1
|
Joshi OP, Thirumoorthi R, Pardasani RT, Ray S, Dash C. Palladium(ii) complexes bearing mesoionic carbene ligands: catalytic application in domino Sonogashira coupling/cyclization reactions for one-pot synthesis of benzofuran and indole derivatives. RSC Adv 2024; 14:27141-27152. [PMID: 39193272 PMCID: PMC11348387 DOI: 10.1039/d4ra03485f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Bioactive heterocycles such as benzofuran and indole derivatives were synthesized from commercially available 2-iodoarenes and alkynes via domino Sonogashira coupling followed by cyclization reaction using well-defined palladium PEPPSI (Pyridine Enhanced Precatalyst Preparation Stabilization and Initiation) complexes (2a and 2b). These reactions tolerate a variety of 2-iodoarenes and diversely substituted terminal alkynes, resulting in the corresponding product in moderate to good yields in an open-air atmosphere. In particular, two palladium(ii) PEPPSI complexes 2a and 2b were synthesized in good yields from the reaction of corresponding 1,2,3-triazol-5-ylidene (MIC: mesoionic carbene), PdCl2, KI, and K2CO3 in pyridine at 110 °C and structurally characterized by various spectroscopic techniques including NMR spectroscopy, IR spectroscopy, HRMS and elemental analysis studies. Complex 2b is also characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Om Prakash Joshi
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan Bandarsindri Ajmer 305817 Rajasthan India
| | - Ramalingam Thirumoorthi
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan Bandarsindri Ajmer 305817 Rajasthan India
| | - Ram T Pardasani
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan Bandarsindri Ajmer 305817 Rajasthan India
| | - Sriparna Ray
- Catalytic Applications Laboratory, Department of Chemistry, School of Basic Sciences, Faculty of Science, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Chandrakanta Dash
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan Bandarsindri Ajmer 305817 Rajasthan India
| |
Collapse
|
2
|
Chauhan ANS, Vini V, Kumar A, Erande RD. Synthesis of indol-3-yl-benzofurans and carbazoles via Cu(OTf) 2-catalyzed [3 + 2] and [4 + 2] cycloaddition. Org Biomol Chem 2024; 22:6690-6694. [PMID: 39105367 DOI: 10.1039/d4ob00861h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
An efficient Cu(OTf)2-catalyzed [3 + 2] cycloaddition of indole-3-acrylate with p-benzoquinone has been developed to construct two distinct indole-tethered benzofuran scaffolds, offering the first-ever selective access to these scaffolds. Moreover, the [4 + 2] cycloaddition reaction of indole-3-acrylate with vinyl ketone derivatives was used to synthesize carbazoles in a one-pot manner. The disclosed strategies provided a series of selective transformations under low-catalyst loading, with a broad substrate scope featuring diverse applicability and practical simplicity of the developed protocol with easily available substrates.
Collapse
Affiliation(s)
- Amar Nath Singh Chauhan
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Vikrant Vini
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Akhilesh Kumar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Rohan D Erande
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| |
Collapse
|
3
|
Wang F, Pan JQ, Shi RX, Ning R, Wu M. Diastereoselective Synthesis of Dihydrobenzofuran Spirooxindoles and Their Transformation into Benzofuroquinolinones by Ring Expansion of Oxindole Core. J Org Chem 2024; 89:5142-5147. [PMID: 38545874 DOI: 10.1021/acs.joc.3c02956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A mild and efficient approach for the diastereoselective synthesis of dihydrobenzofuran spirooxindoles using 3-chlorooxindoles and imines is presented. This process involves a formal [4 + 1] annulation, yielding the product with excellent diastereoselectivity. Furthermore, a novel method for constructing benzofuroquinolinone scaffolds through the ring expansion of oxindoles has been established. This method involves a lactam ring expansion to the quinolinone skeleton. Besides, a one-pot procedure for creating benzofuroquinolinone scaffolds from 3-chlorooxindoles and imines is also provided.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Jia-Qi Pan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Ruo-Xian Shi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Rui Ning
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Mingshu Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| |
Collapse
|
4
|
Luo A, Zhou H, Wang X, Zeng F, Yu W, Yang K, Duchemin N, Hu YJ. Development of on-DNA Formation of Benzofuran for DNA-Encoded Library Synthesis. Org Lett 2024; 26:1688-1693. [PMID: 38385779 DOI: 10.1021/acs.orglett.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Using a novel homologation-heterocyclization cascade, the on-DNA synthesis of benzofurans from aldehydes has been developed. The methodology, based on an innovative use of the Seyferth-Gilbert homologation, followed by a high yielding Sonogashira coupling in situ intramolecular cyclization one-pot, two-step reaction, provides a powerful and unique pathway for DNA-encoded library (DEL) synthesis of a wide array of pharmaceutically relevant benzofuran-based scaffolds.
Collapse
Affiliation(s)
- Ayun Luo
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Hongxia Zhou
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Xiuming Wang
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Fanming Zeng
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Weina Yu
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Kexin Yang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Nicolas Duchemin
- Pharmaron U.K., Ltd., Innovation Park, West Cl, Hertford Road, Hoddesdon EN11 9FH, U.K
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| |
Collapse
|
5
|
Cil O, Anderson MO, de Souza Goncalves L, Tan JA, Haggie PM, Verkman AS. Small molecule inhibitors of intestinal epithelial anion exchanger SLC26A3 (DRA) with a luminal, extracellular site of action. Eur J Med Chem 2023; 249:115149. [PMID: 36724632 PMCID: PMC10124120 DOI: 10.1016/j.ejmech.2023.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 01/30/2023]
Abstract
The anion exchanger protein SLC26A3 (down-regulated in adenoma, DRA) is expressed in the luminal membrane of intestinal epithelial cells in colon, where it facilitates the absorption of Cl- and oxalate. We previously identified a 4,8-dimethylcoumarin class of SLC26A3 inhibitors that act from the SLC26A3 cytoplasmic surface, and demonstrated their efficacy in mouse models of constipation and hyperoxaluria. Here, screening of 50,000 new compounds and 1740 chemical analogs of active compounds from the primary screen produced five novel classes of SLC26A3-selective inhibitors (1,3-dioxoisoindoline-amides; N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)acetamides; thiazolo-pyrimidin-5-ones; 3-carboxy-2-phenylbenzofurans and benzoxazin-4-ones) with IC50 down to 100 nM. Kinetic washout and onset of action studies revealed an extracellular site of action for the thiazolo-pyrimidin-5-one and 3-carboxy-2-phenylbenzofuran inhibitors. Molecular docking computations revealed putative binding sites for these inhibitors. In a loperamide model of constipation in mice, orally administered 7-(2-chloro-phenoxymethyl)-3-phenyl-thiazolo [3,2-a]pyrimidin-5-one (3a) significantly increased stool weight, pellet number and water content. SLC26A3 inhibitors with an extracellular site of action offer the possibility of creating non-absorbable, luminally acting inhibitors with minimal systemic exposure following oral administration. Our findings also suggest that inhibitors of related SLC26 anion transporters with an extracellular site of action might be identified for pharmacological modulation of selected epithelial ion transport processes.
Collapse
Affiliation(s)
- Onur Cil
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | | | - Joseph-Anthony Tan
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Peter M Haggie
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Alavinia S, Ghorbani-Vaghei R, Ghiai R, Gharehkhani A. Cu( ii) immobilized on poly(guanidine-sulfonamide)-functionalized Bentonite@MgFe 2O 4: a novel magnetic nanocatalyst for the synthesis of 1,4-dihydropyrano[2,3- c]pyrazole †. RSC Adv 2023; 13:10667-10680. [PMID: 37025674 PMCID: PMC10071815 DOI: 10.1039/d3ra00049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
In this paper, we aim at synthesizing a new nanocomposite material in which bentonite acts as a nucleation site for MgFe2O4 nanoparticles precipitation in the attendance of an external magnetic field (MgFe2O4@Bentonite). Moreover, poly(guanidine-sulfonamide), as a novel kind of polysulfonamide, was immobilized on the surface of the prepared support (MgFe2O4@Bentonite@PGSA). Finally, an efficient and environment-friendly catalyst (containing nontoxic polysulfonamide, copper, and MgFe2O4@Bentonite) was prepared by anchoring a copper ion on the surface of MgFe2O4@Bentonite@PGSAMNPs. The synergic effect of MgFe2O4 magnetic nanoparticles (MNPs), bentonite, PGSA, and copper species was observed while conducting the control reactions. The synthesized Bentonite@MgFe2O4@PGSA/Cu, which was characterized using energy-dispersive X-ray spectroscopy (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy, was applied as a highly efficient heterogeneous catalyst to synthesize 1,4-dihydropyrano[2,3-c] pyrazole yielding up to 98% at 10 minutes. Excessive yield, quick reaction time, using water solvent, turning waste to wealth, and recyclability are the important advantages of the present work. In this paper, we aim at synthesizing a new nanocomposite material in which bentonite acts as a nucleation site for MgFe2O4 nanoparticles precipitation in the attendance of an external magnetic field (MgFe2O4@Bentonite).![]()
Collapse
Affiliation(s)
- Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan6517838683Iran+98 81 38380647
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan6517838683Iran+98 81 38380647
| | - Ramin Ghiai
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan6517838683Iran+98 81 38380647
| | - Alireza Gharehkhani
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan6517838683Iran+98 81 38380647
| |
Collapse
|
7
|
Mundhe P, Bhanwala N, Saini SM, Sumanth G, Shivaprasad K, Shende SU, Reddy K, Chandrashekharappa S. Domino synthesis of novel 3-alkenyl benzofuran derivatives- base mediated condensation cascade reaction. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Nakamura A, Imamiya A, Ikegami Y, Rao F, Yuguchi H, Miki Y, Maegawa T. Selective synthesis of 3-formylbenzofuran and 3-acylbenzofuran using a chalcone rearrangement strategy. RSC Adv 2022; 12:30426-30431. [PMID: 36337936 PMCID: PMC9593264 DOI: 10.1039/d2ra06080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 12/01/2022] Open
Abstract
We developed a method for highly selective synthesis of two benzofuran isomers, by rearranging and subsequently transforming 2-hydroxychalcones. Depending on the reaction conditions, synthesis of 3-formylbenzofurans, unconventional products, and 3-acylbenzofurans was achieved through cyclized 2,3-dihydrobenzofurans obtained from the rearranged products. The facile synthesis of 3-formylbenzofurans facilitated synthesis of the natural product, puerariafuran, from the corresponding chalcone.
Collapse
Affiliation(s)
- Akira Nakamura
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Akira Imamiya
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Yuichiro Ikegami
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Fei Rao
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Harumi Yuguchi
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Yasuyoshi Miki
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Tomohiro Maegawa
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| |
Collapse
|
9
|
do Carmo Pinheiro R, Back DF, Müller SG, Nogueira CW, Zeni G. Potassium tert-Butoxide-Promoted Tandem Cyclization of Organoselenium Alkynyl Aryl Propargyl Ethers. J Org Chem 2022; 87:13111-13123. [DOI: 10.1021/acs.joc.2c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roberto do Carmo Pinheiro
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Davi F. Back
- Departamento de Química, UFSM, Laboratório de Materiais Inorgânicos, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Sabrina G. Müller
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| |
Collapse
|
10
|
Xu Y, Sun J, Ke Z, Li Z, Tang W, Xu Y, Chen Z. Friedel-Crafts alkylation oxidative cyclization catalyzed by co-oxidation of SeO 2 and FeCl 3: a simple synthesis of benzo[ b]furan from acetophenone and anisole. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Yuyan Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Jie Sun
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Zhiwei Ke
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Ziwei Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Wei Tang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Yicheng Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| |
Collapse
|
11
|
García-Lacuna J, Alonso M, Domínguez G, Pérez Castells J. Study of the Pauson-Khand reaction in flow over alkynylphenyl vinyl ethers: towards the synthesis of tricyclic multisubstituted benzofurans. RSC Adv 2022; 12:7313-7317. [PMID: 35424686 PMCID: PMC8982164 DOI: 10.1039/d2ra01062c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
The use of flow methodology allows the use of alkynylphenyl vinyl ethers (benzo-fused 1,7 enynes) as substrates for the intramolecular Pauson-Khand reaction (PKr). Forced temperature and pressure conditions during a short reaction time minimize the substrate decomposition allowing the formation of the PK adduct. Substrates substituted at the internal position of the double bond and with internal triple bonds give better yields. The resulting products are cyclopentabenzofuranones present in diverse natural products and drugs that can be further functionalised.
Collapse
Affiliation(s)
- Jorge García-Lacuna
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660 Boadilla del Monte Madrid Spain
| | - Maialen Alonso
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660 Boadilla del Monte Madrid Spain
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660 Boadilla del Monte Madrid Spain
| | - Javier Pérez Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660 Boadilla del Monte Madrid Spain
| |
Collapse
|
12
|
Reddy GS, Shukla S, Bhuktar H, Hossain KA, Edwin RK, Giliyaru VB, Misra P, Pal M. Pd/Cu-catalyzed access to novel 3-(benzofuran-2-ylmethyl) substituted (pyrazolo/benzo)triazinone derivatives: their in silico/ in vitro evaluation as inhibitors of chorismate mutase (CM). RSC Adv 2022; 12:26686-26695. [PMID: 36275143 PMCID: PMC9490447 DOI: 10.1039/d2ra05255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
In view of the reported chorismate mutase (CM or MtbCM) inhibitory activities of 3-indolylmethyl substituted (pyrazolo/benzo)triazinone derivatives the structurally similar 3-(benzofuran-2-ylmethyl) substituted (pyrazolo/benzo)triazinones were designed and evaluated in silico against CM. The docking of target molecules was performed at the interface site of MtbCM (PDB: 2FP2). All the best ranked molecules participated in a strong H-bonding with the ILE67 of the B chain at the backbone position in addition to several hydrophobic/van der Waals interactions with the hydrophobic residues. Based on encouraging docking results, the one-pot synthesis of newly designed benzofuran derivatives was carried out using tandem Pd/Cu-catalyzed Sonogashira cross-coupling followed by intramolecular cyclization of 2-iodophenols with appropriate terminal alkynes. A range of novel 3-(benzofuran-2-ylmethyl) substituted (pyrazolo/benzo)triazinone derivatives were prepared in high (>80%) yields. Three molecules i.e.3h, 3i and 3m that participated in good interaction with CM in silico showed encouraging (64–65%) inhibition at 30 μM in vitro. An SAR within this class of molecules suggested that the benzotriazinone series in general was better than the pyrazolotriazinone series. Based on molecular docking in silico, CM inhibition in vitro and computational ADME prediction the benzofuran derivatives 3i and 3m seemed to be of further medicinal interest in the context of discovery and development of new anti-tubercular agents. We report the Pd/Cu-catalyzed synthesis, in silico molecular docking, in vitro CM inhibition and computational ADME prediction of novel 3-(benzofuran-2-ylmethyl) substituted (pyrazolo/benzo)triazinone derivatives.![]()
Collapse
Affiliation(s)
- Gangireddy Sujeevan Reddy
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Sharda Shukla
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Harshavardhan Bhuktar
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Kazi Amirul Hossain
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Rebecca Kristina Edwin
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Varadaraj Bhat Giliyaru
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Parimal Misra
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Manojit Pal
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| |
Collapse
|
13
|
Manabe K, Yamaguchi M. Synthesis of Multisubstituted Benzofurans/Indoles Using Multichlorinated Phenols/Anilines via Palladium-Catalyzed Site-Selective Sonogashira Coupling. HETEROCYCLES 2022. [DOI: 10.3987/rev-21-964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
15
|
Hung VT, Tran CC, Yamamoto Y, Kodama S, Nomoto A, Ogawa A. Clarification on the Reactivity of Diaryl Diselenides toward Hexacyclohexyldilead under Light. Molecules 2021; 26:6265. [PMID: 34684846 PMCID: PMC8541589 DOI: 10.3390/molecules26206265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, the reactivity of organochalcogen compounds toward a representative alkyl-lead bond compound under light was investigated in detail. Under light irradiation, the Cy-Pb bond of Cy6Pb2 (Cy = cyclohexyl) undergoes homolytic cleavage to generate a cyclohexyl radical (Cy•). This radical can be successfully captured by diphenyl diselenide, which exhibits excellent carbon-radical-capturing ability. In the case of (PhS)2 and (PhTe)2, the yields of the corresponding cyclohexyl sulfides and tellurides were lower than that of (PhSe)2. This probably occurred due to the low carbon-radical-capturing ability of (PhS)2 and the high photosensitivity of the cyclohexyl-tellurium bond.
Collapse
Affiliation(s)
| | | | | | - Shintaro Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan; (V.T.H.); (C.C.T.); (Y.Y.); (A.N.)
| | | | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan; (V.T.H.); (C.C.T.); (Y.Y.); (A.N.)
| |
Collapse
|
16
|
Laurita T, Pappalardo I, Chiummiento L, D'Orsi R, Funicello M, Santarsiero A, Marsico M, Infantino V, Todisco S, Lupattelli P. Synthesis of new methoxy derivatives of trans 2,3-diaryl-2,3-dihydrobenzofurans and evaluation of their anti-inflammatory activity. Bioorg Med Chem Lett 2021; 49:128264. [PMID: 34280408 DOI: 10.1016/j.bmcl.2021.128264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 01/03/2023]
Abstract
In the present study we synthesized new methoxy derivatives of trans 2,3-diaryl-2,3-dihydrobenzofurans, starting from suitable trans 2,3-diaryloxiranes, using regio- and stereoselective nucleophilic oxiranyl ring-opening reactions. The compounds were tested as anti-inflammatories in U937 cells. All compounds showed a significant role in inhibiting the NF-κB pathway and were able to restore normal ROS and NO level upon LPS activation. Moreover, regarding inhibition of ACLY, enantioenriched (50% ee) 7a50 showed more potency than the racemic counterpart 7arac, together with a higher reduction of prostaglandin E2 production, thus suggesting a stereoselective interaction in this pathway.
Collapse
Affiliation(s)
- T Laurita
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - I Pappalardo
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - L Chiummiento
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - R D'Orsi
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - M Funicello
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - A Santarsiero
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - M Marsico
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - V Infantino
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - S Todisco
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - P Lupattelli
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
17
|
Dai YM, Liu M, Zeng QQ, Li X, Wang BQ, Hu P, Zhao KQ, Song F, Shi ZJ. Skeleton Reorganization of Substituted Benzocyclobutenols through Rh-Catalyzed C-C Bond Cleavage Manipulated by Hydrogen Transfer. Org Lett 2021; 23:7597-7602. [PMID: 34533966 DOI: 10.1021/acs.orglett.1c02813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although transition-metal-catalyzed C-C bond activation has been investigated extensively, C-C bond cleavage manipulated by hydrogen transfer has been unexplored. In this work, we disclose a skeleton reorganization of alkene-tethered benzocyclobutenols through Rh-catalyzed C-C bond cleavage coupled with intra- and intermolecular hydrogen transfer. The reaction pathway was well-tuned by the catalytic systems. As a result, divergent benzofurans bearing 4-β-hydroxy or 4-β-keto moieties were synthesized under pH- and redox-neutral conditions.
Collapse
Affiliation(s)
- Ya-Mei Dai
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Min Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Qin-Qiong Zeng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Xiaoting Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Feijie Song
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
18
|
2,2-Bis(phenylselanyl)-1-(p-tolyl)vinyl 2-Oxo-2-(p-tolyl)acetate. MOLBANK 2021. [DOI: 10.3390/m1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
2,2-Bis(phenylselanyl)-1-(p-tolyl)vinyl 2-oxo-2-(p-tolyl)acetate was synthesized via the reaction of p-tolylacetylene with diphenyl diselenide and benzoyl peroxide in benzene under atmospheric conditions. The molecular structure of the synthesized compound was evaluated using single-crystal X-ray analysis and spectral analyses. The process reported here provides a rare example of the direct and selective transformation of a terminal alkyne to the corresponding geminal diseleno-substituted alkene.
Collapse
|
19
|
Singh S, Nerella S, Pabbaraja S, Mehta G. Stitching Ynones with Nitromethanes: Domino Synthesis of Functionally Enriched Benzofurans and Benzothiophenes. J Org Chem 2021; 86:12093-12106. [PMID: 34414759 DOI: 10.1021/acs.joc.1c01104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A convenient one-pot benzannulation of regioisomeric 2- or 3-substituted furan and thiophene ynones with a range of nitromethanes has been discovered to directly access densely and diversely functionalized benzofurans and benzothiophenes. In this protocol, the nitro group in nitromethanes functions as recursive carbanion activator to setup tandem Michael addition-6π-electrocyclization, and its eventual sacrificial elimination facilitates aromatization and overall benzannulation. This benzannulation was also explored with furan/thiophene based o-halo ynones wherein a Michael addition-SNAr process operates and nitromethanes leave their imprint to deliver nitro substituted benzo-furans and -thiophenes.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India.,School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Sharanya Nerella
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
20
|
D'Orsi R, Morrongiello F, Laurita T, Funicello M, Lupattelli P, Chiummiento L. Regio‐ and Diastereo‐Selective Biomimetic Synthesis of (±)‐
ϵ
‐Viniferin by NIS and Resveratrol. ChemistrySelect 2021. [DOI: 10.1002/slct.202101678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rosarita D'Orsi
- Department of Science University of Basilicata Via dell'ateneo lucano, 10 85100 Potenza ITALY
| | - Francesca Morrongiello
- Department of Science University of Basilicata Via dell'ateneo lucano, 10 85100 Potenza ITALY
| | - Teresa Laurita
- Department of Science University of Basilicata Via dell'ateneo lucano, 10 85100 Potenza ITALY
| | - Maria Funicello
- Department of Science University of Basilicata Via dell'ateneo lucano, 10 85100 Potenza ITALY
| | - Paolo Lupattelli
- Department of Science University of Basilicata Via dell'ateneo lucano, 10 85100 Potenza ITALY
| | - Lucia Chiummiento
- Department of Science University of Basilicata Via dell'ateneo lucano, 10 85100 Potenza ITALY
| |
Collapse
|
21
|
Ouyang L, Lin Z, Li S, Chen B, Liu J, Shi WJ, Zheng L. Synthesis of functionalized diarylbenzofurans via Ru-catalyzed C–H activation and cyclization under air: rapid access to the polycyclic scaffold of diptoindonesin G. Org Chem Front 2021. [DOI: 10.1039/d1qo01242h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A method was developed for rapid assembly of 2,3-diarylbenzofuran-4-carboxylic acids from m-hydroxybenzoic acids and alkynes via Ru-catalyzed C–H alkenylation and cyclization, which was successfully applied for total synthesis of diptoindonesin G.
Collapse
Affiliation(s)
- Lufeng Ouyang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Zhigeng Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Shiqi Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Baoyin Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Jidan Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|
22
|
Prasad SS, Joshi DR, Lee JH, Kim I. One-pot access to 2-amino-3-arylbenzofurans: direct entry to polyheterocyclic chemical space. Org Biomol Chem 2020; 18:8119-8140. [PMID: 33016294 DOI: 10.1039/d0ob01715a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a means to make new benzofuran-embedded polycyclic structures, we established two efficient one-pot sequential coupling routes to 2-amino-3-arylbenzofurans and 2-amino-3-arylnaphtho[2,1-b]furans. Further ring formation (six- and seven-membered rings) with the resulting amine moiety at the C2 position of benzofurans was realized, leading to further expansion of benzofuran-based chemical space.
Collapse
Affiliation(s)
- Sure Siva Prasad
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| | - Dirgha Raj Joshi
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| | - Jeong Hwa Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| | - Ikyon Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| |
Collapse
|
23
|
Dao-Huy T, Latkolik S, Bräuer J, Pfeil A, Stuppner H, Schnürch M, Dirsch VM, Mihovilovic MD. Structural Features Defining NF-κB Inhibition by Lignan-Inspired Benzofurans and Benzothiophenes. Biomolecules 2020; 10:biom10081131. [PMID: 32751917 PMCID: PMC7463992 DOI: 10.3390/biom10081131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022] Open
Abstract
A series of 2-arylbenzofurans and 2-arylbenzothiophenes was synthesized carrying three different side chains in position five. The synthesized compounds were tested for NF-κB inhibition to establish a structure activity relationship. It was found that both, the side chain in position five and the substitution pattern of the aryl moiety in position two have a significant influence on the inhibitory activity.
Collapse
Affiliation(s)
- Toan Dao-Huy
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria; (T.D.-H.); (M.D.M.)
- Department of Pharmaceutical and Pesticide Technology, School of Chemical Engineering, Hanoi University of Science and Technology, Dai Co Viet 1, Hai Ba Trung dist., Hanoi 10000, Vietnam
| | - Simone Latkolik
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (S.L.); (J.B.); (A.P.)
| | - Julia Bräuer
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (S.L.); (J.B.); (A.P.)
| | - Andreas Pfeil
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (S.L.); (J.B.); (A.P.)
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria;
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria; (T.D.-H.); (M.D.M.)
- Correspondence: (M.S.); (V.M.D.)
| | - Verena M. Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; (S.L.); (J.B.); (A.P.)
- Correspondence: (M.S.); (V.M.D.)
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria; (T.D.-H.); (M.D.M.)
| |
Collapse
|
24
|
Favi G. Modern Strategies for Heterocycle Synthesis. Molecules 2020; 25:molecules25112476. [PMID: 32471057 PMCID: PMC7321172 DOI: 10.3390/molecules25112476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Gianfranco Favi
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino (PU), Italy
| |
Collapse
|