1
|
Cordero-Clavijo LM, Mejía-Valdez D, Antunes-Ricardo M, Lazo-Vélez MA, Guajardo-Flores D. Evaluating sacha inchi (Plukenetia volubilis) oil stability and physicochemical properties: A comparison between conventional extraction and supercritical fluids. Food Chem 2025; 463:141132. [PMID: 39243616 DOI: 10.1016/j.foodchem.2024.141132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to compare the effects of two extraction techniques (conventional n-hexane and supercritical CO2) on the oil extraction yields, fatty acids profile, anti-hyaluronidase activity, oxidative stability, and in vitro bioactivities of oils from Sacha Inchi (Plukenetia volubilis). Higher oil extraction yield (99 %) was achieved using the SC-CO2, although similar fatty acids profiles were depicted between both treatments (p < 0.05). The SC-CO2 oil presented higher anti-hyaluronidase (31 %) activity, but lower oxidative stability (5.05 h) compared to the solvent extraction (10 %, and 5.3 h, respectively). In vitro assays further revealed that the best human normal colon cells (FHC) cell viability (100 %), anti-inflammatory (50 % lower NO production), and antioxidant (20 % ROS reduction) activities were consistently observed in both extraction treatments at concentrations of 50 μg/mL and higher. These findings highlight the potential of supercritical CO2 extraction in yielding Sacha Inchi oil with enhanced bioactive properties without the disadvantages of the use of organic solvents extraction.
Collapse
Affiliation(s)
- L Mateo Cordero-Clavijo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo Leon, Mexico; Universidad del Azuay, NutriOmics Research Group: Av. 24 de mayo 7-77 y Hernán Malo, Apartado 01.01.981, Cuenca, Ecuador
| | - Daniel Mejía-Valdez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo Leon, Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo Leon, Mexico
| | - Marco A Lazo-Vélez
- Universidad del Azuay, NutriOmics Research Group: Av. 24 de mayo 7-77 y Hernán Malo, Apartado 01.01.981, Cuenca, Ecuador.
| | - Daniel Guajardo-Flores
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
2
|
Grzelka K, Matkowski A, Chodaczek G, Jaśpińska J, Pawlikowska-Bartosz A, Słupski W, Lechniak D, Szumacher-Strabel M, Olorunlowu S, Szulc K, Cieślak A, Ślusarczyk S. Pulsed Electric Field (PEF) Treatment Results in Growth Promotion, Main Flavonoids Extraction, and Phytochemical Profile Modulation of Scutellaria baicalensis Georgi Roots. Int J Mol Sci 2024; 26:100. [PMID: 39795960 PMCID: PMC11719946 DOI: 10.3390/ijms26010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
This study aims to explore the effect of pulsed electric field (PEF) treatment as a method very likely to result in reversible electroporation of Scutellaria baicalensis Georgi underground organs, resulting in increased mass transfer and secondary metabolites leakage. PEF treatment with previously established empirically tailored parameters [E = 0.3 kV/cm (U = 3 kV, d = 10 cm), t = 50 µs, N = 33 f = 1 Hz] was applied 1-3 times to S. baicalensis roots submerged in four different Natural Deep Eutectic Solvents (NADES) media (1-choline chloride/xylose (1:2) + 30% water, 2-choline chloride/glucose (1:2) + 30% water, 3-choline chloride/ethylene glycol (1:2), and 4-tap water (EC = 0.7 mS/cm). Confocal microscopy was utilized to visualize the impact of PEF treatment on the root cells in situ. As a result of plant cell membrane permeabilization, an extract containing major active metabolites was successfully acquired in most media, achieving the best results using medium 1 and repeating the PEF treatment twice (baicalein
Collapse
Affiliation(s)
- Kajetan Grzelka
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biology and Botany, Wrocław Medical University, 50-367 Wrocław, Poland; (K.G.); (A.M.)
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biology and Botany, Wrocław Medical University, 50-367 Wrocław, Poland; (K.G.); (A.M.)
- Botanical Garden of Medicinal Plants, Wrocław Medical University, 50-367 Wrocław, Poland; (J.J.); (A.P.-B.)
| | - Grzegorz Chodaczek
- Bioimaging Laboratory at Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
| | - Joanna Jaśpińska
- Botanical Garden of Medicinal Plants, Wrocław Medical University, 50-367 Wrocław, Poland; (J.J.); (A.P.-B.)
| | - Anna Pawlikowska-Bartosz
- Botanical Garden of Medicinal Plants, Wrocław Medical University, 50-367 Wrocław, Poland; (J.J.); (A.P.-B.)
| | - Wojciech Słupski
- Department of Pharmacology, Wrocław Medical University, 50-367 Wrocław, Poland;
| | - Dorota Lechniak
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland;
| | - Małgorzata Szumacher-Strabel
- Department of Animal Nutrition, Poznań University of Life Sciences, Poznań, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (S.O.)
| | - Segun Olorunlowu
- Department of Animal Nutrition, Poznań University of Life Sciences, Poznań, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (S.O.)
| | - Karolina Szulc
- Department of Animal Breeding and Product Quality Assessment, Poznań University of Life Sciences, Zlotniki, ul. Słoneczna 1, 62-002 Suchy Las, Poland;
| | - Adam Cieślak
- Department of Animal Nutrition, Poznań University of Life Sciences, Poznań, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (S.O.)
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biology and Botany, Wrocław Medical University, 50-367 Wrocław, Poland; (K.G.); (A.M.)
| |
Collapse
|
3
|
Pang M, Xu R, Xi R, Yao H, Bao K, Peng R, Zhi H, Zhang K, He R, Su Y, Liu X, Ming D. Molecular understanding of the therapeutic potential of melanin inhibiting natural products. RSC Med Chem 2024; 15:2226-2253. [PMID: 39026645 PMCID: PMC11253861 DOI: 10.1039/d4md00224e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
With the development of society and the improvement of people's living standards, there is an increasing demand for melanin-inhibiting products that prioritize health, safety, and efficacy. Therefore, the development of natural products that can safely and efficiently inhibit melanin synthesis is of great social significance and has significant market potential. In this paper, by reviewing the literature reported in recent years, we summarized the natural products with inhibition of melanin synthesis effects that have been put into or not yet put into the market, and classified them according to the chemical groups of their compounds or the extraction methods of the natural products. Through the summary analysis, we found that these compounds mainly include terpenoids, phenylpropanoids, flavonoids and so on, while the natural product extracts mainly include methanol extracts, ethanol extracts, and aqueous extracts. Their main inhibition of melanin synthesis mechanisms include: (1) direct inhibition of tyrosinase activity; (2) down-regulation of the α-MSH-MC1R, Wnt, NO, PI3K/Akt and MAPK pathways through the expression of MITF and its downstream genes TYR, TRP-1, and TRP-2; (3) antioxidant; (4) inhibition of melanocyte growth through cytotoxicity; (5) inhibition of melanosome production and transport. This paper provides an in-depth discussion on the research progress of whitening natural products and their market value. The aim is to offer guidance for future research and development of natural skin whitening products.
Collapse
Affiliation(s)
- Meijun Pang
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Ruitian Xu
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Rongjiao Xi
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Hong Yao
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Kechen Bao
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Rui Peng
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Hui Zhi
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Kuo Zhang
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Runnan He
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Yanfang Su
- Department of Neurosurgery, Tianjin Medical University General Hospital 154 Anshan Street, Heping District 300052 Tianjin China
| | - Xiuyun Liu
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Dong Ming
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| |
Collapse
|
4
|
Thuraphan P, Suang S, Bunrod A, Kanjanakawinkul W, Chaiyana W. Potential of Bioactive Protein and Protein Hydrolysate from Apis mellifera Larvae as Cosmeceutical Active Ingredients for Anti-Skin Aging. Pharmaceuticals (Basel) 2024; 17:679. [PMID: 38931346 PMCID: PMC11206733 DOI: 10.3390/ph17060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to extract bioactive proteins and protein hydrolysates from Apis mellifera larvae and assess their potential application in cosmetics as well as their irritation properties. The larvae were defatted and extracted using various mediums, including DI water, along with 0.5 M aqueous solutions of sodium hydroxide, ascorbic acid, citric acid, and hydrochloric acid. Subsequently, the crude proteins were hydrolyzed using the Alcalase® enzyme. All extracts underwent testing for antioxidant activities via the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and Griess assays. Anti-aging properties were evaluated in terms of anti-collagenase and anti-hyaluronidase effects. Irritation potential was assessed using the hen's egg chorioallantoic membrane (HET-CAM) test. The results revealed that the sodium hydroxide extraction showed promising outcomes in terms of yield, protein content, and effectiveness in inhibiting hyaluronidase, with the highest inhibition at 78.1 ± 1.5%, comparable to that of oleanolic acid. Conversely, crude protein extracted with ascorbic acid and its hydrolysate showed notable antioxidant and collagenase-inhibitory activities. Remarkably, their anti-collagenase effects were comparable to those of ascorbic acid and lysine. Additionally, it demonstrated safety upon testing with the CAM. In conclusion, the findings provided valuable insights into the utilization of A. mellifera larval proteins as active ingredients with a wide range of cosmeceutical applications, particularly due to their antioxidant, anti-aging, and low irritation properties, which hold significant promise for anti-skin wrinkles.
Collapse
Affiliation(s)
- Paphawarin Thuraphan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.)
| | - Suphawan Suang
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.)
| | - Anurak Bunrod
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (A.B.); (W.K.)
| | - Watchara Kanjanakawinkul
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (A.B.); (W.K.)
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Mitchaleaw M, Juntrapirom S, Bunrod A, Kanjanakawinkul W, Yawootti A, Charoensup W, Sirilun S, Chaiyana W. Antimicrobial Properties Related to Anti-Acne and Deodorant Efficacy of Hedychium coronarium J. Koenig Extracts from Pulsed Electric Field Extraction. Antibiotics (Basel) 2024; 13:108. [PMID: 38275337 PMCID: PMC10812461 DOI: 10.3390/antibiotics13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
This study investigated the potential of pulsed electric field (PEF) extraction in enhancing the antimicrobial properties related to anti-acne and deodorant properties of Hedychium coronarium extract. The dried leaf and rhizome of H. coronarium were extracted using 95% v/v ethanol through both conventional solvent extraction and PEF extraction techniques (10, 14, and 20 kV/cm). The chemical composition of the extracts was analyzed. The antimicrobial activities, specifically in relation to acne treatment against Cutibacterium acnes and deodorant properties against Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Pseudomonas aeruginosa, and Escherichia coli, were determined. The irritation profile of was evaluated using the hen's egg chorioallantoic membrane test. The results showed that PEF extraction increased the extract yield, particularly at an electric field strength of 20 kV/cm. Furthermore, PEF extraction significantly enhanced the ellagic acid content, particularly in the leaf extract. Furthermore, the leaf extract demonstrated stronger inhibitory effects against microorganisms associated with body odor and acne compared to the rhizome extract. Notably, all extracts exhibited no signs of irritation, indicating their safety. Overall, the findings suggest that PEF extraction from H. coronarium enhances yield, bioactive compound content, and antimicrobial effects. This indicates the potential of the extract for acne treatment and deodorant use.
Collapse
Affiliation(s)
- Manasanan Mitchaleaw
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.M.); (W.C.); (S.S.)
| | - Saranya Juntrapirom
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (A.B.); (W.K.)
| | - Anurak Bunrod
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (A.B.); (W.K.)
| | - Watchara Kanjanakawinkul
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (A.B.); (W.K.)
| | - Artit Yawootti
- Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand;
| | - Wannaree Charoensup
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.M.); (W.C.); (S.S.)
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.M.); (W.C.); (S.S.)
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.M.); (W.C.); (S.S.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Sirirungsee V, Samutrtai P, Sangthong P, Papan P, Leelapornpisid P, Saenjum C, Sirithunyalug B. Electrosprayed Nanoparticles Containing Mangiferin-Rich Extract from Mango Leaves for Cosmeceutical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2931. [PMID: 37999285 PMCID: PMC10674866 DOI: 10.3390/nano13222931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Mango (Mangifera indica L.) is one of the most economically important fruits in Thailand. Mango has been used as a traditional medicine because it possesses many biological activities, such as antioxidant properties, anti-inflammatory properties, microorganism-growth inhibition, etc. Among its natural pharmacologically active compounds, mangiferin is the main active component found in mango leaves. Mangiferin has the potential to treat a variety of diseases due to its multifunctional activities. This study aims to prepare a mangiferin-rich extract (MRE) from mango leaves and develop nanoparticles containing the MRE using an electrospraying technique to apply it in a cosmeceutical formulation. The potential cosmeceutical mechanisms of the MRE were investigated using proteomic analysis. The MRE is involved in actin-filament organization, the positive regulation of cytoskeleton organization, etc. Moreover, the related mechanism to its cosmeceutical activity is metalloenzyme-activity regulation. Nanoparticles were prepared from 0.8% w/v MRE and 2% w/v Eudragit® L100 solution using an electrospraying process. The mean size of the MRE-loaded nanoparticles (MNPs) received was 247.8 nm, with a PDI 0.271. The MRE entrapment by the process was quantified as 84.9%, indicating a high encapsulation efficiency. For the skin-retention study, the mangiferin content in the MNP-containing emulsion-gel membranes was examined and found to be greater than in the membranes of the MRE solution, illustrating that the MNPs produced by the electrospraying technique help transdermal delivery for cosmetic applications.
Collapse
Affiliation(s)
- Vissuta Sirirungsee
- Master’s Degree Program in Cosmetic Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pawitrabhorn Samutrtai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.L.)
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.P.)
| | - Phakorn Papan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.P.)
| | - Pimporn Leelapornpisid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.L.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chalermpong Saenjum
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.L.)
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busaban Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.L.)
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Tung XY, Yip JQ, Gew LT. Searching for Natural Plants with Antimelanogenesis and Antityrosinase Properties for Cosmeceutical or Nutricosmetics Applications: A Systematic Review. ACS OMEGA 2023; 8:33115-33201. [PMID: 37744793 PMCID: PMC10515176 DOI: 10.1021/acsomega.3c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023]
Abstract
Excessive UV radiation (UVR) exposure has been shown in studies to be a major risk factor for most melanomas, causing premature skin aging as well as immune system suppression due to the increased production of hydrogen peroxide (H2O2) and other reactive oxygen species (ROS) during the melanogenesis process. Although several compounds with antioxidant and antityrosinase activities are widely used in the cosmetic industry, like kojic acid, hydroquinone, ascorbic acid, and arbutin, their use has been limited due to their adverse effects on the skin and cytotoxic issues. Recently, attempts have been made to develop new natural skin-lightening products by using plant extracts that are less toxic and exhibit numerous biological properties with great market demand. In this study, information on the depigmentation effects of various natural plant species was gathered from the SCOPUS database according to the PRISMA guidelines. A total of 414 records were retrieved, and finally, 76 articles were included in the qualitative synthesis by fulfilling all the inclusion criteria. In this review, we discuss the extraction methods and biological assays of 75 highly potential plant species, including the olive, yuzu, longan, and lotus. We concluded that the use of natural plants as skin-whitening agents is highly effective as there is a significant correlation between the content of polyphenolic compounds, antimelanogenesis, antityrosinase, and antioxidant activities. However, it is worth noting that the use of extraction methods or types of solvents is very important in determining the biological activities of plants.
Collapse
Affiliation(s)
- Xin Yee Tung
- Department of Biological Sciences, School
of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, Bandar
Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Jia Qi Yip
- Department of Biological Sciences, School
of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, Bandar
Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Lai Ti Gew
- Department of Biological Sciences, School
of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, Bandar
Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| |
Collapse
|
8
|
Biochemical Pilot Study on Effects of Pomegranate Seed Oil Extract and Cosmetic Cream on Neurologically Mediated Skin Inflammation in Animals and Humans: A Comparative Observational Study. Molecules 2023; 28:molecules28020903. [PMID: 36677961 PMCID: PMC9865066 DOI: 10.3390/molecules28020903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
The presence of phenobarbital and formaldehyde in drugs, food, and beverages can lead to various health issues, including inflammation, oncogenesis, and neurological distress. Psychological stress leads to mood fluctuations and the onset of skin inflammation. Skin inflammation has a range of causes, including chemicals, heavy metals, infection, immune-related disorders, genetics, and stress. The various treatments for skin inflammation include medical and cosmetic creams, diet changes, and herbal therapy. In this study, we investigated the effects of Avocom-M and pomegranate seed oil extract (PSOE) against phenobarbital- and formaldehyde-induced skin biochemical changes in rats. We analyzed the constituents of PSOE using gas chromatography-mass spectrometry and inductively coupled plasma-mass spectrometry. We also observed biochemical changes in the skin of human volunteers with and without TROSYD and PSOE as a skin cream. We compared the biochemical changes in human volunteers' skin before treatment and 21 days after the treatment stopped. The outcomes showed an improvement in the rats' biochemical status, due to PSOE and Avocom-M treatment. The human volunteers treated with TROSYD and PSOE showed substantial amelioration of skin inflammation. PSOE, Avocom-M, and TROSYD produced beneficial effects by reducing the levels of cyclooxygenase-2, lipid peroxidation, tyrosinase, hyaluronidase, elastase, collagenase, and nitric oxide in the animals tested on and in human volunteers.
Collapse
|
9
|
Somwongin S, Sirilun S, Chantawannakul P, Anuchapreeda S, Yawootti A, Chaiyana W. Ultrasound-assisted green extraction methods: An approach for cosmeceutical compounds isolation from Macadamia integrifolia pericarp. ULTRASONICS SONOCHEMISTRY 2023; 92:106266. [PMID: 36527764 PMCID: PMC9791925 DOI: 10.1016/j.ultsonch.2022.106266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
This study aimed was to examine the potential of several green extraction methods to extract cosmetic/cosmeceutical components from Macadamia integrifolia pericarps, which were a by-product of the macadamia nut industry. M. integrifolia pericarps were extracted by conventional solvent extraction process using 95% v/v ethanol and various green extraction methods, including infusion, ultrasound, micellar, microwave, and pulsed electric field extraction using water as a clean and green solvent. The extracts were evaluated for total phenolic content using Folin-Ciocalteu method.The antioxidant activities were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing/antioxidant power, and ferric-thiocyanate method. The anti-skin ageing activities were investigated by means of collagenase, elastase, and hyaluronidase inhibition using enzyme-substrate reaction assay. The irritation profile of the extracts was evaluated by the hen's egg test-chorioallantoic membrane (HET-CAM) test. The results noted that ultrasound-assisted extraction yielded the significantly highest extract amount with the significantly highest total phenolic content (p < 0.05), especially when the extraction time was 10 min. The aqueous extract from ultrasound-assisted extraction possessed the most potent antioxidant and anti-skin ageing activities (p < 0.05). Its antioxidant activities were comparable to ascorbic acid and Trolox, whereas the anti-skin ageing activities were equivalent to epigallocatechin-3-gallate and oleanolic acid. Besides, the extract was safe since it induced no irritation in the HET-CAM test. Therefore, ultrasound-assisted extraction was suggested as an environmentally friendly extraction method for M. integrifolia pericarp extraction and further application in the cosmetic/cosmeceutical industries.
Collapse
Affiliation(s)
- Suvimol Somwongin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand
| | - Songyot Anuchapreeda
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Artit Yawootti
- Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
10
|
Phinyo K, Ruangrit K, Pekkoh J, Tragoolpua Y, Kaewkod T, Duangjan K, Pumas C, Suwannarach N, Kumla J, Pathom-aree W, Gu W, Wang G, Srinuanpan S. Naturally Occurring Functional Ingredient from Filamentous Thermophilic Cyanobacterium Leptolyngbya sp. KC45: Phytochemical Characterizations and Their Multiple Bioactivities. Antioxidants (Basel) 2022; 11:antiox11122437. [PMID: 36552645 PMCID: PMC9774153 DOI: 10.3390/antiox11122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are rich in phytochemicals, which have beneficial impacts on the prevention of many diseases. This study aimed to comprehensively characterize phytochemicals and evaluate multifunctional bioactivities in the ethanolic extract of the cyanobacterium Leptolyngbya sp. KC45. Results found that the extract mainly contained chlorophylls, carotenoids, phenolics, and flavonoids. Through LC-ESI-QTOF-MS/MS analysis, 38 phenolic compounds with promising bioactivities were discovered, and a higher diversity of flavonoids was found among the phenolic compounds identified. The extract effectively absorbed the harmful UV rays and showed high antioxidant activity on DPPH, ABTS, and PFRAP. The extract yielded high-efficiency inhibitory effects on enzymes (tyrosinase, collagenase, ACE, and α-glucosidase) related to diseases. Interestingly, the extract showed a strong cytotoxic effect on cancer cells (skin A375, lung A549, and colon Caco-2), but had a much smaller effect on normal cells, indicating a satisfactory level of safety for the extract. More importantly, the combination of the DNA ladder assay and the TUNEL assay proved the appearance of DNA fragmentation in cancer cells after a 48 h treatment with the extract, confirming the apoptosis mechanisms. Our findings suggest that cyanobacterium extract could be potentially used as a functional ingredient for various industrial applications in foods, cosmetics, pharmaceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khomsan Ruangrit
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (J.P.); (S.S.)
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kritsana Duangjan
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (J.P.); (S.S.)
| |
Collapse
|
11
|
Phytochemical, Antioxidant, Antihyaluronidase, Antityrosinase, and Antimicrobial Properties of Nicotiana tabacum L. Leaf Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5761764. [PMID: 36072398 PMCID: PMC9444418 DOI: 10.1155/2022/5761764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Nicotiana tabacum L. (tobacco) is an important and valuable crop for the cigarette industry. However, cigarette cessation has been encouraged worldwide. Therefore, this study aimed to investigate the potential of N. tabacum leaf extract use in other industries besides cigarette production, especially cosmeceutical industries, which are of interest for increasing the value and widening the applications of N. tabacum. The leaves of N. tabacum var. Virginia and Turkish were extracted by maceration using 95% v/v ethanol or petroleum ether. The extracts were evaluated for their phytochemical compositions, antioxidant capacity, and anti-aging, antimelanogenic, and antimicrobial activities. The phytochemical screening of the extracts revealed terpenoids, steroids, alkaloids, tannins, and carbohydrates in all of the N. tabacum leaf extracts. The total phenolic content was detected to be the highest in the ethanolic extract of Virginia tobacco leaf, which had the most significantly potent antioxidant and antihyaluronidase activity (P < 0.05). On the contrary, the extracts from the Turkish variety demonstrated the most powerful antimicrobial activity against Staphylococcus aureus. Thus, ethanolic extracts of N. tabacum var. Virginia are suggested as good natural anti-aging ingredients with potent antioxidant and antihyaluronidase effects, whereas the leaf of N. tabacum var. Turkish is suggested as a good source of natural antimicrobial components, particularly for S. aureus inhibition. In summary, in addition to the cigarette industry, N. tabacum leaf could be a source of pharmaceutical and cosmeceutical compounds, particularly natural anti-aging and antimicrobial ingredients.
Collapse
|
12
|
Xing C, Cui WQ, Zhang Y, Zou XS, Hao JY, Zheng SD, Wang TT, Wang XZ, Wu T, Liu YY, Chen XY, Yuan SG, Zhang ZY, Li YH. Ultrasound-assisted deep eutectic solvents extraction of glabridin and isoliquiritigenin from Glycyrrhiza glabra: Optimization, extraction mechanism and in vitro bioactivities. ULTRASONICS SONOCHEMISTRY 2022; 83:105946. [PMID: 35151194 PMCID: PMC8844873 DOI: 10.1016/j.ultsonch.2022.105946] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 05/04/2023]
Abstract
Licorice (Glycyrrhiza glabra) is extensively used owing to the superior pharmacological effects. However, its maximum application potential has not been fully exploited due to the limitation of currently available extraction solvent and methods. In this study, an eco-friendly deep eutectic solvent (NADESs) based ultrasound-assisted extraction (DES-UAE) method was applied to prepare licorice extracts. The DES-UAE using choline chloride and lactic acid as solvent was optimized and modeled by using response surface methodology to maximize the extraction yields of glabridin (GLA) and isoliquiritigenin (ISL). The optimized extracts possessed higher contents of GLA and ISL than available extraction methods, and the enriched products showed superior pharmacological activities in vitro. Furthermore, scanning electron microscopy (SEM) and molecular dynamic simulation analyses were performed to deeply investigate the interaction between solvent and targeted compounds. This study not only provides an eco-friendly method for high-efficient extraction of GLA and ISL from licorice but also illustrates the mechanism of the increased extraction efficacy, which may contribute to the application of licorice and deep insight into extraction mechanism using DES.
Collapse
Affiliation(s)
- Chen Xing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Wen-Qiang Cui
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xin-Shu Zou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Jing-You Hao
- Harbin Lvdasheng Animal Medicine Manufacture Co., Ltd, China
| | - Si-Di Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Ting-Ting Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xiao-Zhen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Tong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yan-Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xue-Ying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Shu-Guang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhi-Yun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China.
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China; Harbin Herb& Herd Bio-Technology Co., Ltd, China.
| |
Collapse
|
13
|
Carpentieri S, Režek Jambrak A, Ferrari G, Pataro G. Pulsed Electric Field-Assisted Extraction of Aroma and Bioactive Compounds From Aromatic Plants and Food By-Products. Front Nutr 2022; 8:792203. [PMID: 35155517 PMCID: PMC8829011 DOI: 10.3389/fnut.2021.792203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
In this work, the effect of pulsed electric field (PEF) pre-treatment on the extractability in green solvents (i. e., ethanol–water mixture and propylene glycol) of target aroma and bioactive compounds, such as vanillin from vanilla pods, theobromine and caffeine from cocoa bean shells, linalool from vermouth mixture, and limonene from orange peels, was investigated. The effectiveness of PEF as a cell disintegration technique in a wide range of field strength (1–5 kV/cm) and energy input (1–40 kJ/kg) was confirmed using impedance measurements, and results were used to define the optimal PEF conditions for the pre-treatment of each plant tissue before the subsequent solid–liquid extraction process. The extracted compounds from untreated and PEF-treated samples were analyzed via GC-MS and HPLC-PDA analysis. Results revealed that the maximum cell disintegration index was detected for cocoa bean shells and vanilla pods (Zp = 0.82), followed by vermouth mixture (Zp = 0.77), and orange peels (Zp = 0.55). As a result, PEF pre-treatment significantly enhanced the extraction yield of the target compounds in both solvents, but especially in ethanolic extracts of vanillin (+14%), theobromine (+25%), caffeine (+34%), linalool (+114%), and limonene (+33%), as compared with untreated samples. Moreover, GC-MS and HPLC-PDA analyses revealed no evidence of degradation of individual compounds due to PEF application. The results obtained in this work suggest that the application of PEF treatment before solid–liquid extraction with green solvents could represent a sustainable approach for the recovery of clean labels and natural compounds from aromatic plants and food by-products.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- ProdAl Scarl, University of Salerno, Fisciano, Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- *Correspondence: Gianpiero Pataro
| |
Collapse
|
14
|
WANG B, AN X, QU L, WANG F. Review on oral plant extracts in Skin Whitening. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.83922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Bo WANG
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China
| | - Xiaohong AN
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China
| | - Liping QU
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China; Botaneen Research Institute, China
| | - Feifei WANG
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China; Botaneen Research Institute, China
| |
Collapse
|
15
|
Hong-in P, Neimkhum W, Punyoyai C, Sriyab S, Chaiyana W. Enhancement of phenolics content and biological activities of longan (Dimocarpus longan Lour.) treated with thermal and ageing process. Sci Rep 2021; 11:15977. [PMID: 34354192 PMCID: PMC8342457 DOI: 10.1038/s41598-021-95605-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
This study is the first to compare the chemical compositions and biological activities of a conventional dried Dimocarpus longan with a novel black D. longan that underwent a thermal ageing process. Pericarp, aril, and seed of both D. longan were macerated in 95% v/v ethanol. Their chemical compositions were investigated using a Folin-Ciocalteu assay, aluminum chloride assay, and high-performance liquid chromatography. Antioxidant activities were evaluated in terms of radical scavenging and iron (III) reduction capacity. An enzyme inhibition assay was used to evaluate the hyaluronidase inhibition. Inflammatory cytokine secretion was evaluated with an enzyme-linked immunosorbent assay. After being exposed to a heating and ageing procedure, gallic acid and ellagic acid content were increased tenfold, while the corilagin content was doubled. Black D. longan seed extract was the most potent anti-hyaluronidase and antioxidant with the strongest free radical scavenging and reduction power, while black D. longan aril extract resulted in the highest inhibition of inflammatory cytokine secretion. Black D. longan contained more biologically active compounds and possessed more potent biological activities than conventional dried D. longan. Therefore, thermal ageing treatment is suggested for producing black D. longan, for which seed extract is suggested as a cosmeceutical active ingredient and aril extract for anti-inflammation.
Collapse
Affiliation(s)
- Preaploy Hong-in
- grid.7132.70000 0000 9039 7662Master’s Degree Program in Cosmetic Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Waranya Neimkhum
- grid.444151.10000 0001 0048 9553Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Samutprakarn, 10250 Thailand
| | - Chanun Punyoyai
- grid.7132.70000 0000 9039 7662Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Suwannee Sriyab
- grid.7132.70000 0000 9039 7662Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Wantida Chaiyana
- grid.7132.70000 0000 9039 7662Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
16
|
Evaluation of Fatty Acid Compositions, Antioxidant, and Pharmacological Activities of Pumpkin ( Cucurbita moschata) Seed Oil from Aqueous Enzymatic Extraction. PLANTS 2021; 10:plants10081582. [PMID: 34451628 PMCID: PMC8402081 DOI: 10.3390/plants10081582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022]
Abstract
Pumpkin seed oil is a by-product, abundant in nutrients and bioactive components that promote several health benefits. This study aimed to compare chemical compositions, antioxidant, and pharmacological activities of pumpkin seed oils extracted from Cucurbita moschata Duch. Ex Poir. (PSO1) and Cucurbita moschata (Japanese pumpkin) (PSO2) by aqueous enzymatic extraction. An enzyme mixture consisting of pectinase, cellulase, and protease (1:1:1) was used in the enzymatic extraction process. Fatty acid composition of the oils was determined using fatty acid methyl ester/gas chromatographic-mass spectrometry. Antioxidant activity assays were measured by using stable free radical diphenylpicrylhydrazyl, radical cation 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate, ferric reducing/antioxidant power, and ferric thiocyanate assay. Inhibition of enzymes involving skin aging and whitening process was investigated. Linoleic acid was a major component of all pumpkin seed oils. Additionally, there was also a significant amount of oleic acid, palmitic acid, and stearic acid detected. PSO2 possessed the highest antioxidant activities compared to PSO1 and commercial pumpkin seed oils (COM1 and COM2). Both PSO1 and PSO2 exhibited higher inhibitory effects on hyaluronidase, collagenase, and tyrosinase than the commercials. Therefore, aqueous enzymatic extraction could yield pumpkin seed oils with higher antioxidant, anti-aging, and whitening activities. This is beneficial for further pharmacological studies and can be used as a functional food for skin benefits.
Collapse
|
17
|
Carpentieri S, Mazza L, Nutrizio M, Jambrak AR, Ferrari G, Pataro G. Pulsed electric fields‐ and ultrasound‐assisted green extraction of valuable compounds from
Origanum v
ulgare
L. and
Thymus serpyllum
L. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
| | - Luisa Mazza
- Department of Industrial Engineering University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
| | - Marinela Nutrizio
- Faculty of Food Technology and Biotechnology University of Zagreb Pierottijeva 6 Zagreb 10000 Croatia
| | - Anet R. Jambrak
- Faculty of Food Technology and Biotechnology University of Zagreb Pierottijeva 6 Zagreb 10000 Croatia
| | - Giovanna Ferrari
- Department of Industrial Engineering University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
- ProdAl Scarl – University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
| |
Collapse
|