1
|
Corbion C, Smith-Ravin J, Marcelin O, Bouajila J. Assessment of chemical composition of AOC agricultural rum from Martinique. Food Chem 2025; 481:144071. [PMID: 40184925 DOI: 10.1016/j.foodchem.2025.144071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Agricultural rum, a sugarcane juice spirit, is produced in Martinique under the French AOC label, ensuring compliance with strict quality and origin standards. This study investigates the chemical composition of four aged agricultural rum (ESB, VO, VSOP, XO), using physicochemical (color, dry extract) and analytical techniques (GC-FID, GC-MS, HPLC-DAD). Phenolic compounds and volatile organic compounds were quantified and evaluated. Results revealed a progressive enrichment in wood-derived compounds including syringaldehyde and vanillin, as well as esters, which contribute to aroma complexity during aging. Phenolic content showed a positive correlation with aging time, although antioxidant activity was lower in the oldest XO rum. Principal Component Analysis (PCA) effectively distinguished the rums based on chemical composition, with XO exhibiting the most distinct profile. This comprehensive chemical fingerprint provides valuable data for quality control, authentication, and sensory prediction, supporting both producers and regulatory authorities in preserving the unique characteristics of agricultural rum from Martinique.
Collapse
Affiliation(s)
- Claudine Corbion
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS-INPT-UPS, 31062 Toulouse, France.
| | | | - Odile Marcelin
- Groupe BIOSPHERES, Campus de Schœlcher, 97275 Schœlcher, Martinique, France
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS-INPT-UPS, 31062 Toulouse, France.
| |
Collapse
|
2
|
Evaristo J, de Laia E, Tavares B, Mendonça E, Grisostenes L, Rodrigues C, do Nascimento W, Garcia C, Guterres S, Nogueira F, Zanchi F, Evaristo G. Identification of Bioactive Metabolites of Capirona macrophylla by Metabolomic Analysis, Molecular Docking, and In Vitro Antiparasitic Assays. Metabolites 2025; 15:157. [PMID: 40137122 PMCID: PMC11943490 DOI: 10.3390/metabo15030157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 03/27/2025] Open
Abstract
Capirona macrophylla is a Rubiaceae known as "mulateiro". Ethnobotanical extracts have been used for skin treatment and in the management of leishmaniasis and malaria. OBJECTIVES The metabolites in aqueous extracts from wood bark, leaves, and stems were identified, and their in silico docking and in vitro cellular efficacy against Leishmania amazonensis and Plasmodium falciparum were evaluated. METHODS The extracts were analyzed by UHPLC/HRMSn using untargeted metabolomics approach with MSDial, MSFinder, and GNPS software for metabolite identification and spectra clustering. The most abundant metabolites underwent molecular docking using AutoDock via PyRx, targeting the dihydroorotate dehydrogenase from Leishmania and P. falciparum, and evaluated through molecular dynamics simulations using Gromacs. In vitro biological assays were conducted on 60 HPLC-fractions against these parasites. RESULTS Metabolomics analysis identified 5100 metabolites in ESI+ and 2839 in ESI- spectra among the "mulateiro" samples. GNPS clustering highlighted large clusters of quercetin and chlorogenic acid groups. The most abundant metabolites were isofraxidin, scopoletin, 5(S)-5-carboxystrictosidine, loliolide, quercetin, quinic acid, caffeoylquinic acid (and isomers), chlorogenic acid, neochlorogenic acid, tryptophan, N-acetyltryptophan, epicatechin, procyanidin, and kaempferol-3-O-robinoside-7-O-rhamnoside. Molecular docking pointed to 3,4-dicaffeoylquinic acid and kaempferol as promising inhibitors. The in vitro assays yielded four active HPLC-fractions against L. amazonensis with IC50 values ranging from 175.2 μg/mL to 194.8 μg/mL, and fraction G29 showed an IC50 of 119.8 μg/mL against P. falciparum. CONCLUSIONS The ethnobotanical use of "mulateiro" wood bark tea as an antimalarial and antileishmanial agent was confirmed through in vitro assays. We speculate that these activities are attributed to linoleic acids and quinic acids.
Collapse
Affiliation(s)
- Joseph Evaristo
- Center for the Study of Biomolecules Applied to Health (Cebio), Oswaldo Cruz Foundation Rondônia Unity (Fiocruz/RO), Porto Velho 76812-245, Rondônia, Brazil; (J.E.); (E.d.L.); (B.T.); (L.G.); (C.R.)
| | - Elise de Laia
- Center for the Study of Biomolecules Applied to Health (Cebio), Oswaldo Cruz Foundation Rondônia Unity (Fiocruz/RO), Porto Velho 76812-245, Rondônia, Brazil; (J.E.); (E.d.L.); (B.T.); (L.G.); (C.R.)
| | - Bruna Tavares
- Center for the Study of Biomolecules Applied to Health (Cebio), Oswaldo Cruz Foundation Rondônia Unity (Fiocruz/RO), Porto Velho 76812-245, Rondônia, Brazil; (J.E.); (E.d.L.); (B.T.); (L.G.); (C.R.)
| | - Esdras Mendonça
- Bioinformatic and Medicinal Chemistry Laboratory, Fiocruz/RO, Porto Velho 76812-245, Rondônia, Brazil; (E.M.); (F.Z.)
- National Institute of Epidemiology in the Western Amazon (INCT-EPIAMO), Porto Velho 76812-245, Rondônia, Brazil
| | - Larissa Grisostenes
- Center for the Study of Biomolecules Applied to Health (Cebio), Oswaldo Cruz Foundation Rondônia Unity (Fiocruz/RO), Porto Velho 76812-245, Rondônia, Brazil; (J.E.); (E.d.L.); (B.T.); (L.G.); (C.R.)
| | - Caroline Rodrigues
- Center for the Study of Biomolecules Applied to Health (Cebio), Oswaldo Cruz Foundation Rondônia Unity (Fiocruz/RO), Porto Velho 76812-245, Rondônia, Brazil; (J.E.); (E.d.L.); (B.T.); (L.G.); (C.R.)
| | - Welington do Nascimento
- Malaria and Leishmaniasis Bioassays Platform Laboratory, Fiocruz/RO, Porto Velho 76812-245, Rondônia, Brazil; (W.d.N.); (C.G.)
| | - Carolina Garcia
- Malaria and Leishmaniasis Bioassays Platform Laboratory, Fiocruz/RO, Porto Velho 76812-245, Rondônia, Brazil; (W.d.N.); (C.G.)
| | - Sheila Guterres
- Chemistry Department, Federal University of Rondônia (UNIR), Rio de Janeiro City 21941-598, Rio de Janeiro State, Brazil;
| | - Fábio Nogueira
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro City 21941-598, Rio de Janeiro State, Brazil;
- Laboratory of Protein Chemistry-Proteomic Unit, Center for Research in Precision Medicine (CPMP), Carlos Chagas Filho Biophysics Institute, UFRJ, Rio de Janeiro City 21941-902, Rio de Janeiro State, Brazil
| | - Fernando Zanchi
- Bioinformatic and Medicinal Chemistry Laboratory, Fiocruz/RO, Porto Velho 76812-245, Rondônia, Brazil; (E.M.); (F.Z.)
- National Institute of Epidemiology in the Western Amazon (INCT-EPIAMO), Porto Velho 76812-245, Rondônia, Brazil
| | - Geisa Evaristo
- Center for the Study of Biomolecules Applied to Health (Cebio), Oswaldo Cruz Foundation Rondônia Unity (Fiocruz/RO), Porto Velho 76812-245, Rondônia, Brazil; (J.E.); (E.d.L.); (B.T.); (L.G.); (C.R.)
| |
Collapse
|
3
|
Wen S, Cai X, Zhou K, Min Y, Shang C, Shen L, Deng L, Liu D, Qiao G, Shen X. Metabolome and comparative genome provide insights into secondary metabolites generation of a rare karst-growing Rhododendron in vitro culture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17235. [PMID: 39935165 DOI: 10.1111/tpj.17235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/18/2024] [Indexed: 02/13/2025]
Abstract
Rhododendron species have the potential to be rich in secondary metabolites with pharmaceutical or industrial value. However, there is a lack of comprehensive metabolome studies at the genome level, particularly for unique and rare species like Rhododendron bailiense, which exclusively grows in karst environments in Guizhou, southwest China. Recently, genome assembly data for this species was available. In this study, nontargeted metabolomics was employed to investigate the secondary metabolites profile of R. bailiense callus. The callus of R. bailiense was induced using 0.2 mg L-1 TDZ (Thidiazuron) + 0.1 mg L-1 IBA (3-Indole butyric acid). A comparison between light-treated calli and dark-cultured calli revealed differential accumulation of metabolites, particularly in flavonoids, terpenoids, coumarins, and hydroxycinnamic acids, known for their beneficial effects such as antioxidant, anticancer, and anti-inflammatory properties. Proanthocyanidins, with various health-promoting effects, were found to accumulate significantly in dark-cultured calli. Light conditions promoted diterpene and triterpene products, whereas darkness favored sesquiterpene products. Additionally, the study demonstrated the potential of utilizing Agrobacterium transformation technology on callus suspension cells to enhance secondary metabolite production. Comparison with the genome of Rhododendron molle revealed that the R. bailiense genome exhibited active 'glycosyltransferase activity,' possessed a higher number of copies of monoterpene and sesquiterpene terpene synthases, and contained high copies of specific cytochrome P450 members (CYP71, CYP76, CYP79, CYP82, CYP736). This study offers valuable insights and potential strategies for the biosynthesis and production of Rhododendron secondary metabolites with pharmaceutical or industrial significance.
Collapse
Affiliation(s)
- Sulin Wen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaowei Cai
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Kui Zhou
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yi Min
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Chunqiong Shang
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Luonan Shen
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Lin Deng
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Di Liu
- Majorbio Bio-Pharm Technology Co., Ltd, Shanghai, 201203, China
| | - Guang Qiao
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Xiaohui Shen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Younes AH, Mustafa YF. Unveiling the Biomedical Applications of Novel Coumarins Isolated From Capsicum Annuum L. Seeds by a Multivariate Extraction Technique. Chem Biodivers 2024; 21:e202400581. [PMID: 38619505 DOI: 10.1002/cbdv.202400581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
For the first time, kinetic thermomagnetic extraction is a novel approach presented in this work. It required the application of four distinct variables: rotation speed (50, 75, and 100 rpm), magnetic field (0.8, 1.2, and 1.6 T), time interval (30, 60, and 90 min), and temperature (45, 55, and 65 °C). Numerous phytochemical categories were detected in the 81 crude chloroform extracts of green sweet bell pepper seeds that were collected, according to phytochemical analysis. Nine extracts were discovered to be linked to the coumarin chemical class and to have the same two extraction parameters: a 90-minute extraction duration and a 55 °C extraction temperature. To enable their coumarin contents to be chemically separated and chromatographically purified, two of these extracts containing coumarin were chosen. Four new phytocoumarins have been identified and their molecular structures distinguished using FTIR spectra, 1H-NMR, 13C-NMR, and mass analysis. By using MTT probing, it was discovered that these phytocoumarins exhibited anticancer activities against eight malignant populations and reduced oxidative stress in human SH-SY5Y populations. Similarly, the anti-inflammatory and antidiabetic properties were determined using three and two associated enzymes, respectively. The results demonstrated that the extracted phytocoumarins have exceptional oxidative stress-mitigating characteristics, ranging from 71.51 to 81.48 %, when compared to a positive control. Furthermore, they showed excellent cytotoxicity against the test malignant populations (IC50 values of 46.76-81.45 μg/ml). The isolates need to be taken into account as dual COX-2/5-LOX antagonists because they also showed a fascinating selective anti-inflammatory effect. The phytocoumarins under investigation have selectivity indices that are higher than those of the standards used, suggesting that they may have the ability to selectively block the COX2 enzyme that induces harmful inflammation. Compared to the standards, the phytocoumarins have a higher ability to block the catalytic activity of 5-LOX. This observation suggests that the phytocoumarins are powerful 5-LOX agents. Finally, they had a modest antidiabetic impact when tested against two blood-controlling enzymes. The authors came to the conclusion that the technique adopted is flexible and successful for extraction after modifying its components. Moreover, isolated phytocoumarins in general and natural-B1 in particular provide naturally derived solutions for oxidative stress and its associated diseases.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, postCode/>41001, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, postCode/>41001, Mosul, Iraq
| |
Collapse
|
5
|
Lairikyengbam D, Wetterauer B, Schmiech M, Jahraus B, Kirchgessner H, Wetterauer P, Berschneider K, Beier V, Niesler B, Balta E, Samstag Y. Comparative analysis of whole plant, flower and root extracts of Chamomilla recutita L. and characteristic pure compounds reveals differential anti-inflammatory effects on human T cells. Front Immunol 2024; 15:1388962. [PMID: 38720895 PMCID: PMC11077421 DOI: 10.3389/fimmu.2024.1388962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Chronic inflammation is a hallmark of chronic wounds and inflammatory skin diseases. Due to a hyperactive and prolonged inflammation triggered by proinflammatory immune cells, transitioning to the repair and healing phase is halted. T cells may exacerbate the proinflammatory milieu by secreting proinflammatory cytokines. Chamomilla recutita L. (chamomile) has been suggested for use in several inflammatory diseases, implying a capability to modulate T cells. Here, we have characterized and compared the effects of differently prepared chamomile extracts and characteristic pure compounds on the T cell redox milieu as well as on the migration, activation, proliferation, and cytokine production of primary human T cells. Methods Phytochemical analysis of the extracts was carried out by LC-MS/MS. Primary human T cells from peripheral blood (PBTs) were pretreated with aqueous or hydroethanolic chamomile extracts or pure compounds. Subsequently, the effects on intracellular ROS levels, SDF-1α induced T cell migration, T cell activation, proliferation, and cytokine production after TCR/CD3 and CD28 costimulation were determined. Gene expression profiling was performed using nCounter analysis, followed by ingenuity pathway analysis, and validation at protein levels. Results The tested chamomile extracts and pure compounds differentially affected intracellular ROS levels, migration, and activation of T cells. Three out of five differently prepared extracts and two out of three pure compounds diminished T cell proliferation. In line with these findings, LC-MS/MS analysis revealed high heterogeneity of phytochemicals among the different extracts. nCounter based gene expression profiling identified several genes related to T cell functions associated with activation and differentiation to be downregulated. Most prominently, apigenin significantly reduced granzyme B induction and cytotoxic T cell activity. Conclusion Our results demonstrate an anti-inflammatory effect of chamomile- derived products on primary human T cells. These findings provide molecular explanations for the observed anti-inflammatory action of chamomile and imply a broader use of chamomile extracts in T cell driven chronic inflammatory diseases such as chronic wounds and inflammatory skin diseases. Importantly, the mode of extract preparation needs to be considered as the resulting different phytochemicals can result in differential effects on T cells.
Collapse
Affiliation(s)
- Divya Lairikyengbam
- Section Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Bernhard Wetterauer
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michael Schmiech
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm, Ulm, Germany
| | - Beate Jahraus
- Section Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Henning Kirchgessner
- Section Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Pille Wetterauer
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Karina Berschneider
- Section Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Verena Beier
- Section Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- nCounter Core Facility, Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Emre Balta
- Section Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
6
|
Huang Y, Chen X, Liu X, Lin C, Wang Y. The coumarin component isofraxidin targets the G-protein-coupled receptor S1PR1 to modulate IL-17 signaling and alleviate ulcerative colitis. Int Immunopharmacol 2024; 131:111814. [PMID: 38479159 DOI: 10.1016/j.intimp.2024.111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVE The increasing global prevalence of ulcerative colitis (UC) underscores the imperative to explore novel therapeutic approaches. Traditional Chinese medicine has historically shown potential in addressing this ailment. The current study aimed to elucidate the functional attributes and underlying mechanisms of isofraxidin, a coumarin derivative from Acanthopanax, in the context of UC. METHODS A murine model of dextran sodium sulfate (DSS)-induced UC was established, and we conducted a comprehensive assessment of the influence of isofraxidin on UC symptomatology, colonic histopathological manifestations, the inflammatory response, and apoptosis. The potential receptor of isofraxidin was initially identified through the Target database and molecular docking analysis. Subsequent in vivo and in vitro experiments were conducted to determine the effects of isofraxidin on the identified receptor and associated signaling pathways. Transfection was used to examine the receptor's role in the regulatory mechanism of isofraxidin. RESULTS Isofraxidin reduced UC symptoms and colonic histopathological impairments. Furthermore, isofraxidin ameliorated the DSS-induced inflammatory response and apoptosis in tissues. S1PR1 was identified as a target of isofraxidin and effectively suppressed activation of the IL-17 signaling pathway. Intriguingly, cellular experiments indicated that overexpression of S1PR1 counteracted the protective effect of isofraxidin. DISCUSSION In summary, our investigation revealed that isofraxidin could modulate S1PR1 and regulate the IL-17 signaling pathway, thus ameliorating DSS-induced UC. These findings establish a robust foundation for considering isofraxidin as a prospective therapeutic intervention to treat UC.
Collapse
Affiliation(s)
- Yisen Huang
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xiangbo Chen
- Digestive Endoscopy Center, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xiaoqiang Liu
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Chanchan Lin
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Yubin Wang
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China.
| |
Collapse
|
7
|
Singh M, Lo SH, Dubey R, Kumar S, Chaubey KK, Kumar S. Plant-Derived Natural Compounds as an Emerging Antiviral in Combating COVID-19. Indian J Microbiol 2023; 63:429-446. [PMID: 38031604 PMCID: PMC10682353 DOI: 10.1007/s12088-023-01121-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human virus that burst at Wuhan in China and spread quickly over the world, leading to millions of deaths globally. The journey of this deadly virus to different mutant strains is still ongoing. The plethora of drugs and vaccines have been tested to cope up this pandemic. The herbal plants and different spices have received great attention during pandemic, because of their anti-inflammatory, and immunomodulatory properties in treating viruses and their symptoms. Also, it has been shown that nano-formulation of phytochemicals has potential therapeutic effect against COVID-19. Furthermore, the plant derived compound nano-formulation specifically increases its antiviral property by enhancing its bioavailability, solubility, and target-specific delivery system. This review highlights the potentiality of herbal plants and their phytochemical against SARS-CoV-2 utilizing different mechanisms such as blocking the ACE-2 receptors, inhibiting the main proteases, binding spike proteins and reducing the cytokine storms.
Collapse
Affiliation(s)
- Mansi Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406 India
| | - Shih-Hsiu Lo
- Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, No. 252, Wuxing Street, Taipei, 11031 Taiwan
| | - Sudhashekhar Kumar
- Department of Physiology, School of Medical Sciences and Research, Sharda University, Greater Noida, UP 201310 India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand 248007 India
- School of Basic and Applied Sciences, Sanskriti University, Mathura, UP 281401 India
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, UP 201310 India
| |
Collapse
|
8
|
Xu R, Chen L, Zhang H, Crowder MW, Zhu J. Characterizing bourbon whiskey via the combination of LC-MS and GC-MS based molecular fingerprinting. Food Chem 2023; 423:136311. [PMID: 37167670 DOI: 10.1016/j.foodchem.2023.136311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
To discover molecular fingerprints that vary by bourbon's age or color, 121 commercial bourbon samples were analyzed using both gas chromatography and liquid chromatography combined with mass spectrometry. In total, 81 non-volatile compounds and 102 volatile compounds were identified. A subset of samples containing age information was divided into training (n = 70) and testing (n = 12) groups to build and validate the Partial Least Square - Discriminant Analysis models for age-based classification. After internal and external validation, our models showed that 8 molecular markers unitedly provided up to 100% accuracy of prediction in distinguishing unaged (0 years), younger (0-4 years), and older (>4 years) bourbons. Additional efforts were also made to detect molecular signatures that contributed to the color differences in bourbon. Overall, our study provided a powerful strategy for the confident identification of high-quality products and robust evaluation of their commercial values.
Collapse
Affiliation(s)
- Rui Xu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States; Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, United States
| | - Li Chen
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States; Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, United States
| | - Huan Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, United States
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, United States.
| | - Jiangjiang Zhu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States; Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
9
|
Wound Healing and Anti-Inflammatory Effects of a Newly Developed Ointment Containing Jujube Leaves Extract. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121947. [PMID: 36556312 PMCID: PMC9785415 DOI: 10.3390/life12121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
Ziziphus jujuba Mill. (jujube) is a well-known medicinal plant with pronounced wound healing properties. The present study aimed to establish the chemical composition of the lyophilized ethanolic extract from Romanian Ziziphus jujuba leaves and to evaluate the healing and anti-inflammatory properties of a newly developed lipophilic ointment containing 10% dried jujube leaves extract. The ultra-High-Performance Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry method was used, and 47 compounds were detected, among them the novel epicatechin and caffeic acid. The extract contains significant amounts of rutin (29.836 mg/g), quercetin (15.180 mg/g) and chlorogenic acid (350.96 µg/g). The lipophilic ointment has a slightly tolerable pH, between 5.41-5.42, and proved to be non-toxic in acute dermal irritation tests on New Zealand albino rabbits and after repeated administration on Wistar rats. The ointment also has a healing activity comparable to Cicatrizin (a pharmaceutical marketed product) on Wistar rats and a moderate anti-inflammatory action compared to the control group, but statistically insignificant compared to indomethacin in the rat-induced inflammation test by intraplantar administration of kaolin. The healing and anti-inflammatory properties of the tested ointment are due to phenolic acids and flavonoids content, less because of minor components as apocynin, scopoletin, and isofraxidin.
Collapse
|
10
|
Peng Y, Li Y, Yang Y, Gao Y, Ren H, Hu J, Cui X, Lu W, Tao H, Chen Z. The genus Porana (Convolvulaceae) - A phytochemical and pharmacological review. Front Pharmacol 2022; 13:998965. [PMID: 36330088 PMCID: PMC9622789 DOI: 10.3389/fphar.2022.998965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
There are about 20 species of Porana Burm. f. worldwide in tropical and subtropical Asia, Africa and neighboring islands, Oceania, and the Americas. In China, India, and other places, this genus enjoys a wealth of experience in folk applications. Nevertheless, the chemical composition of only five species has been reported, and 59 compounds have been isolated and identified, including steroids, coumarins, flavonoids, quinic acid derivatives, and amides. Pharmacological studies revealed that extracts from this genus and their bioactive components exhibit anti-inflammatory, analgesic, antioxidant, anti-gout, anti-cancer, and anti-diabetic effects. Although this genus is abundant, the development of its pharmacological applications remains limited. This review will systematically summarize the traditional and current uses, chemical compositions, and pharmacological activities of various Porana species. Network analysis was introduced to compare and confirm its output with current research progress to explore the potential targets and pathways of chemical components in this genus. We hope to increase understanding of this genus’s medicinal value and suggest directions for rational medicinal development.
Collapse
Affiliation(s)
- Yu Peng
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
- Jiangsu Provincial Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye Li
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Yuanyuan Yang
- Xi’an Institute for Food and Drug Control, Xi’an, Shaanxi, China
| | - Yuanqing Gao
- Jiangsu Provincial Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Ren
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Jing Hu
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Xiaomin Cui
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Wenjing Lu
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- *Correspondence: Hongxun Tao, ; Zhiyong Chen,
| | - Zhiyong Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
- *Correspondence: Hongxun Tao, ; Zhiyong Chen,
| |
Collapse
|
11
|
Tsivileva OM, Koftin OV, Evseeva NV. Coumarins as Fungal Metabolites with Potential Medicinal Properties. Antibiotics (Basel) 2022; 11:1156. [PMID: 36139936 PMCID: PMC9495007 DOI: 10.3390/antibiotics11091156] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Coumarins are a structurally varied set of 2H-chromen-2-one compounds categorized also as members of the benzopyrone group of secondary metabolites. Coumarin derivatives attract interest owing to their wide practical application and the unique reactivity of fused benzene and pyrone ring systems in molecular structure. Coumarins have their own specific fingerprints as antiviral, antimicrobial, antioxidant, anti-inflammatory, antiadipogenic, cytotoxic, apoptosis, antitumor, antitubercular, and cytotoxicity agents. Natural products have played an essential role in filling the pharmaceutical pipeline for thousands of years. Biological effects of natural coumarins have laid the basis of low-toxic and highly effective drugs. Presently, more than 1300 coumarins have been identified in plants, bacteria, and fungi. Fungi as cultivated microbes have provided many of the nature-inspired syntheses of chemically diverse drugs. Endophytic fungi bioactivities attract interest, with applications in fields as diverse as cancer and neuronal injury or degeneration, microbial and parasitic infections, and others. Fungal mycelia produce several classes of bioactive molecules, including a wide group of coumarins. Of promise are further studies of conditions and products of the natural and synthetic coumarins' biotransformation by the fungal cultures, aimed at solving the urgent problem of searching for materials for biomedical engineering. The present review evaluates the fungal coumarins, their structure-related peculiarities, and their future therapeutic potential. Special emphasis has been placed on the coumarins successfully bioprospected from fungi, whereas an industry demand for the same coumarins earlier found in plants has faced hurdles. Considerable attention has also been paid to some aspects of the molecular mechanisms underlying the coumarins' biological activity. The compounds are selected and grouped according to their cytotoxic, anticancer, antibacterial, antifungal, and miscellaneous effects.
Collapse
Affiliation(s)
- Olga M. Tsivileva
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Oleg V. Koftin
- Department of Biochemistry, V.I. Razumovsky Saratov State Medical University, 112 ul. Bol’shaya Kazach’ya, Saratov 410012, Russia
| | - Nina V. Evseeva
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| |
Collapse
|
12
|
Kang L, Zhang H, Jia C, Zhang R, Shen C. Targeting Oxidative Stress and Inflammation in Intervertebral Disc Degeneration: Therapeutic Perspectives of Phytochemicals. Front Pharmacol 2022; 13:956355. [PMID: 35903342 PMCID: PMC9315394 DOI: 10.3389/fphar.2022.956355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain is a major cause of disability worldwide that declines the quality of life; it poses a substantial economic burden for the patient and society. Intervertebral disc (IVD) degeneration (IDD) is the main cause of low back pain, and it is also the pathological basis of several spinal degenerative diseases, such as intervertebral disc herniation and spinal stenosis. The current clinical drug treatment of IDD focuses on the symptoms and not their pathogenesis, which results in frequent recurrence and gradual aggravation. Moreover, the side effects associated with the long-term use of these drugs further limit their use. The pathological mechanism of IDD is complex, and oxidative stress and inflammation play an important role in promoting IDD. They induce the destruction of the extracellular matrix in IVD and reduce the number of living cells and functional cells, thereby destroying the function of IVD and promoting the occurrence and development of IDD. Phytochemicals from fruits, vegetables, grains, and other herbs play a protective role in the treatment of IDD as they have anti-inflammatory and antioxidant properties. This article reviews the protective effects of phytochemicals on IDD and their regulatory effects on different molecular pathways related to the pathogenesis of IDD. Moreover, the therapeutic limitations and future prospects of IDD treatment have also been reviewed. Phytochemicals are promising candidates for further development and research on IDD treatment.
Collapse
|
13
|
Huang JQ, Wei SY, Cheng N, Zhong YB, Yu FH, Li MD, Liu DY, Li SS, Zhao HM. Chimonanthus nitens Oliv. Leaf Granule Ameliorates DSS-Induced Acute Colitis Through Treg Cell Improvement, Oxidative Stress Reduction, and Gut Microflora Modulation. Front Cell Infect Microbiol 2022; 12:907813. [PMID: 35832382 PMCID: PMC9272890 DOI: 10.3389/fcimb.2022.907813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022] Open
Abstract
The rising incidence of ulcerative colitis has become a new challenge for public health. Chimonanthus nitens Oliv. leaf granule (COG) is a natural medicine used for the treatment of respiratory diseases, which has excellent anti-inflammatory and antioxidant effects. However, the therapeutic effect of COG in ulcerative colitis (UC) has not been reported. Here, the experimental colitis was treated with dextran sodium sulfate (DSS) and COG. After treatment with high (30 g/kg), medium (15 g/kg), and low (7.5 g/kg) doses of COG for 11 consecutive days, the body weight, disease activity index (DAI) score, colon length, colon weight index, and the pathological score of mice were effectively improved. COG significantly reduced the levels of inflammatory cytokines in UC mice in vitro and in vivo and restored the secretion levels of IL-6 and IL-10 in the colon. Meanwhile, compared to mice with colitis, COG-treated mice showed lower levels of MDA, MPO, NO, and eNOS and higher levels of GSH-Px and MAO, which indicated that oxidative stress damage in colitic mice was alleviated by COG. Moreover, less Th17 and more Tregs were observed in the COG-treated groups. In addition, COG improved the diversity and relative abundance of gut microflora in the colon of colitic mice, and Lachnospiraceae_NK4A136_group and Lachnospiraceae_UCG-006 were obviously regulated at the genus level. In summary, COG has a protective effect on DSS-induced experimental colitis, mainly through inhibition of immune-inflammatory responses and oxidative stress and regulation of mTreg cell responses and intestinal flora composition.
Collapse
Affiliation(s)
- Jia-Qi Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Si-Yi Wei
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Nian Cheng
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - You-Bao Zhong
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
- Key Laboratory of Animal Model of Traditional Chinese Medicine (TCM) Syndromes of Depression, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Fei-Hao Yu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Ming-Da Li
- College of Traditional Chinese Medicine, Nanchang Medical College (TCM), Nanchang, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center of Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Shan-Shan Li
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Hai-Mei Zhao
- Formula-Pattern Research Center of Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| |
Collapse
|
14
|
Gonçalves MFM, Hilário S, Tacão M, Van de Peer Y, Alves A, Esteves AC. Genome and Metabolome MS-Based Mining of a Marine Strain of Aspergillus affinis. J Fungi (Basel) 2021; 7:1091. [PMID: 34947073 PMCID: PMC8709101 DOI: 10.3390/jof7121091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/09/2023] Open
Abstract
Aspergillus section Circumdati encompasses several species that express both beneficial (e.g., biochemical transformation of steroids and alkaloids, enzymes and metabolites) and harmful compounds (e.g., production of ochratoxin A (OTA)). Given their relevance, it is important to analyze the genetic and metabolic diversity of the species of this section. We sequenced the genome of Aspergillus affinis CMG 70, isolated from sea water, and compared it with the genomes of species from section Circumdati, including A. affinis's strain type. The A. affinis genome was characterized considering secondary metabolites biosynthetic gene clusters (BGCs), carbohydrate-active enzymes (CAZymes), and transporters. To uncover the biosynthetic potential of A. affinis CMG 70, an untargeted metabolomics (LC-MS/MS) approach was used. Cultivating the fungus in the presence and absence of sea salt showed that A. affinis CMG 70 metabolite profiles are salt dependent. Analyses of the methanolic crude extract revealed the presence of both unknown and well-known Aspergillus compounds, such as ochratoxin A, anti-viral (e.g., 3,5-Di-tert-butyl-4-hydroxybenzoic acid and epigallocatechin), anti-bacterial (e.g., 3-Hydroxybenzyl alcohol, l-pyroglutamic acid, lecanoric acid), antifungal (e.g., lpyroglutamic acid, 9,12,13-Trihydroxyoctadec-10-enoic acid, hydroxyferulic acid), and chemotherapeutic (e.g., daunomycinone, mitoxantrone) related metabolites. Comparative analysis of 17 genomes from 16 Aspergillus species revealed abundant CAZymes (568 per species), secondary metabolite BGCs (73 per species), and transporters (1359 per species). Some BGCs are highly conserved in this section (e.g., pyranonigrin E and UNII-YC2Q1O94PT (ACR toxin I)), while others are incomplete or completely lost among species (e.g., bikaverin and chaetoglobosins were found exclusively in series Sclerotiorum, while asperlactone seemed completely lost). The results of this study, including genome analysis and metabolome characterization, emphasize the molecular diversity of A. affinis CMG 70, as well as of other species in the section Circumdati.
Collapse
Affiliation(s)
- Micael F. M. Gonçalves
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Sandra Hilário
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Marta Tacão
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Artur Alves
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Ana C. Esteves
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| |
Collapse
|
15
|
Pang Y, Wu S, He Y, Nian Q, Lei J, Yao Y, Guo J, Zeng J. Plant-Derived Compounds as Promising Therapeutics for Vitiligo. Front Pharmacol 2021; 12:685116. [PMID: 34858164 PMCID: PMC8631938 DOI: 10.3389/fphar.2021.685116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Vitiligo is the most common depigmenting disorder characterized by white patches in the skin. The pathogenetic origin of vitiligo revolves around autoimmune destruction of melanocytes in which, for instance, oxidative stress is responsible for melanocyte molecular, organelle dysfunction and melanocyte specific antigen exposure as well as melanocyte cell death and thus serves as an important contributor for vitiligo progression. In recent years, natural products have shown a wide range of pharmacological bioactivities against many skin diseases, and this review focuses on the effects and mechanisms of natural compounds against vitiligo models. It is showed that some natural compounds such as flavonoids, phenols, glycosides and coumarins have a protective role in melanocytes and thereby arrest the depigmentation, and, additionally, Nrf2/HO-1, MAPK, JAK/STAT, cAMP/PKA, and Wnt/β-catenin signaling pathways were reported to be implicated in these protective effects. This review discusses the great potential of plant derived natural products as anti-vitiligo agents, as well as the future directions to explore.
Collapse
Affiliation(s)
- Yaobin Pang
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi Wu
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingjie He
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lei
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Banikazemi Z, Mirazimi SM, Dashti F, Mazandaranian MR, Akbari M, Morshedi K, Aslanbeigi F, Rashidian A, Chamanara M, Hamblin MR, Taghizadeh M, Mirzaei H. Coumarins and Gastrointestinal Cancer: A New Therapeutic Option? Front Oncol 2021; 11:752784. [PMID: 34707995 PMCID: PMC8542999 DOI: 10.3389/fonc.2021.752784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Cancers of the gastrointestinal (GI) tract are often life-threatening malignancies, which can be a severe burden to the health care system. Globally, the mortality rate from gastrointestinal tumors has been increasing due to the lack of adequate diagnostic, prognostic, and therapeutic measures to combat these tumors. Coumarin is a natural product with remarkable antitumor activity, and it is widely found in various natural plant sources. Researchers have explored coumarin and its related derivatives to investigate their antitumor activity, and the potential molecular mechanisms involved. These mechanisms include hormone antagonists, alkylating agents, inhibitors of angiogenesis, inhibitors of topoisomerase, inducers of apoptosis, agents with antimitotic activity, telomerase inhibitors, inhibitors of human carbonic anhydrase, as well as other potential mechanisms. Consequently, drug design and discovery scientists and medicinal chemists have collaborated to identify new coumarin-related agents in order to produce more effective antitumor drugs against GI cancers. Herein, we summarize the therapeutic effects of coumarin and its derivatives against GI cancer.
Collapse
Affiliation(s)
- Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Mirazimi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Reza Mazandaranian
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akbari
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Korosh Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Aslanbeigi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.,Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
17
|
Sharifi-Rad J, Cruz-Martins N, López-Jornet P, Lopez EPF, Harun N, Yeskaliyeva B, Beyatli A, Sytar O, Shaheen S, Sharopov F, Taheri Y, Docea AO, Calina D, Cho WC. Natural Coumarins: Exploring the Pharmacological Complexity and Underlying Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6492346. [PMID: 34531939 PMCID: PMC8440074 DOI: 10.1155/2021/6492346] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
Coumarins belong to the benzopyrone family commonly found in many medicinal plants. Natural coumarins demonstrated a wide spectrum of pharmacological activities, including anti-inflammatory, anticoagulant, anticancer, antibacterial, antimalarial, casein kinase-2 (CK2) inhibitory, antifungal, antiviral, Alzheimer's disease inhibition, neuroprotective, anticonvulsant, phytoalexins, ulcerogenic, and antihypertensive. There are very few studies on the bioavailability of coumarins; therefore, further investigations are necessitated to study the bioavailability of different coumarins which already showed good biological activities in previous studies. On the evidence of varied pharmacological properties, the present work presents an overall review of the derivation, availability, and biological capacities of coumarins with further consideration of the essential mode of their therapeutic actions. In conclusion, a wide variety of coumarins are available, and their pharmacological activities are of current interest thanks to their synthetic accessibility and riches in medicinal plants. Coumarins perform the valuable function as therapeutic agents in a range of medical fields.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Pía López-Jornet
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), Clínica Odontológica Universitaria Hospital Morales Meseguer, Adv. Marques de los Velez s/n, 30008 Murcia, Spain
| | - Eduardo Pons-Fuster Lopez
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), Clínica Odontológica Universitaria Hospital Morales Meseguer, Adv. Marques de los Velez s/n, 30008 Murcia, Spain
| | - Nidaa Harun
- Lahore College for Women University, Lahore, Pakistan
| | - Balakyz Yeskaliyeva
- Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, Almaty 050040, Kazakhstan
| | - Ahmet Beyatli
- University of Health Sciences, Department of Medicinal and Aromatic Plants, Istanbul 34668, Turkey
| | - Oksana Sytar
- Department of Plant Biology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
| | | | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe 734063, Tajikistan
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
18
|
Zeng Y, Liu J, Zhang Q, Qin X, Li Z, Sun G, Jin S. The Traditional Uses, Phytochemistry and Pharmacology of Sarcandra glabra (Thunb.) Nakai, a Chinese Herb With Potential for Development: Review. Front Pharmacol 2021; 12:652926. [PMID: 33967794 PMCID: PMC8100461 DOI: 10.3389/fphar.2021.652926] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 01/27/2023] Open
Abstract
Sarcandra glabra (Thunb.) Nakai is a folk medicine with a long history in China, which has been applied to treat sore throat, abscess, even tumor and so on. Meanwhile, it is also used as tea in some areas. At present, more than 200 chemical compounds have been isolated and identified from it, such as, sesquiterpenes, flavonoids, phenolic acids, coumarins and so on. Pharmacological studies have already confirmed that the extracts of S. glabra have many effects, such as antibacterial, antiviral, anti-inflammatory, anti-tumor, and anti-thrombocytopenia, especially the effects of anti-tumor and anti-thrombocytopenia are confirmed in clinic. Therefore, this paper systematically summarized the traditional uses, botany, phytochemistry, pharmacology, and toxicity of S. glabra, in order to provide a beneficial reference of its further research.
Collapse
Affiliation(s)
- Yuanlian Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Zhang
- International Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zulun Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guojuan Sun
- International Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shenrui Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Wang W, Wang B. Isofraxidin Inhibits Receptor Activator of Nuclear Factor-κB Ligand-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages Isolated from Sprague-Dawley Rats by Regulating NF-κB/NFATc1 and Akt/NFATc1 Signaling Pathways. Cell Transplant 2021; 30:963689721990321. [PMID: 33573387 PMCID: PMC7883151 DOI: 10.1177/0963689721990321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Osteoporosis is a common bone disease that is characterized by decreased bone mass and fragility fractures. Isofraxidin is a hydroxy coumarin with several biological and pharmacological activities including an anti-osteoarthritis effect. However, the role of isofraxidin in osteoporosis has not yet been investigated. In the present study, we used receptor activator of nuclear factor-κB ligand (RANKL) to induce osteoclast formation in primary bone marrow macrophages (BMMs). Our results showed that RANKL treatment significantly increased tartrate-resistant acid phosphatase (TRAP) activity, as well as the expression of osteoclastogenesis-related markers including MMP-9, c-Src, and cathepsin K at both mRNA and protein levels; however, these effects were inhibited by isofraxidin in BMMs. In addition, luciferase reporter assay demonstrated that isofraxidin treatment suppressed the RANKL-induced an increase in nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) transcriptional activity. Besides, the decreased expression level of IκBα and increased levels of p-p65, p-IκBα, and p-Akt in RANKL-induced BMMs were attenuated by isofraxidin. Moreover, NFATc1 overexpression rescued the anti-osteoclastogenic effect of isofraxidin with increased expression levels of MMP-9, c-Src, and cathepsin K. Taken together, these findings indicated that isofraxidin inhibited RANKL-induced osteoclast formation in BMMs via inhibiting the activation of NF-κB/NFATc1 and Akt/NFATc1 signaling pathways. Thus, isofraxidin might be a therapeutic agent for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Ren W, Wu H, Tian Z, Zhang W, Dong W, Jiang H, Liu Y. Phytochemical and chemotaxonomic study on the dried rhizome of Menispermum dauricum DC. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2020.104189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Singh A, Singh DK, Kharwar RN, White JF, Gond SK. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms 2021; 9:197. [PMID: 33477910 PMCID: PMC7833388 DOI: 10.3390/microorganisms9010197] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/23/2022] Open
Abstract
Fungal endophytes are well-established sources of biologically active natural compounds with many producing pharmacologically valuable specific plant-derived products. This review details typical plant-derived medicinal compounds of several classes, including alkaloids, coumarins, flavonoids, glycosides, lignans, phenylpropanoids, quinones, saponins, terpenoids, and xanthones that are produced by endophytic fungi. This review covers the studies carried out since the first report of taxol biosynthesis by endophytic Taxomyces andreanae in 1993 up to mid-2020. The article also highlights the prospects of endophyte-dependent biosynthesis of such plant-derived pharmacologically active compounds and the bottlenecks in the commercialization of this novel approach in the area of drug discovery. After recent updates in the field of 'omics' and 'one strain many compounds' (OSMAC) approach, fungal endophytes have emerged as strong unconventional source of such prized products.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India;
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Dheeraj K. Singh
- Department of Botany, Harish Chandra Post Graduate College, Varanasi 221001, India
| | - Ravindra N. Kharwar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Surendra K. Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India;
| |
Collapse
|
22
|
Ban NK, Linh TM, Mai NC, Tai BH, Nhiem NX, Hoang NH, Kiem PV. New 3,4 -seco-diterpene and coumarin derivative from the leaves of Trigonostemon flavidus Gagnep. Nat Prod Res 2020; 36:3247-3254. [PMID: 33249875 DOI: 10.1080/14786419.2020.1851225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two new compounds named trigoflavidus A (1) and trigoflavidus B (2), and eight known compounds, trigoflavidone (3), heterophypene (4), howpene C (5), 3,4-seco-sonderianol (6), trigonochinene C (7), fraxidin (8), isofraxidin (9), and isofraxetin (10) were isolated from the leaves of Trigonostemon flavidus Gagnep. by various chromatographic methods. Their chemical structures were elucidated via UV, IR, HR-ESI-MS and NMR spectroscopic methods and divided into two groups including six 3,4-seco-diterpenes (1, 3-7) and four coumarins (2, 8-10). Absolute configurations at stereocenters of compound 1 were confirmed by comparison of its CD spectra with those of the TD-DFT calculations. At a concentration of 30 µM, compounds 1-10 exhibited weak cytotoxic activity toward LU1, HepG2, MCF7, and SKMel2 human cell lines (cell viability all over 50%).
Collapse
Affiliation(s)
- Ninh Khac Ban
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Viet Nam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Viet Nam
| | - Tran My Linh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Viet Nam
| | - Nguyen Chi Mai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Viet Nam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Viet Nam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Viet Nam
| | - Nguyen Xuan Nhiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Viet Nam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Viet Nam
| | - Nguyen Huy Hoang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Viet Nam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Viet Nam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Viet Nam
| |
Collapse
|
23
|
Majnooni MB, Fakhri S, Shokoohinia Y, Kiyani N, Stage K, Mohammadi P, Gravandi MM, Farzaei MH, Echeverría J. Phytochemicals: Potential Therapeutic Interventions Against Coronavirus-Associated Lung Injury. Front Pharmacol 2020; 11:588467. [PMID: 33658931 PMCID: PMC7919380 DOI: 10.3389/fphar.2020.588467] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19) in December 2019, millions of people have been infected and died worldwide. However, no drug has been approved for the treatment of this disease and its complications, which urges the need for finding novel therapeutic agents to combat. Among the complications due to COVID-19, lung injury has attained special attention. Besides, phytochemicals have shown prominent anti-inflammatory effects and thus possess significant effects in reducing lung injury caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Also, the prevailing evidence reveales the antiviral effects of those phytochemicals, including anti-SARS-CoV activity, which could pave the road in providing suitable lead compounds in the treatment of COVID-19. In the present study, candidate phytochemicals and related mechanisms of action have been shown in the treatment/protection of lung injuries induced by various methods. In terms of pharmacological mechanism, phytochemicals have shown potential inhibitory effects on inflammatory and oxidative pathways/mediators, involved in the pathogenesis of lung injury during COVID-19 infection. Also, a brief overview of phytochemicals with anti-SARS-CoV-2 compounds has been presented.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Narges Kiyani
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Katrina Stage
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento De Ciencias Del Ambiente, Facultad De Química y Biología, Universidad De Santiago De Chile, Santiago, Chile
| |
Collapse
|
24
|
Küpeli Akkol E, Genç Y, Karpuz B, Sobarzo-Sánchez E, Capasso R. Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer. Cancers (Basel) 2020; 12:cancers12071959. [PMID: 32707666 PMCID: PMC7409047 DOI: 10.3390/cancers12071959] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the most common causes of disease-related deaths worldwide. Despite the discovery of many chemotherapeutic drugs that inhibit uncontrolled cell division processes for the treatment of various cancers, serious side effects of these drugs are a crucial disadvantage. In addition, multi-drug resistance is another important problem in anticancer treatment. Due to problems such as cytotoxicity and drug resistance, many investigations are being conducted to discover and develop effective anticancer drugs. In recent years, researchers have focused on the anticancer activity coumarins, due to their high biological activity and low toxicity. Coumarins are commonly used in the treatment of prostate cancer, renal cell carcinoma and leukemia, and they also have the ability to counteract the side effects caused by radiotherapy. Both natural and synthetic coumarin derivatives draw attention due to their photochemotherapy and therapeutic applications in cancer. In this review, a compilation of various research reports on coumarins with anticancer activity and investigation and a review of structure-activity relationship studies on coumarin core are presented. Determination of important structural features around the coumarin core may help researchers to design and develop new analogues with a strong anticancer effect and reduce the potential side effects of existing therapeutics.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey;
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-312-2023185 (E.K.A); +39-081-678664 (R.C.)
| | - Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sıhhiye 06100, Ankara, Turkey;
| | - Büşra Karpuz
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Naples), Italy
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-312-2023185 (E.K.A); +39-081-678664 (R.C.)
| |
Collapse
|