diagnostic research, the index test was ferritin levels measured by a chemiluminescent immunoassay. As a reference test, T2*-weighted magnetic resonance imaging (T2*-weighted MRI) was applied to determine cardiac and liver hemosiderosis. A cutoff point of 2027 ng/mL for ferritin showed a sensitivity of 50%, specificity 77.4%, PPV 42.1%, and NPV 82.5% for cardiac hemosiderosis (area under curve [AUC] 0.66, 95% CI 0.60-0.71, adjusted odds ratio [OR] 2.05, 95% CI 1.05-4.01). At an optimum cutoff point of 1090 ng/mL, sensitivity 66.7%, specificity 68%, PPV 82.9%, and NPV 46.8% for liver hemosiderosis were estimated (AUC 0.68, 95% CI 0.63-0.73, adjusted OR 3.93, 95% CI 2.02-7.64. The likelihood of cardiac hemosiderosis serum ferritin levels below 2027 ng/mL is 17.5%. Moreover, 82.9% of β-thalassemia patients with serum ferritin levels above 1090 ng/mL may suffer from liver hemosiderosis, regardless of the grades.
Collapse
Affiliation(s)
- Hadi Darvishi-Khezri
- grid.411623.30000 0001 2227 0923Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aily Aliasgharian
- grid.411623.30000 0001 2227 0923Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Naderisorki
- grid.411623.30000 0001 2227 0923Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehrnoush Kosaryan
- grid.411623.30000 0001 2227 0923Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mobin Ghazaiean
- grid.411623.30000 0001 2227 0923Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hanie Fallah
- grid.411623.30000 0001 2227 0923Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Zahedi
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Student Research Committee, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Karami
- grid.411623.30000 0001 2227 0923Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
18
|
Lactoferrin Binding to SARS-CoV-2 Spike Glycoprotein Blocks Pseudoviral Entry and Relieves Iron Protein Dysregulation in Several In Vitro Models. Pharmaceutics 2022; 14:pharmaceutics14102111. [PMID: 36297546 PMCID: PMC9612385 DOI: 10.3390/pharmaceutics14102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2 causes COVID-19, a predominantly pulmonary disease characterized by a burst of pro-inflammatory cytokines and an increase in free iron. The viral glycoprotein Spike mediates fusion to the host cell membrane, but its role as a virulence factor is largely unknown. Recently, the antiviral activity of lactoferrin against SARS-CoV-2 was demonstrated in vitro and shown to occur via binding to cell surface receptors, and its putative interaction with Spike was suggested by in silico analyses. We investigated the anti-SARS-CoV-2 activity of bovine and human lactoferrins in epithelial and macrophagic cells using a Spike-decorated pseudovirus. Lactoferrin inhibited pseudoviral fusion and counteracted the deleterious effects of Spike on iron and inflammatory homeostasis by restoring basal levels of iron-handling proteins and of proinflammatory cytokines IL-1β and IL-6. Using pull-down assays, we experimentally proved for the first time that lactoferrin binds to Spike, immediately suggesting a mechanism for the observed effects. The contribution of transferrin receptor 1 to Spike-mediated cell fusion was also experimentally demonstrated. In silico analyses showed that lactoferrin interacts with transferrin receptor 1, suggesting a multifaceted mechanism of action for lactoferrin. Our results give hope for the use of bovine lactoferrin, already available as a nutraceutical, as an adjuvant to standard therapies in COVID-19.
Collapse
|
19
|
Rosa L, Cutone A, Conte MP, Campione E, Bianchi L, Valenti P. An overview on in vitro and in vivo antiviral activity of lactoferrin: its efficacy against SARS-CoV-2 infection. Biometals 2022; 36:417-436. [PMID: 35920949 PMCID: PMC9362590 DOI: 10.1007/s10534-022-00427-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022]
Abstract
Beyond the absolute and indisputable relevance and efficacy of anti-SARS-CoV-2 vaccines, the rapid transmission, the severity of infection, the absence of the protection on immunocompromised patients, the propagation of variants, the onset of infection and/or disease in vaccinated subjects and the lack of availability of worldwide vaccination require additional antiviral treatments. Since 1987, lactoferrin (Lf) is well-known to possess an antiviral activity related to its physico-chemical properties and to its ability to bind to both heparan sulfate proteoglycans (HSPGs) of host cells and/or surface components of viral particles. In the present review, we summarize in vitro and in vivo studies concerning the efficacy of Lf against DNA, RNA, enveloped and non-enveloped viruses. Recent studies have revealed that the in vitro antiviral activity of Lf is also extendable to SARS-CoV-2. In vivo, Lf oral administration in early stage of SARS-CoV-2 infection counteracts COVID-19 pathogenesis. In particular, the effect of Lf on SARS-CoV-2 entry, inflammatory homeostasis, iron dysregulation, iron-proteins synthesis, reactive oxygen formation, oxidative stress, gut-lung axis regulation as well as on RNA negativization, and coagulation/fibrinolysis balance will be critically reviewed. Moreover, the molecular mechanisms underneath, including the Lf binding to HSPGs and spike glycoprotein, will be disclosed and discussed. Taken together, present data not only support the application of the oral administration of Lf alone in asymptomatic COVID-19 patients or as adjuvant of standard of care practice in symptomatic ones but also constitute the basis for enriching the limited literature on Lf effectiveness for COVID-19 treatment.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy.
| |
Collapse
|
20
|
Ward JL, Torres-Gonzalez M, Ammons MCB. The Influence of Viral Infections on Iron Homeostasis and the Potential for Lactoferrin as a Therapeutic in the Age of the SARS-CoV-2 Pandemic. Nutrients 2022; 14:3090. [PMID: 35956266 PMCID: PMC9370565 DOI: 10.3390/nu14153090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
The association of hyperinflammation and hyperferritinemia with adverse outcomes in SARS-CoV-2-infected patients suggests an integral role for iron homeostasis in pathogenesis, a commonly described symptom of respiratory viral infections. This dysregulated iron homeostasis results in viral-induced lung injury, often lasting long after the acute viral infection; however, much remains to be understood mechanistically. Lactoferrin is a multipurpose glycoprotein with key immunomodulatory, antimicrobial, and antiviral functions, which can be found in various secreted fluids, but is most abundantly characterized in milk from all mammalian species. Lactoferrin is found at its highest concentrations in primate colostrum; however, the abundant availability of bovine-dairy-derived lactoferrin (bLf) has led to the use of bLf as a functional food. The recent research has demonstrated the potential value of bovine lactoferrin as a therapeutic adjuvant against SARS-CoV-2, and herein this research is reviewed and the potential mechanisms of therapeutic targeting are considered.
Collapse
Affiliation(s)
- Jeffrey L Ward
- Medical Student, College of Osteopathic Medicine, William Carey University, Hattiesburg, MI 39401, USA
| | | | - Mary Cloud B Ammons
- Associate Research Scientist, IVREF, Boise VA Medical Center, Boise, ID 83702, USA
| |
Collapse
|
21
|
Campione E, Lanna C, Cosio T, Rosa L, Conte MP, Iacovelli F, Romeo A, Falconi M, Del Vecchio C, Franchin E, Lia MS, Minieri M, Chiaramonte C, Ciotti M, Nuccetelli M, Terrinoni A, Iannuzzi I, Coppeta L, Magrini A, Bernardini S, Sabatini S, Rosapepe F, Bartoletti PL, Moricca N, Di Lorenzo A, Andreoni M, Sarmati L, Miani A, Piscitelli P, Squillaci E, Valenti P, Bianchi L. Lactoferrin as Antiviral Treatment in COVID-19 Management: Preliminary Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010985. [PMID: 34682731 PMCID: PMC8535893 DOI: 10.3390/ijerph182010985] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023]
Abstract
Lactoferrin (Lf), a multifunctional cationic glycoprotein synthesized by exocrine glands and neutrophils, possesses an in vitro antiviral activity against SARS-CoV-2. Thus, we conducted an in vivo preliminary study to investigate the antiviral effect of oral and intranasal liposomal bovine Lf (bLf) in asymptomatic and mild-to-moderate COVID-19 patients. From April 2020 to June 2020, a total of 92 mild-to-moderate (67/92) and asymptomatic (25/92) COVID-19 patients were recruited and divided into three groups. Thirty-two patients (14 hospitalized and 18 in home-based isolation) received only oral and intranasal liposomal bLf; 32 hospitalized patients were treated only with standard of care (SOC) treatment; and 28, in home-based isolation, did not take any medication. Furthermore, 32 COVID-19 negative, untreated, healthy subjects were added for ancillary analysis. Liposomal bLf-treated COVID-19 patients obtained an earlier and significant (p < 0.0001) SARS-CoV-2 RNA negative conversion compared to the SOC-treated and untreated COVID-19 patients (14.25 vs. 27.13 vs. 32.61 days, respectively). Liposomal bLf-treated COVID-19 patients showed fast clinical symptoms recovery compared to the SOC-treated COVID-19 patients. In bLf-treated patients, a significant decrease in serum ferritin, IL-6, and D-dimers levels was observed. No adverse events were reported. These observations led us to speculate a potential role of bLf in the management of mild-to-moderate and asymptomatic COVID-19 patients.
Collapse
Affiliation(s)
- Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
- Correspondence:
| | - Caterina Lanna
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, 00185 Rome, Italy; (L.R.); (M.P.C.); (P.V.)
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, 00185 Rome, Italy; (L.R.); (M.P.C.); (P.V.)
| | - Federico Iacovelli
- Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.I.); (A.R.); (M.F.)
| | - Alice Romeo
- Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.I.); (A.R.); (M.F.)
| | - Mattia Falconi
- Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.I.); (A.R.); (M.F.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.D.V.); (E.F.)
| | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.D.V.); (E.F.)
| | - Maria Stella Lia
- Department of Experimental Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (M.S.L.); (M.M.); (A.T.)
| | - Marilena Minieri
- Department of Experimental Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (M.S.L.); (M.M.); (A.T.)
| | - Carlo Chiaramonte
- Department of Statistics, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Marco Ciotti
- Virology Unit, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Marzia Nuccetelli
- Laboratory Medicine, Department of Experimental Medicine and Surgery, Tor Vergata University Hospital, 00133 Rome, Italy; (M.N.); (S.B.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (M.S.L.); (M.M.); (A.T.)
| | - Ilaria Iannuzzi
- Occupational Medicine Department, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.I.); (L.C.); (A.M.)
| | - Luca Coppeta
- Occupational Medicine Department, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.I.); (L.C.); (A.M.)
| | - Andrea Magrini
- Occupational Medicine Department, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.I.); (L.C.); (A.M.)
| | - Sergio Bernardini
- Laboratory Medicine, Department of Experimental Medicine and Surgery, Tor Vergata University Hospital, 00133 Rome, Italy; (M.N.); (S.B.)
| | | | | | | | - Nicola Moricca
- Villa dei Pini Hospital, 00042 Anzio, Italy; (S.S.); (N.M.)
| | - Andrea Di Lorenzo
- Infectious Disease Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.D.L.); (M.A.); (L.S.)
| | - Massimo Andreoni
- Infectious Disease Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.D.L.); (M.A.); (L.S.)
| | - Loredana Sarmati
- Infectious Disease Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.D.L.); (M.A.); (L.S.)
| | - Alessandro Miani
- Department of Environmental Sciences and Policy, University of Milan, 20133 Milan, Italy;
| | - Prisco Piscitelli
- UNESCO Chair on Health Education and Sustainable Development, University of Naples Federico II, 80131 Naples, Italy;
| | - Ettore Squillaci
- Department of Diagnostic and Molecular Imaging, Radiation Therapy and Interventional Radiology, University Hospital Tor Vergata, 00133 Rome, Italy;
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, 00185 Rome, Italy; (L.R.); (M.P.C.); (P.V.)
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
| |
Collapse
|
22
|
Ambulatory COVID-19 Patients Treated with Lactoferrin as a Supplementary Antiviral Agent: A Preliminary Study. J Clin Med 2021; 10:jcm10184276. [PMID: 34575388 PMCID: PMC8469309 DOI: 10.3390/jcm10184276] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2, an enveloped, single-stranded RNA virus causing COVID-19, exerts morbidity and mortality especially in elderly, obese individuals and those suffering from chronic conditions. In addition to the availability of vaccines and the limited efficacy of the first dose of vaccine against SARS-CoV-2 variants, there is an urgent requirement for the discovery and development of supplementary antiviral agents. Lactoferrin (Lf), a pleiotropic cationic glycoprotein of innate immunity, has been proposed as a safe treatment combined with other therapies in COVID-19 patients. Here, we present a small retrospective study on asymptomatic, paucisymptomatic, and moderate symptomatic COVID-19 Lf-treated versus Lf-untreated patients. The time required to achieve SARS-CoV-2 RNA negativization in Lf-treated patients (n = 82) was significantly lower (p < 0.001) compared to that observed in Lf-untreated ones (n = 39) (15 versus 24 days). A link among reduction in symptoms, age, and Lf treatment was found. The Lf antiviral activity could be explained through the interaction with SARS-CoV-2 spike, the binding with heparan sulfate proteoglycans of cells, and the anti-inflammatory activity associated with the restoration of iron homeostasis disorders, which favor viral infection/replication. Lf could be an important supplementary treatment in counteracting SARS-CoV-2 infection, as it is also safe and well-tolerated by all treated patients.
Collapse
|
23
|
Ganesh GV, Mohanram RK. Metabolic reprogramming and immune regulation in viral diseases. Rev Med Virol 2021; 32:e2268. [PMID: 34176174 DOI: 10.1002/rmv.2268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
The recent outbreak and transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide and the ensuing coronavirus disease 2019 (COVID-19) pandemic has left us scrambling for ways to contain the disease and develop vaccines that are safe and effective. Equally important, understanding the impact of the virus on the host system in convalescent patients, healthy otherwise or with co-morbidities, is expected to aid in developing effective strategies in the management of patients afflicted with the disease. Viruses possess the uncanny ability to redirect host metabolism to serve their needs and also limit host immune response to ensure their survival. An ever-increasingly powerful approach uses metabolomics to uncover diverse molecular signatures that influence a wide array of host signalling networks in different viral infections. This would also help integrate experimental findings from individual studies to yield robust evidence. In addition, unravelling the molecular mechanisms harnessed by both viruses and tumours in their host metabolism will help broaden the repertoire of therapeutic tools available to combat viral disease.
Collapse
Affiliation(s)
- Goutham V Ganesh
- Life Science Division, SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| | - Ramkumar K Mohanram
- Life Science Division, SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
24
|
Campione E, Lanna C, Cosio T, Rosa L, Conte MP, Iacovelli F, Romeo A, Falconi M, Del Vecchio C, Franchin E, Lia MS, Minieri M, Chiaramonte C, Ciotti M, Nuccetelli M, Terrinoni A, Iannuzzi I, Coppeda L, Magrini A, Bernardini S, Sabatini S, Rosapepe F, Bartoletti PL, Moricca N, Di Lorenzo A, Andreoni M, Sarmati L, Miani A, Piscitelli P, Valenti P, Bianchi L. Lactoferrin Against SARS-CoV-2: In Vitro and In Silico Evidences. Front Pharmacol 2021; 12:666600. [PMID: 34220505 PMCID: PMC8242182 DOI: 10.3389/fphar.2021.666600] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Lactoferrin (Lf) is a cationic glycoprotein synthetized by exocrine glands and is present in all human secretions. It is also secreted by neutrophils in infection and inflammation sites. This glycoprotein possesses antimicrobial activity due to its capability to chelate two ferric ions per molecule, as well as to interact with bacterial and viral anionic surface components. The cationic features of Lf bind to cells, protecting the host from bacterial and viral injuries. Its anti-inflammatory activity is mediated by the ability to enter inside the nucleus of host cells, thus inhibiting the synthesis of proinflammatory cytokine genes. In particular, Lf down-regulates the synthesis of IL-6, which is involved in iron homeostasis disorders and leads to intracellular iron overload, favoring viral replication and infection. The well-known antiviral activity of Lf has been demonstrated against DNA, RNA, and enveloped and naked viruses and, therefore, Lf could be efficient in counteracting also SARS-CoV-2 infection. For this purpose, we performed in vitro assays, proving that Lf exerts an antiviral activity against SARS-COV-2 through direct attachment to both SARS-CoV-2 and cell surface components. This activity varied according to concentration (100/500 μg/ml), multiplicity of infection (0.1/0.01), and cell type (Vero E6/Caco-2 cells). Interestingly, the in silico results strongly supported the hypothesis of a direct recognition between Lf and the spike S glycoprotein, which can thus hinder viral entry into the cells. These in vitro observations led us to speculate a potential supplementary role of Lf in the management of COVID-19 patients.
Collapse
Affiliation(s)
- Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Caterina Lanna
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| | - Federico Iacovelli
- Department of Biology, Structural Bioinformatics Group, University of Rome "Tor Vergata", Rome, Italy
| | - Alice Romeo
- Department of Biology, Structural Bioinformatics Group, University of Rome "Tor Vergata", Rome, Italy
| | - Mattia Falconi
- Department of Biology, Structural Bioinformatics Group, University of Rome "Tor Vergata", Rome, Italy
| | | | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Maria Stella Lia
- Department of Experimental Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Marilena Minieri
- Department of Experimental Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Carlo Chiaramonte
- Department of Statistics, University of Rome Tor Vergata, Rome, Italy
| | - Marco Ciotti
- Virology Unit, Tor Vergata University Hospital, Rome, Italy
| | - Marzia Nuccetelli
- Laboratory Medicine, Department of Experimental Medicine and Surgery, Tor Vergata University Hospital, Rome, Italy
| | - Alessandro Terrinoni
- Department of Experimental Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Ilaria Iannuzzi
- Occupational Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Luca Coppeda
- Occupational Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Magrini
- Occupational Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Sergio Bernardini
- Laboratory Medicine, Department of Experimental Medicine and Surgery, Tor Vergata University Hospital, Rome, Italy
| | | | | | | | | | - Andrea Di Lorenzo
- Infectious Disease Unit, Tor Vergata University Hospital, Rome, Italy
| | - Massimo Andreoni
- Infectious Disease Unit, Tor Vergata University Hospital, Rome, Italy
| | - Loredana Sarmati
- Infectious Disease Unit, Tor Vergata University Hospital, Rome, Italy
| | - Alessandro Miani
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Prisco Piscitelli
- UNESCO Chair on Health Education and Sustainable Development, University of Naples Federico II, Naples, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| |
Collapse
|
25
|
Protective Action of L. salivarius SGL03 and Lactoferrin against COVID-19 Infections in Human Nasopharynx. MATERIALS 2021; 14:ma14113086. [PMID: 34200055 PMCID: PMC8200234 DOI: 10.3390/ma14113086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/09/2021] [Accepted: 05/29/2021] [Indexed: 12/24/2022]
Abstract
In this study, we used live viral particles from oral secretions from 17 people infected with SARS-CoV-2 and from 17 healthy volunteers, which were plated on a suitable medium complete for all microorganisms and minimal for L.salivarius growth. Both types of media also contained an appropriately prepared vector system pGEM-5Zf (+) based on the lactose operon (beta-galactosidase system). Incubation was carried out on both types of media for 24 h with the addition of 200 μL of Salistat SGL03 solution in order to test its inhibitory effect on the coronavirus contained in the oral mucosa and nasopharynx, visible as light blue virus particles on the test plates, which gradually disappeared in the material collected from infected persons over time. Regardless of the conducted experiments, swabs were additionally taken from the nasopharynx of infected and healthy people after rinsing the throat and oral mucosa with Salistat SGL03. In both types of experiments, after 24 h of incubation on appropriate media with biological material, we did not find any virus particles. Results were also confirmed by MIC and MBC tests. Results prove that lactoferrin, as one of the ingredients of the preparation, is probably a factor that blocks the attachment of virus particles to the host cells, determining its anti-viral properties. The conducted preliminary experiments constitute a very promising model for further research on the anti-viral properties of the ingredients contained in the Salistat SGL03 dietary supplement.
Collapse
|
26
|
Bukowska-Ośko I, Popiel M, Kowalczyk P. The Immunological Role of the Placenta in SARS-CoV-2 Infection-Viral Transmission, Immune Regulation, and Lactoferrin Activity. Int J Mol Sci 2021; 22:5799. [PMID: 34071527 PMCID: PMC8198160 DOI: 10.3390/ijms22115799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
A pandemic of acute respiratory infections, due to a new type of coronavirus, can cause Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) and has created the need for a better understanding of the clinical, epidemiological, and pathological features of COVID-19, especially in high-risk groups, such as pregnant women. Viral infections in pregnant women may have a much more severe course, and result in an increase in the rate of complications, including spontaneous abortion, stillbirth, and premature birth-which may cause long-term consequences in the offspring. In this review, we focus on the mother-fetal-placenta interface and its role in the potential transmission of SARS-CoV-2, including expression of viral receptors and proteases, placental pathology, and the presence of the virus in neonatal tissues and fluids. This review summarizes the current knowledge on the anti-viral activity of lactoferrin during viral infection in pregnant women, analyzes its role in the pathogenicity of pandemic virus particles, and describes the potential evidence for placental blocking/limiting of the transmission of the virus.
Collapse
Affiliation(s)
- Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-091Warsaw, Poland;
| | - Marta Popiel
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
27
|
Iron at the Interface of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22084097. [PMID: 33921027 PMCID: PMC8071427 DOI: 10.3390/ijms22084097] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer incidence and mortality are rapidly growing, with liver cancer being the sixth most diagnosed cancer worldwide and the third leading cause of cancer death in 2020. A number of risk factors have been identified that trigger the progression to hepatocellular carcinoma. In this review, we focus on iron as a potential risk factor for liver carcinogenesis. Molecules involved in the regulation of iron metabolism are often upregulated in cancer cells, in order to provide a supply of this essential trace element for all stages of tumor development, survival, proliferation, and metastasis. Thus, cellular and systemic iron levels must be tightly regulated to prevent or delay liver cancer progression. Disorders associated with dysregulated iron metabolism are characterized with increased susceptibility to hepatocellular carcinoma. This review discusses the association of iron with metabolic disorders such as hereditary hemochromatosis, non-alcoholic fatty liver disease, obesity, and type 2 diabetes, in the background of hepatocellular carcinoma.
Collapse
|
28
|
Habib HM, Ibrahim S, Zaim A, Ibrahim WH. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother 2021; 136:111228. [PMID: 33454595 PMCID: PMC7836924 DOI: 10.1016/j.biopha.2021.111228] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Iron overload is increasingly implicated as a contributor to the pathogenesis of COVID-19. Indeed, several of the manifestations of COVID-19, such as inflammation, hypercoagulation, hyperferritinemia, and immune dysfunction are also reminiscent of iron overload. Although iron is essential for all living cells, free unbound iron, resulting from iron dysregulation and overload, is very reactive and potentially toxic due to its role in the generation of reactive oxygen species (ROS). ROS react with and damage cellular lipids, nucleic acids, and proteins, with consequent activation of either acute or chronic inflammatory processes implicated in multiple clinical conditions. Moreover, iron-catalyzed lipid damage exerts a direct causative effect on the newly discovered nonapoptotic cell death known as ferroptosis. Unlike apoptosis, ferroptosis is immunogenic and not only leads to amplified cell death but also promotes a series of reactions associated with inflammation. Iron chelators are generally safe and are proven to protect patients in clinical conditions characterized by iron overload. There is also an abundance of evidence that iron chelators possess antiviral activities. Furthermore, the naturally occurring iron chelator lactoferrin (Lf) exerts immunomodulatory as well as anti-inflammatory effects and can bind to several receptors used by coronaviruses thereby blocking their entry into host cells. Iron chelators may consequently be of high therapeutic value during the present COVID-19 pandemic.
Collapse
Affiliation(s)
- Hosam M Habib
- Functional Foods and Nutraceuticals Laboratory (FFNL), Dairy Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
| | - Sahar Ibrahim
- Weldon School of Biomedical Engineering, Purdue University, USA
| | - Aamnah Zaim
- Weldon School of Biomedical Engineering, Purdue University, USA
| | - Wissam H Ibrahim
- Office of Institutional Effectiveness, United Arab Emirates University, P. O. Box 15551, Al Ain, UAE.
| |
Collapse
|
29
|
Wei YS, Feng K, Li SF, Hu TG, Linhardt RJ, Zong MH, Wu H. Oral fate and stabilization technologies of lactoferrin: a systematic review. Crit Rev Food Sci Nutr 2021; 62:6341-6358. [PMID: 33749401 DOI: 10.1080/10408398.2021.1900774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactoferrin (Lf), a bioactive protein initially found in many biological secretions including milk, is regarded as the nutritional supplement or therapeutic ligand due to its multiple functions. Research on its mode of action reveals that intact Lf or its active peptide (i.e., lactoferricin) shows an important multifunctional performance. Oral delivery is considered as the most convenient administration route for this bioactive protein. Unfortunately, Lf is sensitive to the gastrointestinal (GI) physicochemical stresses and lactoferricin is undetectable in GI digesta. This review introduces the functionality of Lf at the molecular level and its degradation behavior in GI tract is discussed in detail. Subsequently, the absorption and transport of Lf from intestine into the blood circulation, which is pivotal to its health promoting effects in various tissues, and some assisting labeling methods are discussed. Stabilization technologies aiming at preserving the structural integrity and functional properties of orally administrated Lf are summarized and compared. Altogether, this work comprehensively reviews the structure-function relationship of Lf, its oral fate and the development of stabilization technologies for the enhancement of the oral bioavailability of Lf. The existing limitations and scope for future research are also discussed.
Collapse
Affiliation(s)
- Yun-Shan Wei
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Kun Feng
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Shu-Fang Li
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
30
|
Cutone A, Ianiro G, Lepanto MS, Rosa L, Valenti P, Bonaccorsi di Patti MC, Musci G. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel) 2020; 12:E3806. [PMID: 33348646 PMCID: PMC7766217 DOI: 10.3390/cancers12123806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| |
Collapse
|
31
|
Mancinelli R, Cutone A, Rosa L, Lepanto MS, Onori P, Pannarale L, Franchitto A, Gaudio E, Valenti P. Different iron-handling in inflamed small and large cholangiocytes and in small and large-duct type intrahepatic cholangiocarcinoma. Eur J Histochem 2020; 64. [PMID: 33131269 PMCID: PMC7586138 DOI: 10.4081/ejh.2020.3156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) represents the second most common primary hepatic malignancy and originates from the neoplastic transformation of the biliary cells. The intrahepatic subtype includes two morpho-molecular forms: large-duct type intrahepatic CCA (iCCA) and small-duct type iCCA. Iron is fundamental for the cellular processes, contributing in tumor development and progression. The aim of this study was to evaluate iron uptake, storage, and efflux proteins in both lipopolysaccharide-inflamed small and large cholangiocytes as well as in different iCCA subtypes. Our results show that, despite an increase in interleukin-6 production by both small and large cholangiocytes, ferroportin (Fpn) was decreased only in small cholangiocytes, whereas transferrin receptor-1 (TfR1) and ferritin (Ftn) did not show any change. Differently from in vitro models, Fpn expression was increased in malignant cholangiocytes of small-duct type iCCA in comparison to large-duct type iCCA and peritumoral tissues. TfR1, Ftn and hepcidin were enhanced, even if at different extent, in both malignant cholangiocytes in comparison to the surrounding samples. Lactoferrin was higher in large-duct type iCCA in respect to small-duct type iCCA and peritumoral tissues. These findings show a different iron handling by inflamed small and large cholangiocytes, and small and large-duct type iCCA. The difference in iron homeostasis by the iCCA subtypes may have implications for the tumor management.
Collapse
Affiliation(s)
- Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome.
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche (IS).
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome.
| | | | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome .
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome .
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome; Eleonora Lorillard Spencer Cenci Foundation, Rome.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome .
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome.
| |
Collapse
|
32
|
Pirr S, Viemann D. Host Factors of Favorable Intestinal Microbial Colonization. Front Immunol 2020; 11:584288. [PMID: 33117398 PMCID: PMC7576995 DOI: 10.3389/fimmu.2020.584288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Gut microbial colonization starts with birth and initiates a complex process between the host and the microbiota. Successful co-development of both establishes a symbiotic mutual relationship and functional homeostasis, while alterations thereof predispose the individual life-long to inflammatory and metabolic diseases. Multiple data have been provided how colonizing microbes induce a reprogramming and maturation of immunity by providing crucial instructing information to the newborn immune system. Less is known about what host factors have influence on the interplay between intestinal immunity and the composition of the gut microbial ecology. Here we review existing evidence regarding host factors that contribute to a favorable development of the gut microbiome and thereby successful maturation of gut mucosal immunity.
Collapse
Affiliation(s)
- Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany.,PRIMAL Consortium, Hanover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany.,PRIMAL Consortium, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| |
Collapse
|
33
|
Campione E, Cosio T, Rosa L, Lanna C, Di Girolamo S, Gaziano R, Valenti P, Bianchi L. Lactoferrin as Protective Natural Barrier of Respiratory and Intestinal Mucosa against Coronavirus Infection and Inflammation. Int J Mol Sci 2020; 21:E4903. [PMID: 32664543 PMCID: PMC7402319 DOI: 10.3390/ijms21144903] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
Recently, the world has been dealing with a devastating global pandemic coronavirus infection, with more than 12 million infected worldwide and over 300,000 deaths as of May 15th 2020, related to a novel coronavirus (2019-nCoV), characterized by a spherical morphology and identified through next-generation sequencing. Although the respiratory tract is the primary portal of entry of SARS-CoV-2, gastrointestinal involvement associated with nausea, vomiting and diarrhoea may also occur. No drug or vaccine has been approved due to the absence of evidence deriving from rigorous clinical trials. Increasing interest has been highlighted on the possible preventative role and adjunct treatment of lactoferrin, glycoprotein of human secretions part of a non-specific defensive system, known to play a crucial role against microbial and viral infections and exerting anti-inflammatory effects on different mucosal surfaces and able to regulate iron metabolism. In this review, analysing lactoferrin properties, we propose designing a clinical trial to evaluate and verify its effect using a dual combination treatment with local, solubilized intranasal spray formulation and oral administration. Lactoferrin could counteract the coronavirus infection and inflammation, acting either as natural barrier of both respiratory and intestinal mucosa or reverting the iron disorders related to the viral colonization.
Collapse
Affiliation(s)
- Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| | - Terenzio Cosio
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Caterina Lanna
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| | - Stefano Di Girolamo
- Department of Otorhinolaryngology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Luca Bianchi
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| |
Collapse
|