1
|
Bagherieh F, Ebrahimi Nik M, Mahmoudi A, Gholami L, Hadizadeh F, Sadeghnia HR, Oskuee RK, Malaekeh-Nikouei B. Enhancing efficacy of combretastatin A4 by encapsulation in solid lipid nanoparticles: Implications for anti-angiogenic cancer therapy. Int J Pharm 2025; 678:125669. [PMID: 40316189 DOI: 10.1016/j.ijpharm.2025.125669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/16/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Nanotechnology-based drug delivery systems, such as solid lipid nanoparticles (SLNs), offer promising strategies to enhance the efficacy and stability of therapeutic agents. In this study, we explored the characterization, stability, and therapeutic efficacy of SLNs loaded with Combretastatin A4 (CA4) in cancer treatment. METHODS SLNs loaded with CA4 were characterized for particle size, zeta potential, and encapsulation efficiency. The stability of CA4 SLNs was assessed over six months. The MTT assay was used to evaluate the cytotoxicity of free CA4 and SLNs loaded with CA4 on C26 mouse colon carcinoma cells and HUVEC human umbilical vein endothelial cells. The anti-angiogenic activity was analyzed using the CAM assay. An in vivo study was conducted to assess the therapeutic efficacy of SLNs loaded with CA4 in combination with Doxil in a mouse tumor model. RESULTS Blank SLNs and SLNs loaded with CA4 exhibited a homogeneous particle size distribution (60-70 nm and 80-90 nm, respectively), low polydispersity index, and a negative zeta potential. Encapsulation efficiency of CA4 was around 60 %. SLNs demonstrated excellent physicochemical stability over six months. The MTT assay revealed enhanced cytotoxicity of SLNs loaded with CA4 compared to free CA4, particularly in C26 cells. The CAM assay showed a concentration-dependent reduction in vessel density with CA4 treatment. In in vivo studies, SLNs loaded with CA4 significantly inhibited tumor growth and improved survival rates, especially when combined with Doxil. CONCLUSION These findings suggest that SLNs loaded with CA4 could be a valuable strategy for enhancing therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Fariba Bagherieh
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ebrahimi Nik
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Mahmoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Gholami
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Sulaiman NF, Zulkifli SZ, Saaidin AS, Lekkala R, Izzaty Hassan N, Pungot NH. Exploring β-carboline hybrids and their derivatives: A review on synthesis and anticancer efficiency. Eur J Med Chem 2025; 288:117412. [PMID: 39987835 DOI: 10.1016/j.ejmech.2025.117412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
β-Carboline is a crucial compound in medicinal chemistry known for its versatile pharmacological activities. Recent research has focused on hybrid molecules incorporating a β-carboline scaffold linked to other pharmacophore moieties. These hybrid compounds have demonstrated diverse therapeutic properties, including anticancer, antianxiety, antimalarial, antidepressant, anti-inflammatory, antileishmanial, and antioxidant effects. This review highlights studies conducted from 2014 to the present with a particular emphasis on the development of β-carboline hybrid compounds and their derivatives as potent anticancer agents. The structure-activity relationship (SAR) analysis reveals that these hybrids exhibit significant cytotoxicity against various cancer cell lines. This review aims to inspire further research into the novel synthesis and evolution of β-carboline hybrids and their derivatives, potentially leading to new therapeutic advancements.
Collapse
Affiliation(s)
- Nur Fatihah Sulaiman
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, 40450, Malaysia
| | - Siti Zafirah Zulkifli
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, 40450, Malaysia; Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, 42300, Malaysia
| | - Aimi Suhaily Saaidin
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, 42300, Malaysia
| | - Ravindar Lekkala
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor, 43600, Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor, 43600, Malaysia
| | - Noor Hidayah Pungot
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, 40450, Malaysia; Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, 42300, Malaysia.
| |
Collapse
|
3
|
Salinas Y, Chauhan SC, Bandyopadhyay D. Small-Molecule Mitotic Inhibitors as Anticancer Agents: Discovery, Classification, Mechanisms of Action, and Clinical Trials. Int J Mol Sci 2025; 26:3279. [PMID: 40244152 PMCID: PMC11989755 DOI: 10.3390/ijms26073279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Despite decades of research, cancer continues to be a disease of great concern to millions of people around the world. It has been responsible for a total of 609,820 deaths in the U.S. alone in 2023. Over the years, many drugs have been developed to remove or reduce the disease's impact, all with varying mechanisms of action and side effects. One class of these drugs is small-molecule mitotic inhibitors. These drugs inhibit cancer cell mitosis or self-replication, impeding cell proliferation and eventually leading to cell death. In this paper, small-molecule mitotic inhibitors are discussed and classified through their discovery, underlying chemistry, and mechanism(s) of action. The binding/inhibition of microtubule-related proteins, DNA damage through the inhibition of Checkpoint Kinase 1 protein, and the inhibition of mitotic kinase proteins are discussed in terms of their anticancer activity to provide an overview of a variety of mitotic inhibitors currently commercially available or under investigation, including those in ongoing clinical trial. Clinical trials for anti-mitotic agents are discussed to track research progress, gauge current understanding, and identify possible future prospects. Additionally, antibody-drug conjugates that use mitotic inhibitors as cytotoxic payloads are discussed as possible ways of administering effective anticancer treatments with minimal toxicity.
Collapse
Affiliation(s)
- Yazmin Salinas
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA;
| | - Subhash C. Chauhan
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA;
- School of Earth, Environmental, and Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
4
|
Siedlecka-Kroplewska K, Kmiec Z, Zmijewski MA. The Interplay Between Autophagy and Apoptosis in the Mechanisms of Action of Stilbenes in Cancer Cells. Antioxidants (Basel) 2025; 14:339. [PMID: 40227400 PMCID: PMC11939748 DOI: 10.3390/antiox14030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Plant-based stilbenes are low-molecular-weight polyphenolic compounds that exhibit anti-oxidant, anti-microbial, anti-fungal, anti-inflammatory, anti-diabetic, cardioprotective, neuroprotective, and anti-cancer activities. They are phytoalexins produced in diverse plant species in response to stress, such as fungal and bacterial infections or excessive UV irradiation. Plant-derived dietary products containing stilbenes are common components of the human diet. Stilbenes appear to be promising chemopreventive and chemotherapeutic agents. Accumulating evidence indicates that stilbenes are able to trigger both apoptotic and autophagic molecular pathways in many human cancer cell lines. Of note, the molecular crosstalk between autophagy and apoptosis under cellular stress conditions determines the cell fate. The autophagy and apoptosis relationship is complex and depends on the cellular context, e.g., cell type and cellular stress level. Apoptosis is a type of regulated cell death, whereas autophagy may act as a pro-survival or pro-death mechanism depending on the context. The interplay between autophagy and apoptosis may have an important impact on chemotherapy efficiency. This review focuses on the in vitro effects of stilbenes in different human cancer cell lines concerning the interplay between autophagy and apoptosis.
Collapse
Affiliation(s)
| | - Zbigniew Kmiec
- Department of Anatomy and Histology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | | |
Collapse
|
5
|
Zhao YC, Yan LQ, Xu Y. Recent advances of selenized tubulin inhibitors in cancer therapy. Bioorg Med Chem Lett 2025; 116:130037. [PMID: 39581555 DOI: 10.1016/j.bmcl.2024.130037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Cancer treatment always a huge challenge amidst the resistance and relapse caused by the various treatments. Inhibitors targeting mitosis have been considered as promising therapeutic drugs in clinic, of which tubulins play an important role. Selenium (Se) as an essential microelement in humans and animals, playing a crucial role in the formation of anti-oxidase (glutathione peroxidase) and selenoprotein, also attracted broad attention in cancer therapy. Because the introduction of Se atom could change the length and angle of chemical bond and alter their functional properties, regulating selenized chemotherapeutics has become one of the hot spots. However, little attention has been paid to studying the combination of Se and tubulin inhibitors. Herein, we review the latest research results of selenized tubulin inhibitors in cancer therapy, including its mechanisms, categories and biological activities, providing a theoretical basis for different selenized microtubules inhibitors therapies.
Collapse
Affiliation(s)
- Yong-Chang Zhao
- Department of Pharmacy, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Liang-Qing Yan
- Department of Radiology, The People's Hospital of Yuhuan, Taizhou 317600, China
| | - Yuan Xu
- Department of Pharmacy, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.
| |
Collapse
|
6
|
Kangra K, Kakkar S, Mittal V, Kumar V, Aggarwal N, Chopra H, Malik T, Garg V. Incredible use of plant-derived bioactives as anticancer agents. RSC Adv 2025; 15:1721-1746. [PMID: 39835210 PMCID: PMC11744461 DOI: 10.1039/d4ra05089d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer is a major global concern. Despite considerable advancements in cancer therapy and control, there are still large gaps and requirements for development. In recent years, various naturally occurring anticancer drugs have been derived from natural resources, such as alkaloids, glycosides, terpenes, terpenoids, flavones, and polyphenols. Plant-derived substances exhibit their anticancer potential through antiproliferative activity, cytotoxicity, apoptosis, angiogenesis and cell cycle arrest. Natural compounds can affect the molecular activity of cells through various signaling pathways, like the cell cycle pathway, STAT-3 pathway, PI3K/Akt, and Ras/MAP-kinase pathways. Capsaicin, ouabain, and lycopene show their anticancer potential through the STAT-3 pathway in breast, colorectal, pancreatic, lung, cervical, ovarian and colon cancers. Epigallocatechin gallate and emodin target the JNK protein in skin, breast, and lung cancers, while berberine, evodiamine, lycorine, and astragalin exhibit anticancer activity against breast, liver, prostate, pancreatic and skin cancers and leukemia through the PI3K/Akt and Ras/MAP-kinase pathways. In vitro/in vivo investigations revealed that secondary metabolites suppress cancer cells by causing DNA damage and activating apoptosis-inducing enzymes. After a meticulous literature review, the anti-cancer potential, mode of action, and clinical trials of 144 bioactive compounds and their synthetic analogues are included in the present work, which could pave the way for using plant-derived bioactives as anticancer agents.
Collapse
Affiliation(s)
- Kiran Kangra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Saloni Kakkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Virender Kumar
- College of Pharmacy, Pandit Bhagwat Dayal Sharma University of Health Sciences Rohtak 124001 India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana Ambala 133207 Haryana India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai 602105 Tamil Nadu India
| | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara Punjab-144411 India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| |
Collapse
|
7
|
Prieto L, Gaviña D, Escolano M, Cánovas-Belchí M, Sánchez-Roselló M, del Pozo C, Falomir E, Díaz-Oltra S. Synthesis and Biological Evaluation of New cis-Restricted Triazole Analogues of Combretastatin A-4. Molecules 2025; 30:317. [PMID: 39860187 PMCID: PMC11767582 DOI: 10.3390/molecules30020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The natural products combretastatins A-1 and A-4 are potent antimitotic and vascular-disrupting agents through their binding at the colchicine site in tubulin. However, these compounds suffer from a low water solubility and a tendency to isomerize to the inactive trans stilbenes. In this study, we have prepared a series of 18 cis-restricted triazole analogues of combretastatin A-4 (CA-4), maintaining, in all cases, the 3,4,5-trimethoxy phenyl ring A, with the aim of investigating the substitution pattern on the B-ring in a systematic way. To this end, cytotoxic activities of the cis-restricted analogues of CA-4 prepared were determined in two tumor cell lines, namely, HT-29 and A-549, as well as in the non-tumor cell line HEK-293, to pre-evaluate the selectivity profile of the compounds for the tumor cell lines. The main conclusion was the essential presence of methoxyl or ethoxyl groups at the para position of the B-ring in order to obtain good antitumor activities. Thus, the more active compounds in our study displayed IC50 values in the nanomolar range for the tumor cell lines but not for the normal cells. Consequently, these triazole analogues of CA-4 could serve as promising alternatives to the natural product, although further studies about their biological activity are essential in order to fully determine their viability as therapeutic agents in the treatment of cancer.
Collapse
Affiliation(s)
- Lidia Prieto
- Department of Organic Chemistry, University of Valencia, E-46100 Burjassot, Spain; (L.P.); (D.G.); (M.E.); (M.C.-B.); (M.S.-R.); (C.d.P.)
| | - Daniel Gaviña
- Department of Organic Chemistry, University of Valencia, E-46100 Burjassot, Spain; (L.P.); (D.G.); (M.E.); (M.C.-B.); (M.S.-R.); (C.d.P.)
| | - Marcos Escolano
- Department of Organic Chemistry, University of Valencia, E-46100 Burjassot, Spain; (L.P.); (D.G.); (M.E.); (M.C.-B.); (M.S.-R.); (C.d.P.)
| | - María Cánovas-Belchí
- Department of Organic Chemistry, University of Valencia, E-46100 Burjassot, Spain; (L.P.); (D.G.); (M.E.); (M.C.-B.); (M.S.-R.); (C.d.P.)
| | - María Sánchez-Roselló
- Department of Organic Chemistry, University of Valencia, E-46100 Burjassot, Spain; (L.P.); (D.G.); (M.E.); (M.C.-B.); (M.S.-R.); (C.d.P.)
| | - Carlos del Pozo
- Department of Organic Chemistry, University of Valencia, E-46100 Burjassot, Spain; (L.P.); (D.G.); (M.E.); (M.C.-B.); (M.S.-R.); (C.d.P.)
| | - Eva Falomir
- Department of Organic and Inorganic Chemistry, University Jaume I, E-12071 Castellón, Spain;
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, University of Valencia, E-46100 Burjassot, Spain; (L.P.); (D.G.); (M.E.); (M.C.-B.); (M.S.-R.); (C.d.P.)
| |
Collapse
|
8
|
Fantacuzzi M, Carradori S, Giampietro L, Maccallini C, De Filippis B, Amoroso R, Ammazzalorso A. A novel life for antitumor combretastatins: Recent developments of hybrids, prodrugs, combination therapies, and antibody-drug conjugates. Eur J Med Chem 2025; 281:117021. [PMID: 39500065 DOI: 10.1016/j.ejmech.2024.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 12/02/2024]
Abstract
Since their discovery from natural sources, the potent cytotoxic effects of combretastatins were widely studied for the application in antitumor therapy. However, major pharmacokinetic issues as low water solubility and chemical instability of the double bond configuration prevented their use in therapy. A lot of efforts have been directed towards the search of novel strategies, allowing a safer use of combretastatins as anticancer agents. This review analyses the recent landscape in combretastatin research, characterized by the identification of hybrids, prodrugs, and novel combination treatments. Interestingly, the potent cytotoxic agent combretastatin A4 (CA4) was recently proposed as payload in the construction of novel antibody-drug conjugates (ADCs), allowing an efficient targeting of the cytotoxic agent to specific tumors.
Collapse
Affiliation(s)
- Marialuigia Fantacuzzi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Letizia Giampietro
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Cristina Maccallini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandra Ammazzalorso
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy.
| |
Collapse
|
9
|
Elbadawi M, Efferth T. In Vivo and Clinical Studies of Natural Products Targeting the Hallmarks of Cancer. Handb Exp Pharmacol 2025; 287:95-121. [PMID: 38797749 DOI: 10.1007/164_2024_716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite more than 200 approved anticancer agents, cancer remains a leading cause of death worldwide due to disease complexity, tumour heterogeneity, drug toxicity, and the emergence of drug resistance. Accordingly, the development of chemotherapeutic agents with higher efficacy, a better safety profile, and the capability of bypassing drug resistance would be a cornerstone in cancer therapy. Natural products have played a pivotal role in the field of drug discovery, especially for the pharmacotherapy of cancer, infectious, and chronic diseases. Owing to their distinctive structures and multiple mechanistic activities, natural products and their derivatives have been utilized for decades in cancer treatment protocols. In this review, we delve into the potential of natural products as anticancer agents by targeting cancer's hallmarks, including sustained proliferative signalling, evading growth suppression, resisting apoptosis and cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. We highlight the molecular mechanisms of some natural products, in vivo studies, and promising clinical trials. This review emphasizes the significance of natural products in fighting cancer and the need for further studies to uncover their fully therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
10
|
Kong Y, Edler MC, Hamel E, Britton-Jenkins AR, Gillan O, Mooberry SL, Mu D, Brown ML. Synthesis and structure-activity relationship of boronic acid bioisosteres of combretastatin A-4 as anticancer agents. Bioorg Med Chem 2024; 116:117999. [PMID: 39546933 PMCID: PMC11645202 DOI: 10.1016/j.bmc.2024.117999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
The boronic acid group plays an important role in drug discovery. Following our discovery of a boronic acid analog of combretastatin A-4 (CA-4), a series of analogs featuring a boronic acid group on the C phenyl ring of CA-4 was synthesized and evaluated for cytotoxicity, as well as for their ability to inhibit tubulin polymerization, inhibit the binding of [3H]colchicine to tubulin and cause depolymerization of cellular microtubules. Modifications on the C ring of CA-4, either eliminating the methoxy group or replacing the C phenyl ring with a pyridine ring, resulted in a reduced potency for inhibiting tubulin polymerization, colchicine binding and cytotoxic activities as compared to CA-4. Replacing the phenol group with a boronic acid group on the C ring of phenstatin led to a slight increase in cytotoxic potency but a decreased potency for inhibition of tubulin assembly and colchicine binding. Moreover, there was a significant decrease in activity by replacing the C phenyl ring with a pyridine ring. Our results indicate the critical importance of the methoxy group on the C ring as well as the importance of the C phenyl ring compared to a pyridine ring, despite the latter providing a nitrogen atom as a hydrogen bond donor/acceptor, which was predicted by molecular modeling to enhance interaction with the target. The decreased activities of our modified CA-4 boronic analogs may be attributed to weakened hydrogen bonding in our docking model based on the crystal structure of colchicine bound to αβ-tubulin. Notably, even though their effectiveness in inhibiting tubulin polymerization and colchicine binding and causing microtubule depolymerization in cells, the majority of these boronic acid analogs exhibited substantial cytotoxicity. This suggests that they may have additional cellular targets that contribute to their cytotoxicity, and this warrants further evaluation of these unique boronic acid compounds as potential anticancer agents.
Collapse
Affiliation(s)
- Yali Kong
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, United States.
| | - Michael C Edler
- Department of Medical and Molecular Genetics, United States; School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Asa R Britton-Jenkins
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, United States
| | - Omar Gillan
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Susan L Mooberry
- Department of Pharmacology, UT Health, San Antonio, TX 78229, United States
| | - David Mu
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, United States; Leroy T. Canoles, Jr. Cancer Research Center, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, United States
| | - Milton L Brown
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, United States.
| |
Collapse
|
11
|
Omar MH, Emam SH, Mikhail DS, Elmeligie S. Combretastatin A-4 based compounds as potential anticancer agents: A review. Bioorg Chem 2024; 153:107930. [PMID: 39504638 DOI: 10.1016/j.bioorg.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
The current review discusses the importance of combretastatin A-4 (CA-4) as a lead compound of microtubule targeting agents. CA-4 holds a unique place among naturally occurring compounds having cytotoxic activity. In this review an overall picture of design strategies, structure-activity relationship, synthesis, cytotoxic activity, and binding interactions of promising CA-4 analogues, are discussed and arranged chronologically from 2016 to early 2023. Also, this review emphasizes their biological activity as anticancer agents, within an overview of clinical application limitation and suggested strategies to overcome. Dual targeting tubulin inhibitors showed highpotentialto surpass medication resistance and provide synergistic efficacy. Linking platinum (IV), amino acids, and HDAC targeting moieties to active tubulin inhibitorsproduced potent active compounds. Analogues of CA-4 bridged with azetidin-2-one, pyrazole, sulfide, or carrying selenium atom exhibited cytotoxic action against a variety of malignant cell lines through different pathways.
Collapse
Affiliation(s)
- Mai H Omar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Salwa Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
12
|
Popović P, Pirković A, Topalović D, Živković L, Marković M, Spremo-Potparević B. Cytotoxic, Antioxidant, and Anti-Genotoxic Properties of Combretastatin A4 in Human Peripheral Blood Mononuclear Cells: A Comprehensive In Vitro Study. Biomolecules 2024; 14:1535. [PMID: 39766242 PMCID: PMC11673008 DOI: 10.3390/biom14121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Despite significant advances in drug discovery and the promising antitumor potential of combretastatin A4 (CA-4), which selectively targets rapidly dividing cancer cells, CA-4's effects on non-dividing human cells, such as peripheral blood mononuclear cells (PBMCs), remain unclear. The aim of this study is to evaluate the in vitro bioactivity of CA-4 in human PBMCs, focusing on its antigenotoxic and antioxidant properties, while comparing its cytotoxic potency against PBMCs, cancer cell lines (JAR and HeLa), and the normal trophoblast cell line HTR-8/SVneo. Cell viability and metabolic activity were evaluated using the MTT assay. ROS production in PBMCs was measured using the H2DCFDA assay, and DNA damage was assessed using the Comet assay. CA-4 showed cytotoxicity in PBMCs and HTR-8/SVneo cells at concentrations above 200 µM, while cancer cells, JAR and HeLa, showed cytotoxicity at 100 µM and 1 µM, respectively. CA-4 also reduced ROS levels in PBMCs under oxidative stress and showed antioxidant effects at concentrations from 1 to 200 µM. In addition, CA-4 showed antigenotoxic effects against H2O2-induced DNA damage in PBMCs at concentrations of up to 1 µM. CA-4 exhibited lower cytotoxicity in human PBMCs compared to cancer cells, inhibited ROS production, and showed antioxidant and antigenotoxic properties, providing insight into its potential therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Petar Popović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (P.P.); (D.T.); (L.Ž.); (M.M.); (B.S.-P.)
| | - Andrea Pirković
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy-INEP, University of Belgrade, 11000 Belgrade, Serbia
| | - Dijana Topalović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (P.P.); (D.T.); (L.Ž.); (M.M.); (B.S.-P.)
| | - Lada Živković
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (P.P.); (D.T.); (L.Ž.); (M.M.); (B.S.-P.)
| | - Milica Marković
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (P.P.); (D.T.); (L.Ž.); (M.M.); (B.S.-P.)
| | - Biljana Spremo-Potparević
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (P.P.); (D.T.); (L.Ž.); (M.M.); (B.S.-P.)
| |
Collapse
|
13
|
Saini M, Paul S, Acharya A, Acharya SS, Kundu CN, Guchhait SK. Scaffold overlay of flavonoid-inspired molecules: Discovery of 2,3-diaryl-pyridopyrimidin-4-imine/ones as dual hTopo-II and tubulin targeting anticancer agents. Bioorg Chem 2024; 152:107738. [PMID: 39182257 DOI: 10.1016/j.bioorg.2024.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Almost half of all medicines approved by the U.S. Food and Drug Administration have been found to be developed based on inspiration from natural products (NPs). Here, we report a novel strategy of scaffold overlaying of scaffold-hopped analogs of bioactive flavones and isoflavones and installation of drug-privileged motifs, which has led to discovery of anticancer agents that surpass the functional efficiency of the original NPs. The analogs, 2,3-diaryl-pyridopyrimidin-4-imine/ones were efficiently synthesized by an approach of a nitrile-stabilized quaternary ammonium ylide as masked synthon and Pd-catalyzed activation-arylation methods. Compared to the NPs, these NP-analogs exhibited differentiated functions; dual inhibition of human topoisomerase-II (hTopo-II) enzyme and tubulin polymerization, and pronounced antiproliferative effect against various cancer cell lines, including numerous drug-resistant cancer cells. The most active compound 5l displayed significant inhibition of migration ability of cancer cells and blocked G1/S phase transition in cell cycle. Compound 5l caused pronounced effect in expression patterns of various key cell cycle regulatory proteins; up-regulation of apoptotic proteins, Bax, Caspase 3 and p53, and down-regulation of apoptosis-inhibiting proteins, BcL-xL, Cyclin D1, Cyclin E1 and NF-κB, which indicates high efficiency of the molecule 5l in apoptosis-signal axis interfering potential. Cheminformatics analysis revealed that 2,3-diaryl-pyridopyrimidin-4-imine/ones occupy a distinctive drug-relevant chemical space that is seldom represented by natural products and good physicochemical, ADMET and pharmacokinetic-relevant profile. Together, the anticancer potential of the investigated analogs was found to be much more efficient compared to the original natural products and two anticancer drugs, Etoposide (hTopo-II inhibitor) and 5-Flurouracile (5-FU).
Collapse
Affiliation(s)
- Meenu Saini
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Subarno Paul
- School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Ayan Acharya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Sushree Subhadra Acharya
- School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Chanakya Nath Kundu
- School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
14
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
15
|
McLoughlin EC, Twamley B, O'Boyle NM. Candidaantarctica Lipase B mediated kinetic resolution: A sustainable method for chiral synthesis of antiproliferative β-lactams. Eur J Med Chem 2024; 276:116692. [PMID: 39068864 DOI: 10.1016/j.ejmech.2024.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Biocatalysis is a valuable industrial approach in active pharmaceutical ingredient (API) manufacturing for asymmetric induction and synthesis of chiral APIs. Herein, we investigated synthesis of a panel of microtubule-destabilising antiproliferative β-lactam enantiomers employing a commercially available immobilised Candida antarctica lipase B enzyme together with methanol and MTBE. The β-lactam ring remained intact during chiral kinetic resolution reactions, plausibly due to a bulky N-1 phenyl substituent on the β-lactam ring substrate. The predominant reaction mediated by CAL-B was methanol catalysed conversion of the β-lactam 3-acetoxy substituent to a 3-hydroxyl group, with preferential methanolysis of the 3S, 4S enantiomer. The unreacted substrate underwent progressive enantioenrichment to the 3R, 4R enantiomer. Substitution patterns on the B ring C3 meta position of the β-lactam scaffold greatly affected the rate of reaction. Halo substituents (fluoro-, chloro- and bromo-) reduced the rate of conversion compared to unsubstituted analogues, which in turn increased enantiomeric excess (ee). Ee values up to 86 % for the 3S, 4S 3-hydroxyl enantiomer were achieved. A double resolution approach for unreacted substrate yielded high ee values (>99 %) for the 3R, 4R 3-acetoxy enantiomer. CAL-B mediated methanolysis is a more sustainable method for resolution of racemic antiproliferative β-lactams compared to a previous technique of chiral diastereomeric resolution. Yields of β-lactams obtained using CAL-B are far superior than previously described, which will facilitate progression toward pre-clinical and clinical development. Biocatalysis is a useful tool in the toolbox of the medicinal chemist.
Collapse
Affiliation(s)
- Eavan C McLoughlin
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin 2, D02 R590, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Niamh M O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin 2, D02 R590, Ireland.
| |
Collapse
|
16
|
Hasan‐Abad A, Atapour A, Sobhani‐Nasab A, Motedayyen H, ArefNezhad R. Plant-Based Anticancer Compounds With a Focus on Breast Cancer. Cancer Rep (Hoboken) 2024; 7:e70012. [PMID: 39453820 PMCID: PMC11506041 DOI: 10.1002/cnr2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/11/2024] [Accepted: 08/11/2024] [Indexed: 10/27/2024] Open
Abstract
Breast cancer is a common form of cancer among women characterized by the growth of malignant cells in the breast tissue. The most common treatments for this condition include chemotherapy, surgical intervention, radiation therapy, hormone therapy, and biological therapy. The primary issues associated with chemotherapy and radiation therapy are their adverse events and significant financial burden among patients in underdeveloped countries. This highlights the need to explore and develop superior therapeutic options that are less detrimental and more economically efficient. Plants provide an abundant supply of innovative compounds and present a promising new avenue for investigating cancer. Plants and their derivations are undergoing a revolution due to their reduced toxicity, expediency, cost-effectiveness, safety, and simplicity in comparison to conventional treatment methods. Natural products are considered promising candidates for the development of anticancer drugs, due perhaps to the diverse pleiotropic effects on target events. The effects of plant-derived products are limited to cancer cells while leaving healthy cells unaffected. Identification of compounds with strong anticancer properties and development of plant-based medications for cancer treatment might be crucial steps in breast cancer therapy. Although bioactive compounds have potent anticancer properties, they also have drawbacks that need to be resolved before their application in clinical trials and improved for the approved drugs. This study aims to give comprehensive information on known anticancer compounds, including their sources and molecular mechanisms of actions, along with opportunities and challenges in plant-based anticancer therapies.
Collapse
Affiliation(s)
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Ali Sobhani‐Nasab
- Autoimmune Diseases Research CenterKashan University of Medical SciencesKashanIran
| | - Hossein Motedayyen
- Autoimmune Diseases Research CenterKashan University of Medical SciencesKashanIran
| | - Reza ArefNezhad
- Department of Anatomy, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
17
|
Deb M, Singh H, Manhas D, Nandi U, Guru SK, Das P. Development of di-arylated 1,2,4-triazole-based derivatives as therapeutic agents against breast cancer: synthesis and biological evaluation. RSC Med Chem 2024; 15:3097-3113. [PMID: 39309354 PMCID: PMC11411613 DOI: 10.1039/d4md00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/20/2024] [Indexed: 09/25/2024] Open
Abstract
The synthesis, anticancer activity, and metabolic stability of di-arylated 1,2,4-triazole molecules have been reported. Utilizing an efficient programmed arylation technique which starts from commercially available 3-bromo-1H-1,2,4-triazole, a series of therapeutic agents have been synthesized and screened against three human breast cancer cell lines, MDA-MB-231, MCF-7, and ZR-75-1, via an in vitro growth inhibition assay. At 10 μM concentration, 4k, 4m, 4q, and 4t have displayed good anticancer potency in the MCF-7 cell line, among which 4q has shown the best efficacy (IC50 = 4.8 μM). Mechanistic investigations of 4q have indicated the elevation of the pro-apoptotic BAX protein in the malignant cells along with mitochondrial outer membrane permeabilization which are hallmarks of apoptosis. Further metabolic stability studies in diverse liver microsomes have provided insights into the favorable pharmacokinetic properties of 4q in humans, establishing it as a promising lead compound of this series that deserves further investigation.
Collapse
Affiliation(s)
- Mousumi Deb
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad-826004 India
| | - Hoshiyar Singh
- Department of Biological Sciences, NIPER-Hyderabad-500037 India
| | - Diksha Manhas
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Jammu-180001 India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Jammu-180001 India
| | - Santosh K Guru
- Department of Biological Sciences, NIPER-Hyderabad-500037 India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad-826004 India
| |
Collapse
|
18
|
Yu X, Chen M, Wu J, Song R. Research progress of SIRTs activator resveratrol and its derivatives in autoimmune diseases. Front Immunol 2024; 15:1390907. [PMID: 38962006 PMCID: PMC11219927 DOI: 10.3389/fimmu.2024.1390907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Autoimmune diseases (AID) have emerged as prominent contributors to disability and mortality worldwide, characterized by intricate pathogenic mechanisms involving genetic, environmental, and autoimmune factors. In response to this challenge, a growing body of research in recent years has delved into genetic modifications, yielding valuable insights into AID prevention and treatment. Sirtuins (SIRTs) constitute a class of NAD-dependent histone deacetylases that orchestrate deacetylation processes, wielding significant regulatory influence over cellular metabolism, oxidative stress, immune response, apoptosis, and aging through epigenetic modifications. Resveratrol, the pioneering activator of the SIRTs family, and its derivatives have captured global scholarly interest. In the context of AID, these compounds hold promise for therapeutic intervention by modulating the SIRTs pathway, impacting immune cell functionality, suppressing the release of inflammatory mediators, and mitigating tissue damage. This review endeavors to explore the potential of resveratrol and its derivatives in AID treatment, elucidating their mechanisms of action and providing a comprehensive analysis of current research advancements and obstacles. Through a thorough examination of existing literature, our objective is to advocate for the utilization of resveratrol and its derivatives in AID treatment while offering crucial insights for the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Xiaolong Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Ruixiao Song
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
19
|
Chen S, Pan H. Vesicle delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:347-383. [PMID: 39218506 DOI: 10.1016/bs.afnr.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Vesicular delivery systems are highly ordered assemblies consisting of one or more concentric bilayers formed by the self-assembly of amphiphilic building blocks in the presence of water. In the field of functional food, vesicular delivery systems have been widely explored for effective formulations to deliver functional substances. With the effort of scientific research, certain categories of vesicular delivery systems have successfully been translated from the laboratory to the global market of functional food. This chapter aims to present comprehensively the various vesicular delivery systems, including their design, preparation methods, encapsulation of functional substances, and application in nutritional interventions.
Collapse
Affiliation(s)
- Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, P.R. China.
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
20
|
Chagas C, Mansano JV, da Silva EB, Petri G, da Costa Aguiar Alves Reis B, Schumacher ML, Haddad PS, Pereira EC, Britos TN, Barreiro EJ, Lima LM, Ferreira FF, Fonseca FLA. In vitro results with minimal blood toxicity of a combretastatin A4 analogue. Invest New Drugs 2024; 42:318-325. [PMID: 38758478 DOI: 10.1007/s10637-024-01440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
Cancer is a disease caused by uncontrolled cell growth that is responsible for several deaths worldwide. Breast cancer is the most common type of cancer among women and is the leading cause of death. Chemotherapy is the most commonly used treatment for cancer; however, it often causes various side effects in patients. In this study, we evaluate the antineoplastic activity of a parent compound based on a combretastatin A4 analogue. We test the compound at 0.01 mg mL- 1, 0.1 mg mL- 1, 1.0 mg mL- 1, 10.0 mg mL- 1, 100.0 mg mL- 1, and 1,000.0 mg mL- 1. To assess molecular antineoplastic activity, we conduct in vitro tests to determine the viability of Ehrlich cells and the blood mononuclear fraction. We also analyze the cytotoxic behavior of the compound in the blood and blood smear. The results show that the molecule has a promising antineoplastic effect and crucial anticarcinogenic action. The toxicity of blood cells does not show statistically significant changes.
Collapse
Affiliation(s)
- Camila Chagas
- Clinical Analysis Laboratory of the Centro Universitário FMABC, Av. Príncipe de Gales, 821, Bairro Vila Príncipe de Gales, 09060-650, Santo André, SP, Brazil.
| | - Jaqueline Vital Mansano
- Clinical Analysis Laboratory of the Centro Universitário FMABC, Av. Príncipe de Gales, 821, Bairro Vila Príncipe de Gales, 09060-650, Santo André, SP, Brazil
| | - Emerson Barbosa da Silva
- Clinical Analysis Laboratory of the Centro Universitário FMABC, Av. Príncipe de Gales, 821, Bairro Vila Príncipe de Gales, 09060-650, Santo André, SP, Brazil
| | - Giuliana Petri
- Clinical Analysis Laboratory of the Centro Universitário FMABC, Av. Príncipe de Gales, 821, Bairro Vila Príncipe de Gales, 09060-650, Santo André, SP, Brazil
| | - Beatriz da Costa Aguiar Alves Reis
- Clinical Analysis Laboratory of the Centro Universitário FMABC, Av. Príncipe de Gales, 821, Bairro Vila Príncipe de Gales, 09060-650, Santo André, SP, Brazil
| | - Maria Lúcia Schumacher
- Chemistry Department, Federal University of São Paulo, Campus Diadema, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP, Brazil
| | - Paula Silvia Haddad
- Chemistry Department, Federal University of São Paulo, Campus Diadema, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP, Brazil
| | - Edimar Cristiano Pereira
- Clinical Analysis Laboratory of the Centro Universitário FMABC, Av. Príncipe de Gales, 821, Bairro Vila Príncipe de Gales, 09060-650, Santo André, SP, Brazil
| | - Tatiane Nassar Britos
- Chemistry Department, Federal University of São Paulo, Campus Diadema, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP, Brazil
| | - Eliezer J Barreiro
- LASSBio, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Av. Carlos Chagas, 373 - bloco K, 2º andar, sala 35 - Prédio do Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil
- Graduate Program of Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, nº 149, Bloco A- 7º andar, Centro de Tecnologia, Cidade Universitária, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Lídia Moreira Lima
- LASSBio, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Av. Carlos Chagas, 373 - bloco K, 2º andar, sala 35 - Prédio do Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil
- Graduate Program of Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, nº 149, Bloco A- 7º andar, Centro de Tecnologia, Cidade Universitária, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Fabio Furlan Ferreira
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), 09280- 560, Santo André, SP, Brazil.
- Nanomedicine Research Unit (NANOMED), Federal University of ABC (UFABC), 09280-560, Santo André, SP, Brazil.
| | - Fernando Luiz Affonso Fonseca
- Clinical Analysis Laboratory of the Centro Universitário FMABC, Av. Príncipe de Gales, 821, Bairro Vila Príncipe de Gales, 09060-650, Santo André, SP, Brazil
- Chemistry Department, Federal University of São Paulo, Campus Diadema, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP, Brazil
| |
Collapse
|
21
|
Kong Y, Zhang R, Li B, Zhao W, Wang J, Sun XW, Lv H, Liu R, Tang J, Wu B. Applying a Tripodal Hexaurea Receptor for Binding to an Antitumor Drug, Combretastatin-A4 Phosphate. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2570. [PMID: 38893834 PMCID: PMC11173554 DOI: 10.3390/ma17112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Phosphates play a crucial role in drug design, but their negative charge and high polarity make the transmembrane transport of phosphate species challenging. This leads to poor bioavailability of phosphate drugs. Combretastatin-A4 phosphate (CA4P) is such an anticancer monoester phosphate compound, but its absorption and clinical applicability are greatly limited. Therefore, developing carrier systems to effectively deliver phosphate drugs like CA4P is essential. Anion receptors have been found to facilitate the transmembrane transport of anions through hydrogen bonding. In this study, we developed a tripodal hexaurea anion receptor (L1) capable of binding anionic CA4P through hydrogen bonding, with a binding constant larger than 104 M-1 in a DMSO/water mixed solvent. L1 demonstrated superior binding ability compared to other common anions, and exhibited negligible cell cytotoxicity, making it a promising candidate for future use as a carrier for drug delivery.
Collapse
Affiliation(s)
- Yu Kong
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Rong Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Boyang Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China;
| | - Wei Zhao
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Ji Wang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Xiao-Wen Sun
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Huihui Lv
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Rui Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Juan Tang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Biao Wu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| |
Collapse
|
22
|
Jędrzejczyk M, Morabito B, Żyżyńska-Granica B, Struga M, Janczak J, Aminpour M, Tuszynski JA, Huczyński A. Novel Combretastatin A-4 Analogs-Design, Synthesis, and Antiproliferative and Anti-Tubulin Activity. Molecules 2024; 29:2200. [PMID: 38792062 PMCID: PMC11124394 DOI: 10.3390/molecules29102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Combretastatins isolated from the Combretum caffrum tree belong to a group of closely related stilbenes. They are colchicine binding site inhibitors which disrupt the polymerization process of microtubules in tubulins, causing mitotic arrest. In vitro and in vivo studies have proven that some combretastatins exhibit antitumor properties, and among them, combretastatin A-4 is the most active mitotic inhibitor. In this study, a series of novel combretastatin A-4 analogs containing carboxylic acid, ester, and amide moieties were synthesized and their cytotoxic activity against six tumor cell lines was determined using sulforhodamine B assay. For the most cytotoxic compounds (8 and 20), further studies were performed. These compounds were shown to induce G0/G1 cell cycle arrest in MDA and A549 cells, in a concentration-dependent manner. Moreover, in vitro tubulin polymerization assays showed that both compounds are tubulin polymerization enhancers. Additionally, computational analysis of the binding modes and binding energies of the compounds with respect to the key human tubulin isotypes was performed. We have obtained a satisfactory correlation of the binding energies with the IC50 values when weighted averages of the binding energies accounting for the abundance of tubulin isotypes in specific cancer cell lines were computed.
Collapse
Affiliation(s)
- Marta Jędrzejczyk
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Benedetta Morabito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy (J.A.T.)
| | - Barbara Żyżyńska-Granica
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (B.Ż.-G.)
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (B.Ż.-G.)
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland;
| | - Maral Aminpour
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jack A. Tuszynski
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy (J.A.T.)
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
23
|
Bouzriba C, Gagné-Boulet M, Chavez Alvarez AC, Ouellette V, Laverdière I, Fortin S. Design, synthesis and biological evaluation of new 2,6-difluorinated phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates as new antimicrotubule agents. Bioorg Chem 2024; 146:107299. [PMID: 38547722 DOI: 10.1016/j.bioorg.2024.107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
We previously discovered a novel family of antimicrotubule agents designated as phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PIB-SOs). In this study, we evaluated the effect of the difluorination of the aromatic ring bearing the imidazolidin-2-one moiety (ring A) at positions 3, 5 and 2, 6 on their antiproliferative activity on four cancer cell lines, their ability to disrupt the microtubules and their toxicity toward chick embryos. We thus synthesized, characterized and biologically evaluated 24 new difluorinated PIB-SO derivatives designated as phenyl 3,5-difluoro-4-(2-oxoimidazolidin-1-yl)benzenesulfonates (3,5-PFB-SOs, 4-15) and phenyl 2,6-difluoro-4-(2-oxoimidazolidin-1-yl)benzenesulfonates (2,6-PFB-SOs, 16-27). The concentration of the drug required to inhibit cell growth by 50% (IC50) of 3,5-PFB-SOs is over 1000 nM while most of 2,6-PFB-SOs exhibit IC50 in the nanomolar range (23-900 nM). Furthermore, the most potent 2,6-PFB-SOs 19, 26 and 27 arrest the cell cycle progression in G2/M phase, induce cytoskeleton disruption and impair microtubule polymerization. Docking studies also show that the most potent 2,6-PFB-SOs 19, 21, 24, 26 and 27 have binding affinity toward the colchicine-binding site (C-BS). Moreover, their antiproliferative activity is not affected by antimicrotubule- and multidrug-resistant cell lines. Besides, they exhibit improved in vitro hepatic stability in the mouse, rat and human microsomes compared to their non-fluorinated counterparts. They also showed theoretical pharmacokinetic, physicochemical and drug-like properties suited for further in vivo assays. In addition, they exhibit low to no systemic toxicity toward chick embryos. Finally, our study evidences that PIB-SOs must be fluorinated in specific positions on ring A to maintain both their antiproliferative activity and their biological activity toward microtubules.
Collapse
Affiliation(s)
- Chahrazed Bouzriba
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada; These authors contributed equally to this work.
| | - Mathieu Gagné-Boulet
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada; These authors contributed equally to this work
| | - Atziri Corin Chavez Alvarez
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, 2725 chemin Ste-Foy, Québec QC G1V 4G5, Canada
| | - Vincent Ouellette
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada
| | - Isabelle Laverdière
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada
| | - Sébastien Fortin
- Centre de recherche du CHU de Québec-Université Laval, Axe oncologie, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec QC G1V 0A6, Canada.
| |
Collapse
|
24
|
Gemayel J, Chebly A, Kourie H, Hanna C, Mheidly K, Mhanna M, Karam F, Ghoussaini D, Najjar PE, Khalil C. Genome Engineering as a Therapeutic Approach in Cancer Therapy: A Comprehensive Review. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300201. [PMID: 38465225 PMCID: PMC10919288 DOI: 10.1002/ggn2.202300201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 03/12/2024]
Abstract
Cancer is one of the foremost causes of mortality. The human genome remains stable over time. However, human activities and environmental factors have the power to influence the prevalence of certain types of mutations. This goes to the excessive progress of xenobiotics and industrial development that is expanding the territory for cancers to develop. The mechanisms involved in immune responses against cancer are widely studied. Genome editing has changed the genome-based immunotherapy process in the human body and has opened a new era for cancer treatment. In this review, recent cancer immunotherapies and the use of genome engineering technology are largely focused on.
Collapse
Affiliation(s)
- Jack Gemayel
- Faculty of SciencesBalamand UniversityBeirutLebanon
- FMPS Holding BIOTECKNO s.a.l. Research and Quality SolutionsNaccashBeirut60 247Lebanon
| | - Alain Chebly
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of MedicineSaint Joseph UniversityBeirutLebanon
- Higher Institute of Public HealthSaint Joseph UniversityBeirutLebanon
| | - Hampig Kourie
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of MedicineSaint Joseph UniversityBeirutLebanon
- Faculty of MedicineSaint Joseph UniversityBeirutLebanon
| | - Colette Hanna
- Faculty of MedicineLebanese American University Medical CenterRizk HospitalBeirutLebanon
| | | | - Melissa Mhanna
- Faculty of MedicineParis Saclay University63 Rue Gabriel PériLe Kremlin‐Bicêtre94270France
| | - Farah Karam
- Faculty of MedicineBalamand UniversityBeirutLebanon
| | | | - Paula El Najjar
- FMPS Holding BIOTECKNO s.a.l. Research and Quality SolutionsNaccashBeirut60 247Lebanon
- Department of Agricultural and Food Engineering, School of EngineeringHoly Spirit University of KaslikJounieh446Lebanon
| | - Charbel Khalil
- Reviva Regenerative Medicine CenterBsalimLebanon
- Bone Marrow Transplant UnitBurjeel Medical CityAbu DhabiUAE
- Lebanese American University School of MedicineBeirutLebanon
| |
Collapse
|
25
|
Yakkala PA, Rahaman S, Soukya PSL, Begum SA, Kamal A. An update on the development on tubulin inhibitors for the treatment of solid tumors. Expert Opin Ther Targets 2024; 28:193-220. [PMID: 38618889 DOI: 10.1080/14728222.2024.2341630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Microtubules play a vital role in cancer therapeutics. They are implicated in tumorigenesis, thus inhibiting tubulin polymerization in cancer cells, and have now become a significant target for anticancer drug development. A plethora of drug molecules has been crafted to influence microtubule dynamics and presently, numerous tubulin inhibitors are being investigated. This review discusses the recently developed inhibitors including natural products, and also examines the preclinical and clinical data of some potential molecules. AREA COVERED The current review article summarizes the development of tubulin inhibitors while detailing their specific binding sites. It also discusses the newly designed inhibitors that may be useful in the treatment of solid tumors. EXPERT OPINION Microtubules play a crucial role in cellular processes, especially in cancer therapy where inhibiting tubulin polymerization holds promise. Ongoing trials signify a commitment to revolutionizing cancer treatment and exploring targeted therapies. Challenges in microtubule modulation, like resistance and off-target effects, demand focused efforts, emphasizing combination therapies and personalized treatments. Beyond microtubules, promising avenues in cancer research include immunotherapy, genomic medicine, CRISPR gene editing, liquid biopsies, AI diagnostics, and stem cell therapy, showcasing a holistic approach for future advancements.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shaik Rahaman
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - P S Lakshmi Soukya
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
| | - Sajeli Ahil Begum
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
- Department of Environment, Forests, Science & Technology, Telangana State Council of Science & Technology, Hyderabad, India
| |
Collapse
|
26
|
Singh SB. Discovery, synthesis, activities, structure-activity relationships, and clinical development of combretastatins and analogs as anticancer drugs. A comprehensive review. Nat Prod Rep 2024; 41:298-322. [PMID: 38009216 DOI: 10.1039/d3np00053b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Covering: 1982 to up to the end of 2022Bioassay guided purification of the extracts of Combretum caffrum led to the discovery of six series of combretastatins A-D with cytotoxic activities ranging from sub nM to >50 μM ED50's against a wide variety of cancer cell lines. Of these, cis-stilbenes combretastatins A-4 and A-1 were the most potent, exhibiting in vivo efficacy against a wide variety of tumor types in murine models. These antimitotic agents inhibited tubulin polymerization by reversibly binding to the colchicine binding sites. They inhibited tumor growth by a novel antivascular and antineogenesis mechanism in which they stopped blood flows to the blood vessels causing necrosis. Over 20 clinical trials of the phosphate prodrugs of combretastatin A-4 (CA4P) and A-1 (CA1P) showed objective and stable responses against many tumor types, with increased survival times of many patients along with the confirmed cure of certain patients inflicted with anaplastic thyroid cancers. Medicinal chemistry efforts led to the identification of three new leads (AVE8062, BNC105P, SCB01A) with improved in vitro and in vivo potency and an often-improved cellular spectrum. Unfortunately, these preclinical improvements did not translate clinically in any meaningful way. Objectively, CA4P remained the best compound and has garnered many Orphan drug designations by FDA. Clinical trials with tumor genetic mapping, particularly from previous responders, may help boost the success of these compounds in future studies. A comprehensive review of combretastatin series A-D, including bioassay guided discovery, total syntheses, and structure-activity relationship (SAR) studies, biological and mechanistic studies, and preclinical and clinical evaluations of the isolated combretastatins and analogs, along with the personal perspective of the author who originated this project, is presented.
Collapse
Affiliation(s)
- Sheo B Singh
- Charles A Dana Research Institute for Scientists Emeriti (RISE), Drew University, Madison, NJ 07940, USA.
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
- SBS Pharma Consulting LLC, Edison, NJ 08820, USA
| |
Collapse
|
27
|
Karetnikov G, Vasilyeva LA, Babayeva G, Pokrovsky VS, Skvortsov DA, Bondarenko OB. 3,4-Diarylisoxazoles-Analogues of Combretastatin A-4: Design, Synthesis, and Biological Evaluation In Vitro and In Vivo. ACS Pharmacol Transl Sci 2024; 7:384-394. [PMID: 38357282 PMCID: PMC10863432 DOI: 10.1021/acsptsci.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 02/16/2024]
Abstract
Focusing on the molecular docking results, a series of 3,4-diarylisoxazoles, analogues of Combretastatin A4, bearing various substituents at the fifth position of the isoxazole ring and pharmacophore groups bioisosteric to methoxy substituent at ring B, were synthesized in good yields and high regioselectivity. Depending on the substituent at C5, three approaches were chosen for the construction of isoxazole ring, including nitrosation of gem-dihalocyclopropanes, nitrile oxide synthesis, and difluoromethoxylation of isoxazolone to afford 5-haloisoxazoles, 5-unsubstituted isoxazoles, and 5-difluoromethoxyisoxazoles, respectively. Isoxazoles 43 and 45 showed selective cytotoxicity and antitubulin inhibition properties in vitro, with pharmacodynamic profiles closely related to that of CA-4. Both of them slow down tumor growth (66-74%) in mouse xenografts and slightly exceed in effectiveness Combretastatin A4-phosphate itself.
Collapse
Affiliation(s)
- Georgy
L. Karetnikov
- Chemistry
Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Lilya A. Vasilyeva
- Chemistry
Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Gulalek Babayeva
- Research
Institute of Molecular and Cellular Medicine, RUDN University, Moscow 117198, Russian
Federation
- N.N.
Blokhin Cancer Research Center, Moscow 115478, Russian Federation
| | - Vadim S. Pokrovsky
- Research
Institute of Molecular and Cellular Medicine, RUDN University, Moscow 117198, Russian
Federation
- N.N.
Blokhin Cancer Research Center, Moscow 115478, Russian Federation
| | - Dmitry A. Skvortsov
- Chemistry
Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Oksana B. Bondarenko
- Chemistry
Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
28
|
Ruparelia KC, Zeka K, Beresford KJM, Wilsher NE, Potter GA, Androutsopoulos VP, Brucoli F, Arroo RRJ. CYP1-Activation and Anticancer Properties of Synthetic Methoxylated Resveratrol Analogues. Molecules 2024; 29:423. [PMID: 38257336 PMCID: PMC10818546 DOI: 10.3390/molecules29020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Naturally occurring stilbenoids, such as the (E)-stilbenoid resveratrol and the (Z)-stilbenoid combretastatin A4, have been considered as promising lead compounds for the development of anticancer drugs. The antitumour properties of stilbenoids are known to be modulated by cytochrome P450 enzymes CYP1A1 and CYP1B1, which contribute to extrahepatic phase I xenobiotic and drug metabolism. Thirty-four methyl ether analogues of resveratrol were synthesised, and their anticancer properties were assessed, using the MTT cell proliferation assay on a panel of human breast cell lines. Breast tumour cell lines that express CYP1 were significantly more strongly affected by the resveratrol analogues than the cell lines that did not have CYP1 activity. Metabolism studies using isolated CYP1 enzymes provided further evidence that (E)-stilbenoids can be substrates for these enzymes. Structures of metabolic products were confirmed by comparison with synthetic standards and LC-MS co-elution studies. The most promising stilbenoid was (E)-4,3',4',5'-tetramethoxystilbene (DMU212). The compound itself showed low to moderate cytotoxicity, but upon CYP1-catalysed dealkylation, some highly cytotoxic metabolites were formed. Thus, DMU212 selectively affects proliferation of cells that express CYP1 enzymes.
Collapse
Affiliation(s)
- Ketan C. Ruparelia
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Keti Zeka
- Zayed Centre for Research into Rare Disease in Children, University College London, London WC1E 6BT, UK
| | - Kenneth J. M. Beresford
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Nicola E. Wilsher
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Gerry A. Potter
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Vasilis P. Androutsopoulos
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| |
Collapse
|
29
|
Nie J, Wu H, Luan Y, Wu J. The Development of HDAC and Tubulin Dual-Targeting Inhibitors for Cancer Therapy. Mini Rev Med Chem 2024; 24:480-490. [PMID: 37461341 DOI: 10.2174/1389557523666230717110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2024]
Abstract
Histone deacetylases (HDACs) are a class of enzymes that are responsible for the removal of acetyl groups from the ε-N-acetyl lysine of histones, allowing histones to wrap DNA more tightly. HDACs play an essential role in many biological processes, such as gene regulation, transcription, cell proliferation, angiogenesis, migration, differentiation and metastasis, which make it an excellent target for anticancer drug discovery. The search for histone deacetylase inhibitors (HDACis) has been intensified, with numerous HDACis being discovered, and five of them have reached the market. However, currently available HDAC always suffers from several shortcomings, such as limited efficacy, drug resistance, and toxicity. Accordingly, dual-targeting HDACis have attracted much attention from academia to industry, and great advances have been achieved in this area. In this review, we summarize the progress on inhibitors with the capacity to concurrently inhibit tubulin polymerization and HDAC activity and their application in cancer treatment.
Collapse
Affiliation(s)
- Jing Nie
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Huina Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| |
Collapse
|
30
|
Yang S, Wang L, Loredo A, Wang S, Ada N, Xiao H. Visible light-activated prodrug system with a novel heavy-atom-free photosensitizer. Bioorg Med Chem Lett 2023; 91:129365. [PMID: 37290494 PMCID: PMC11298069 DOI: 10.1016/j.bmcl.2023.129365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
The use of light to activate prodrugs offers a promising method for the precise control of drug release, reducing drug-related side effects, and enhancing therapeutic effectiveness. We have created a novel prodrug system that utilizes a unique, heavy-atom-free photosensitizer to produce singlet oxygen, which then triggers the conversion of the prodrug into its active form. This system has been successfully demonstrated through the creation of "photo-unclick" prodrugs of paclitaxel (PTX), combretastatin A-4 (CA-4), and 10-hydroxy-7-ethylcamptothecin (SN-38). These prodrugs show decreased toxicity in the absence of light, but exhibit increased toxicity when exposed to red light.
Collapse
Affiliation(s)
- Shudan Yang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Lushun Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Shichao Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Nischal Ada
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, United States; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, United States.
| |
Collapse
|
31
|
Azonwade F, Mabanza-Banza BB, Le Ray AM, Bréard D, Blanchard P, Goubalan E, Baba-Moussa L, Banga-Mboko H, Richomme P, Derbré S, Boisard S. Chemodiversity of propolis samples collected in various areas of Benin and Congo: Chromatographic profiling and chemical characterization guided by 13 C NMR dereplication. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:461-475. [PMID: 37051779 DOI: 10.1002/pca.3227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Propolis is a resinous natural substance collected by honeybees from buds and exudates of various trees and plants; it is widely accepted that the composition of propolis depends on the phytogeographic characteristics of the site of collection. OBJECTIVES The aim of this study was to determine the phytochemical composition of ethanolic extracts from eight propolis batches collected in different regions of Benin (north, center, and south) and Congo, Africa. MATERIAL AND METHODS Characterization of propolis samples was performed by using different hyphenated chromatographic methods combined with carbon-13 nuclear magnetic resonance (13 C NMR) dereplication with MixONat software. Their antioxidant or anti-advanced glycation end-product (anti-AGE) activity was then evaluated by using diphenylpicrylhydrazyl and bovine serum albumin assays, respectively. RESULTS Chromatographic analyses combined with 13 C NMR dereplication showed that two samples from the center of Benin exhibited, in addition to a huge amount of pentacyclic triterpenes, methoxylated stilbenoids or phenanthrenoids, responsible for the antioxidant activity of the extract for the first one. Among them, combretastatins might be cytotoxic. For the second one, the prenylated flavanones known in Macaranga-type propolis were responsible for its significant anti-AGE activity. The sample from Congo was composed of many triterpene derivatives belonging to Mangifera indica species. CONCLUSION Therefore, propolis from the center of Benin seems to be of particular interest, due to its antioxidant and anti-AGE properties. Nevertheless, as standardization of propolis is difficult in tropical zones due to its great chemodiversity, a systematic phytochemical analysis is required before promoting the use of propolis in food and health products in Africa.
Collapse
Affiliation(s)
- François Azonwade
- Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Science and Technology, University of Abomey-Calavi, Cotonou, Benin
| | | | | | | | | | - Elvire Goubalan
- Laboratory of Bioengineering of Food Processes, Faculty of Agronomic Sciences, University of Abomey-Calavi, Cotonou, Bénin
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Science and Technology, University of Abomey-Calavi, Cotonou, Benin
| | - Henri Banga-Mboko
- National High School of Agronomy and Forestry, University Marien Ngouabi, Brazzaville, Congo
| | | | | | | |
Collapse
|
32
|
Zhu H, Zhu W, Liu Y, Gao T, Zhu J, Tan Y, Hu H, Liang W, Zhao L, Chen J, Zhu Z, Chen J, Xu J, Xu S. Synthesis and bioevaluation of novel stilbene-based derivatives as tubulin/HDAC dual-target inhibitors with potent antitumor activities in vitro and in vivo. Eur J Med Chem 2023; 257:115529. [PMID: 37269670 DOI: 10.1016/j.ejmech.2023.115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
A series of novel stilbene-based derivatives were designed and synthesized as tubulin/HDAC dual-target inhibitors. Among forty-three target compounds, compound II-19k not only exhibited considerable antiproliferative activity in the hematological cell line K562 with IC50 value of 0.003 μM, but also effectively inhibited the growth of various solid tumor cell lines with IC50 values ranging from 0.005 to 0.036 μM. The mechanism studies demonstrated that II-19k could inhibit microtubules and HDACs at the cellular level, block cell cycle arrest at G2 phase, induce cell apoptosis, and reduce solid tumor cells metastasis. What's more, the vascular disrupting effects of compound II-19k were more pronounced than the combined administration of parent compound 8 and HDAC inhibitor SAHA. The in vivo antitumor assay of II-19k also showed the superiority of dual-target inhibition of tubulin and HDAC. II-19k significantly suppressed the tumor volume and effectively reduced tumor weight by 73.12% without apparent toxicity. Overall, the promising bioactivities of II-19k make it valuable for further development as an antitumor agent.
Collapse
Affiliation(s)
- Huajian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Wenjian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Yang Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Tian Gao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Jingjie Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Yuchen Tan
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Han Hu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Wenhao Liang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Lingyue Zhao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Jian Chen
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou, 215132, PR China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China.
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China.
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China; Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou, 215132, PR China.
| |
Collapse
|
33
|
Abdelshaheed MM, El Subbagh HI, Tantawy MA, Attia RT, Youssef KM, Fawzy IM. Discovery of new pyridine heterocyclic hybrids; design, synthesis, dynamic simulations, and in vitro and in vivo breast cancer biological assays. RSC Adv 2023; 13:15689-15703. [PMID: 37235111 PMCID: PMC10206482 DOI: 10.1039/d3ra02875e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Pyridine is a nitrogen bearing heterocyclic scaffold that shows a wide range of biological activities. The pyridine nucleus has become an interesting target for medicinal chemistry researchers worldwide. Several pyridine derivatives exhibited good anticancer effects against diverse cell lines. Therefore, to explore new anticancer pyridine entities, novel pyridine derivatives were designed and synthesized and evaluated for their anticancer abilities in vitro and in vivo. All of the target compounds were evaluated against three different human cancer cell lines (Huh-7, A549 and MCF-7) via MTT assay. Most of the compounds exhibited significant cytotoxic activities. Compounds 3a, 3b, 5a and 5b showed superior antiproliferative activities to Taxol. Where, compound 3b showed IC50 values of 6.54, 15.54 and 6.13 μM compared to Taxol (6.68, 38.05, 12.32 μM) against Huh-7, A549 and MCF-7, respectively. Also, tubulin polymerization assay was carried out. The most potent compounds 3a, 3b, 5a and 5b could significantly inhibit tubulin polymerization with IC50 values of 15.6, 4.03, 6.06 and 12.61 μM, respectively. Compound 3b exhibited the highest tubulin polymerization inhibitory effect with an IC50 value of 4.03 μM compared to combretastatin (A-4) (1.64 μM). Molecular modeling studies of the designed compounds confirmed that most of the compounds made the essential binding interactions compared to the reference compound which assisted in the prediction of the structure requirements for the detected anticancer activity. Finally, in vivo studies showed that compound 3b could significantly inhibit breast cancer.
Collapse
Affiliation(s)
- Menna M Abdelshaheed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University in Egypt New Damietta Egypt
| | - Hussein I El Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University P.O. Box 35516 Mansoura Egypt
| | - Mohamed A Tantawy
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre Dokki Giza Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre Dokki Cairo Egypt
- Department of Orthopaedics and Rehabilitation, CORTS, Penn State University, College of Medicine 500 University Drive Hershey PA 17033-0850 USA
| | - Reem T Attia
- Department of Pharmacology and Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt 11835 Cairo Egypt
| | - Khairia M Youssef
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt 11835 Cairo Egypt +201006064161
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt 11835 Cairo Egypt +201006064161
| |
Collapse
|
34
|
Guimarães CDJ, Carneiro TR, Frederico MJS, de Carvalho GGC, Little M, Freire VN, França VLB, do Amaral DN, Guedes JDS, Barreiro EJ, Lima LM, Barros-Nepomuceno FWA, Pessoa C. Pharmacokinetic Profile Evaluation of Novel Combretastatin Derivative, LASSBio-1920, as a Promising Colorectal Anticancer Agent. Pharmaceutics 2023; 15:pharmaceutics15041282. [PMID: 37111767 PMCID: PMC10144566 DOI: 10.3390/pharmaceutics15041282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
LASSBio-1920 was synthesized due to the poor solubility of its natural precursor, combretastatin A4 (CA4). The cytotoxic potential of the compound against human colorectal cancer cells (HCT-116) and non-small cell lung cancer cells (PC-9) was evaluated, yielding IC50 values of 0.06 and 0.07 μM, respectively. Its mechanism of action was analyzed by microscopy and flow cytometry, where LASSBio-1920 was found to induce apoptosis. Molecular docking simulations and the enzymatic inhibition study with wild-type (wt) EGFR indicated enzyme-substrate interactions similar to other tyrosine kinase inhibitors. We suggest that LASSBio-1920 is metabolized by O-demethylation and NADPH generation. LASSBio-1920 demonstrated excellent absorption in the gastrointestinal tract and high central nervous system (CNS) permeability. The pharmacokinetic parameters obtained by predictions indicated that the compound presents zero-order kinetics and, in a human module simulation, accumulates in the liver, heart, gut, and spleen. The pharmacokinetic parameters obtained will serve as the basis to initiate in vivo studies regarding LASSBio-1920's antitumor potential.
Collapse
Affiliation(s)
- Celina de Jesus Guimarães
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara (UFC), Fortaleza 60430-275, CE, Brazil
- Pharmacy Sector, Oncology Control Foundation of the State of Amazonas (FCECON), Manaus 69040-010, AM, Brazil
| | - Teiliane Rodrigues Carneiro
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara (UFC), Fortaleza 60430-275, CE, Brazil
| | - Marisa Jadna Silva Frederico
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara (UFC), Fortaleza 60430-275, CE, Brazil
| | - Guilherme G C de Carvalho
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara (UFC), Fortaleza 60430-275, CE, Brazil
| | - Matthew Little
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara (UFC), Fortaleza 60430-275, CE, Brazil
| | - Valder N Freire
- Department of Physics, Federal University of Ceara (UFC), Fortaleza 60440-900, CE, Brazil
| | - Victor L B França
- Department of Physics, Federal University of Ceara (UFC), Fortaleza 60440-900, CE, Brazil
| | - Daniel Nascimento do Amaral
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil
| | - Jéssica de Siqueira Guedes
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil
| | - Eliezer J Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil
| | - Lídia Moreira Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil
| | - Francisco W A Barros-Nepomuceno
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara (UFC), Fortaleza 60430-275, CE, Brazil
- Institute of Health Sciences, University for International Integration of the Afro-Brazilian Lusophony, Redenção 62790-000, CE, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara (UFC), Fortaleza 60430-275, CE, Brazil
| |
Collapse
|
35
|
Borys F, Tobiasz P, Poterała M, Fabczak H, Krawczyk H, Joachimiak E. Systematic Studies on Anti-Cancer Evaluation of Stilbene and Dibenzo[ b,f]oxepine Derivatives. Molecules 2023; 28:molecules28083558. [PMID: 37110792 PMCID: PMC10146957 DOI: 10.3390/molecules28083558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer is one of the most common causes of human death worldwide; thus, numerous therapies, including chemotherapy, have been and are being continuously developed. In cancer cells, an aberrant mitotic spindle-a microtubule-based structure necessary for the equal splitting of genetic material between daughter cells-leads to genetic instability, one of the hallmarks of cancer. Thus, the building block of microtubules, tubulin, which is a heterodimer formed from α- and β-tubulin proteins, is a useful target in anti-cancer research. The surface of tubulin forms several pockets, i.e., sites that can bind factors that affect microtubules' stability. Colchicine pockets accommodate agents that induce microtubule depolymerization and, in contrast to factors that bind to other tubulin pockets, overcome multi-drug resistance. Therefore, colchicine-pocket-binding agents are of interest as anti-cancer drugs. Among the various colchicine-site-binding compounds, stilbenoids and their derivatives have been extensively studied. Herein, we report systematic studies on the antiproliferative activity of selected stilbenes and oxepine derivatives against two cancer cell lines-HCT116 and MCF-7-and two normal cell lines-HEK293 and HDF-A. The results of molecular modeling, antiproliferative activity, and immunofluorescence analyses revealed that compounds 1a, 1c, 1d, 1i, 2i, 2j, and 3h were the most cytotoxic and acted by interacting with tubulin heterodimers, leading to the disruption of the microtubular cytoskeleton.
Collapse
Affiliation(s)
- Filip Borys
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Piotr Tobiasz
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Marcin Poterała
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Hanna Fabczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Ewa Joachimiak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|
36
|
de Lima Neto J, Menezes PH. Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities. Beilstein J Org Chem 2023; 19:399-427. [PMID: 37025497 PMCID: PMC10071520 DOI: 10.3762/bjoc.19.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
The combretastatin D series and its analogues, corniculatolides and isocorniculatolides belong to a class of macrocycles called cyclic diaryl ether heptanoids (DAEH). This review is intended to highlight the structure elucidation, biosynthesis, and biological activity of these compounds as well as the use of different strategies for their synthesis.
Collapse
Affiliation(s)
- Jorge de Lima Neto
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife-PE, 50740-560, Brazil
| | - Paulo Henrique Menezes
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife-PE, 50740-560, Brazil
| |
Collapse
|
37
|
Bora D, Samir KM, Sharma A, Chilvery S, Bansod S, John SE, Ali Khan M, Godugu C, Shankaraiah N. Exploration of cytotoxic potential and tubulin polymerization inhibition activity of cis-stilbene-1,2,3-triazole congeners. RSC Med Chem 2023; 14:482-490. [PMID: 36970147 PMCID: PMC10034215 DOI: 10.1039/d2md00400c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/01/2023] [Indexed: 02/08/2023] Open
Abstract
To scrutinize cis-stilbene based molecules with potential anticancer and tubulin polymerization inhibition activity, a new series of cis-stilbene-1,2,3-triazole congeners was designed and synthesized via a click chemistry protocol. The cytotoxicity of these compounds 9a-j and 10a-j was screened against lung, breast, skin and colorectal cancer cell lines. Based on the results of MTT assay, we further evaluated the selectivity index of the most active compound 9j (IC50 3.25 ± 1.04 μM on HCT-116) by comparing its IC50 value (72.24 ± 1.20 μM) to that of the normal human cell line. Further, to confirm apoptotic cell death, cell morphology and staining studies (AO/EB, DAPI and Annexin V/PI) were carried out. The outcomes of studies showed apoptotic features like change in cell shape, cornering of nuclei, micronuclei formation, fragmented, bright, horseshoe-shaped nuclei, etc. Moreover, active compound 9j displayed G2/M phase cell cycle arrest with significant tubulin polymerization inhibition activity with an IC50 value of 4.51 μM. Additionally, in silico ADMET, molecular docking and molecular dynamic studies of 9j with 3E22 protein proved the binding of the compound at the colchicine binding site of tubulin.
Collapse
Affiliation(s)
- Darshana Bora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Khan Mehtab Samir
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Anamika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Shrilekha Chilvery
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Sapana Bansod
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Stephy Elza John
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Mursalim Ali Khan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Chandraiah Godugu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| |
Collapse
|
38
|
Cytotoxicity, Antimicrobial, Antioxidant, Anthelmintic, and Anti-Inflammatory Activities and FTIR Analysis of Combretum nioroense Stem Bark. J CHEM-NY 2023. [DOI: 10.1155/2023/5424386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
Combretum nioroense is widely used in the folkloric treatment of a variety of bacterial and helminthic infections. The decoction of its leaves is traditionally fed to newborn babies in some rural parts of Ghana. The study focused on identifying the prime components of petroleum ether and ethanolic extracts of the stem bark using standard phytochemical screening protocols and chromatographic and spectroscopic techniques. The activities (cytotoxicity, antimicrobial, antioxidant, anthelmintic, and anti-inflammatory) of the extracts of C. nioroense were also investigated. Preliminary phytochemical analysis of the extracts revealed the presence of glycosides, saponins, phenols, coumarins, alkaloids, flavonoids, tannins, steroids, phytosterols, flavanols, terpenoids, and cardiac glycosides. The action of the extracts of C. nioroense on Milsonia ghanensis worms was concentration-dependent, with the least concentration (0.75 mg/mL) paralyzing and killing M. ghanensis after the maximal exposure time. The IC50 values for petroleum ether and ethanol extracts in the DPPH assay were >100.0 and 27.940 ± 1.005 μg/mL and those of the H2O2 assay were 400.900 ± 3.400 and 322.500 ± 1.005 μg/mL, respectively. The total antioxidant capacities (TACs) for petroleum ether and ethanol extracts were 47.197 ± 0.533 and 57.968 ± 0.560 gAAE/100 g, respectively. The IC50 value for ethanol extract in the cytotoxicity studies was 115.4 ± 1.332 μg/mL. The MICs of the extracts against the test organisms were within the range of 0.0122–25.0 mg/mL. The extracts (petroleum ether and ethanol) showed a concentration-dependent increase in anti-inflammatory activity with IC50 values of 31.254 ± 0.359 and 24.402 ± 0.569 μg/mL, respectively. Chromatographic separations of the ethanol extract gave three fractions. FTIR analysis of the extracts and purified fractions revealed the presence of functional groups, confirming the presence of the phytochemicals identified in the screening test. The results indicate that both extracts of C. nioroense exhibit cytotoxicity, antimicrobial, antioxidant, anthelmintic, and anti-inflammatory activities, thereby proving the folkloric use to treat ailments caused by worms and microorganisms.
Collapse
|
39
|
Gaobotse G, Venkataraman S, Brown PD, Masisi K, Kwape TE, Nkwe DO, Rantong G, Makhzoum A. The use of African medicinal plants in cancer management. Front Pharmacol 2023; 14:1122388. [PMID: 36865913 PMCID: PMC9971233 DOI: 10.3389/fphar.2023.1122388] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer is the third leading cause of premature death in sub-Saharan Africa. Cervical cancer has the highest number of incidences in sub-Saharan Africa due to high HIV prevalence (70% of global cases) in African countries which is linked to increasing the risk of developing cervical cancer, and the continuous high risk of being infected with Human papillomavirus In 2020, the risk of dying from cancer amongst women was higher in Eastern Africa (11%) than it was in Northern America (7.4%). Plants continue to provide unlimited pharmacological bioactive compounds that are used to manage various illnesses, including cancer. By reviewing the literature, we provide an inventory of African plants with reported anticancer activity and evidence supporting their use in cancer management. In this review, we report 23 plants that have been used for cancer management in Africa, where the anticancer extracts are usually prepared from barks, fruits, leaves, roots, and stems of these plants. Extensive information is reported about the bioactive compounds present in these plants as well as their potential activities against various forms of cancer. However, information on the anticancer properties of other African medicinal plants is insufficient. Therefore, there is a need to isolate and evaluate the anticancer potential of bioactive compounds from other African medicinal plants. Further studies on these plants will allow the elucidation of their anticancer mechanisms of action and allow the identification of phytochemicals that are responsible for their anticancer properties. Overall, this review provides consolidated and extensive information not only on diverse medicinal plants of Africa but on the different types of cancer that these plants are used to manage and the diverse mechanisms and pathways that are involved during cancer alleviation.
Collapse
Affiliation(s)
- Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| | - Srividhya Venkataraman
- Virology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Phenyo D. Brown
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| | - Tebogo E. Kwape
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - David O. Nkwe
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Gaolathe Rantong
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| |
Collapse
|
40
|
Silén H, Salih EYA, Mgbeahuruike EE, Fyhrqvist P. Ethnopharmacology, Antimicrobial Potency, and Phytochemistry of African Combretum and Pteleopsis Species (Combretaceae): A Review. Antibiotics (Basel) 2023; 12:264. [PMID: 36830175 PMCID: PMC9951921 DOI: 10.3390/antibiotics12020264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Bacterial and fungal resistance to antibiotics is of growing global concern. Plants such as the African Combretum and Pteleopsis species, which are used in traditional medicine for the treatment of infections, could be good sources for antimicrobial extracts, drug scaffolds, and/or antibiotic adjuvants. In African countries, plant species are often used in combinations as traditional remedies. It is suggested that the plant species enhance the effects of each other in these combination treatments. Thus, the multi-species-containing herbal medications could have a good antimicrobial potency. In addition, plant extracts and compounds are known to potentiate the effects of antibiotics. The objective of this review is to compile the information on the botany, ethnopharmacology, ethnobotany, and appearance in herbal markets of African species of the genera Combretum and Pteleopsis. With this ethnobotanical information as a background, this review summarizes the information on the phytochemistry and antimicrobial potency of the extracts and their active compounds, as well as their combination effects with conventional antibiotics. The databases used for the literature search were Scopus, Elsevier, EBSCOhost, PubMed, Google Scholar, and SciFinder. In summary, a number of Combretum and Pteleopsis species were reported to display significant in vitro antibacterial and antifungal efficacy. Tannins, terpenes, flavonoids, stilbenes, and alkaloids-some of them with good antimicrobial potential-are known from species of the genera Combretum and Pteleopsis. Among the most potent antimicrobial compounds are arjunglucoside I (MIC 1.9 µg/mL) and imberbic acid (MIC 1.56 µg/mL), found in both genera and in some Combretum species, respectively. The in vitro antimicrobial properties of the extracts and compounds of many Combretum and Pteleopsis species support their traditional medicinal uses.
Collapse
Affiliation(s)
| | | | | | - Pia Fyhrqvist
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
41
|
Wani AK, Akhtar N, Mir TUG, Singh R, Jha PK, Mallik SK, Sinha S, Tripathi SK, Jain A, Jha A, Devkota HP, Prakash A. Targeting Apoptotic Pathway of Cancer Cells with Phytochemicals and Plant-Based Nanomaterials. Biomolecules 2023; 13:194. [PMID: 36830564 PMCID: PMC9953589 DOI: 10.3390/biom13020194] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Apoptosis is the elimination of functionally non-essential, neoplastic, and infected cells via the mitochondrial pathway or death receptor pathway. The process of apoptosis is highly regulated through membrane channels and apoptogenic proteins. Apoptosis maintains cellular balance within the human body through cell cycle progression. Loss of apoptosis control prolongs cancer cell survival and allows the accumulation of mutations that can promote angiogenesis, promote cell proliferation, disrupt differentiation, and increase invasiveness during tumor progression. The apoptotic pathway has been extensively studied as a potential drug target in cancer treatment. However, the off-target activities of drugs and negative implications have been a matter of concern over the years. Phytochemicals (PCs) have been studied for their efficacy in various cancer cell lines individually and synergistically. The development of nanoparticles (NPs) through green synthesis has added a new dimension to the advancement of plant-based nanomaterials for effective cancer treatment. This review provides a detailed insight into the fundamental molecular pathways of programmed cell death and highlights the role of PCs along with the existing drugs and plant-based NPs in treating cancer by targeting its programmed cell death (PCD) network.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Tahir ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Rattandeep Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA
| | - Shyam Kumar Mallik
- College of Medical and Allied Sciences, Purbanchal University, Morang 56600, Nepal
| | - Shruti Sinha
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Surya Kant Tripathi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abha Jain
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Aprajita Jha
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
42
|
Sebastiani J, Puxeddu M, Nalli M, Bai R, Altieri L, Rovella P, Gaudio E, Trisciuoglio D, Spriano F, Lavia P, Fionda C, Masci D, Urbani A, Bigogno C, Dondio G, Hamel E, Bertoni F, Silvestri R, La Regina G. RS6077 induces mitotic arrest and selectively activates cell death in human cancer cell lines and in a lymphoma tumor in vivo. Eur J Med Chem 2023; 246:114997. [PMID: 36502578 DOI: 10.1016/j.ejmech.2022.114997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022]
Abstract
We synthesized a new inhibitor of tubulin polymerization, the pyrrole (1-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-1H-pyrrol-3-yl)(3,4,5-trimethoxy-phenyl)methanone 6 (RS6077). Compound 6 inhibited the growth of multiple cancer cell lines, with IC50 values in the nM range, without affecting the growth of non-transformed cells. The novel agent arrested cells in the G2/M phase of the cell cycle in both transformed and non-transformed cell lines, but single cell analysis by time-lapse video recording revealed a remarkable selectivity in cell death induction by compound 6: in RPE-1 non-transformed cells mitotic arrest induced was not necessarily followed by cell death; in contrast, in HeLa transformed and in lymphoid-derived transformed AHH1 cell lines, cell death was effectively induced during mitotic arrest in cells that fail to complete mitosis. Importantly, the agent also inhibited the growth of the lymphoma TMD8 xenograft model. Together these findings suggest that derivative 6 has a selective efficacy in transformed vs non-transformed cells and indicate that the same compound has potential as novel therapeutic agent to treat lymphomas. Compound 6 showed good metabolic stability upon incubation with human liver microsomes.
Collapse
Affiliation(s)
- Jessica Sebastiani
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Michela Puxeddu
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Ludovica Altieri
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy; IBPM Institute of Molecular Biology and Pathology - Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Paola Rovella
- IBPM Institute of Molecular Biology and Pathology - Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Daniela Trisciuoglio
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy; IBPM Institute of Molecular Biology and Pathology - Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Patrizia Lavia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy; IBPM Institute of Molecular Biology and Pathology - Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Chiara Bigogno
- Aphad SrL, Via Della Resistenza 65, 20090, Buccinasco, Italy
| | - Giulio Dondio
- Aphad SrL, Via Della Resistenza 65, 20090, Buccinasco, Italy
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| |
Collapse
|
43
|
Marotta C, Giorgi E, Binacchi F, Cirri D, Gabbiani C, Pratesi A. An overview of recent advancements in anticancer Pt(IV) prodrugs: New smart drug combinations, activation and delivery strategies. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Pozzobon RG, Rutckeviski R, Carlotto J, Schneider VS, Cordeiro LMC, Mancarz GFF, de Souza LM, Mello RG, Smiderle FR. Chemical Evaluation of Liquidambar styraciflua L. Fruits Extracts and Their Potential as Anticancer Drugs. Molecules 2023; 28:molecules28010360. [PMID: 36615553 PMCID: PMC9822488 DOI: 10.3390/molecules28010360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Liquidambar styraciflua L. is an aromatic species, popularly used in traditional Chinese medicine to treat diarrhea, dysentery, coughs, and skin sores. The present study was designed to investigate the chemical composition and biological potential of extracts obtained from the fruits of this plant. For the chemical evaluation, it was used mainly liquid and gas chromatography, plus NMR, and colorimetric methods. The aqueous extract (EA) originated two other fractions: an aqueous (P-EA) and an ethanolic (S-EA). The three extracts were composed of proteins, phenolic compounds, and carbohydrates in different proportions. The analyses showed that the polysaccharide extract (P-EA) contained pectic polysaccharides, such as acetylated and methyl esterified homogalacturonans together with arabinogalactan, while the fraction S-EA presented phenolic acids and terpenes such as gallic acid, protocathecuic acid, liquidambaric acid, combretastatin, and atractyloside A. EA, P-EA, and S-EA showed antioxidant activity, with IC50 values of 4.64 µg/mL, 16.45 µg/mL, and 3.67 µg/mL, respectively. The cytotoxicity followed the sequence S-EA > EA > P-EA, demonstrating that the toxic compounds were separated from the non-toxic ones by ethanol precipitation. While the fraction S-EA is very toxic to any cell line, the fraction P-EA is a promising candidate for studies against cancer due to its high toxicity to tumoral cells and low toxicity to normal cells.
Collapse
Affiliation(s)
- Rafaela G. Pozzobon
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80240-020, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Renata Rutckeviski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80240-020, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Juliane Carlotto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil
| | - Vanessa S. Schneider
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil
| | - Lucimara M. C. Cordeiro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil
| | | | - Lauro M. de Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80240-020, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Rosiane Guetter Mello
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80240-020, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Fhernanda Ribeiro Smiderle
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80240-020, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Correspondence: ; Tel.: +55-41-33101035
| |
Collapse
|
45
|
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int J Mol Sci 2022; 23:15765. [PMID: 36555406 PMCID: PMC9779495 DOI: 10.3390/ijms232415765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan
| | | | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
46
|
Guo K, Ma X, Li J, Zhang C, Wu L. Recent advances in combretastatin A-4 codrugs for cancer therapy. Eur J Med Chem 2022; 241:114660. [PMID: 35964428 DOI: 10.1016/j.ejmech.2022.114660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
CA4 is a potent microtubule polymerization inhibitor and vascular disrupting agent. However, the in vivo efficiency of CA4 is limited owing to its poor pharmacokinetics resulting from its high lipophilicity and low water solubility. To improve the water solubility, CA4 phosphate (CA4P) has been developed and shows potent antivascular and antitumor effects. CA4P had been evaluated as a vascular disrupting agent in previousc linical trials. However, it had been discontinued due to the lack of a meaningful improvement in progression-free survival and unfavorable partial response data. Codrug is a drug design approach to chemically bind two or more drugs to improve therapeutic efficiency or decrease adverse effects. This review describes the progress made over the last twenty years in developing CA4-based codrugs to improve the therapeutic profile and achieve targeted delivery to cancer tissues. It also discusses the existing problems and the developmental prospects of CA4 codrugs.
Collapse
Affiliation(s)
- Kerong Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xin Ma
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jian Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chong Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
47
|
Stockdale DP, Beutler JA, Wiemer DF. Substitution of a triazole for the central olefin in biologically active stilbenes. Bioorg Med Chem Lett 2022; 75:128980. [PMID: 36096344 PMCID: PMC9563006 DOI: 10.1016/j.bmcl.2022.128980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
The stilbene moiety is commonly found in natural products and these compounds display an extraordinary range of biological activity. Efforts to derive useful drugs from stilbenes must address the potential liabilities of this structure, including a propensity for cis/trans isomerization. To identify olefin replacements that address this limitation while preserving biological activity we have prepared analogues of two bioactive stilbenes, a pawhuskin and a schweinfurthin, where a 1,2,3-triazole ring formally replaces the stilbene double bond. The new schweinfurthin analogue (23) has been tested for anti-proliferative activity against 60 cell lines, and shows a strong correlation of bioactivity when compared to the compound that inspired its synthesis (22).
Collapse
Affiliation(s)
- David P Stockdale
- Department of Chemistry University of Iowa, Iowa City, IA 52242-1294, United States
| | - John A Beutler
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702, United States
| | - David F Wiemer
- Department of Chemistry University of Iowa, Iowa City, IA 52242-1294, United States.
| |
Collapse
|
48
|
Bora D, Sharma A, John SE, Shankaraiah N. Development of hydrazide hydrazone-tethered combretastatin-oxindole derivatives as antimitotic agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Tang H, Liu Y, Nie H, Xue K, Huang J, Wu F. Synthesis,characterization and biological activities of nitrogen-containing Combretastatin A-4 derivatives. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
50
|
Abodo Onambele L, Hoffmann N, Kater L, Hemmersbach L, Neudörfl JM, Sitnikov N, Kater B, Frias C, Schmalz HG, Prokop A. An organometallic analogue of combretastatin A-4 and its apoptosis-inducing effects on lymphoma, leukemia and other tumor cells in vitro. RSC Med Chem 2022; 13:1044-1051. [PMID: 36320328 PMCID: PMC9491352 DOI: 10.1039/d2md00144f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 09/19/2023] Open
Abstract
Hexacarbonyl[1,3-dimethoxy-5-((4'-methoxyphenyl)ethynyl)benzene]dicobalt (NAHO27), an organometallic analogue of combretastatin A-4, has been synthesized and its activity against lymphoma, leukemia, breast cancer and melanoma cells has been investigated. It was shown that NAHO27 specifically induces apoptosis in BJAB lymphoma and Nalm-6 leukemia cells at low micromolar concentration and does not affect normal leukocytes in vitro. It also proved to be active against vincristine and daunorubicin resistant leukemia cell lines with p-glycoprotein-caused multidrug resistance and showed a pronounced (550%) synergistic effect when co-applied with vincristine at very low concentrations. Mechanistic investigations revealed NAHO27 to induce apoptosis via the mitochondrial (intrinsic) pathway as reflected by the processing of caspases 3 and 9, the involvement of Bcl-2 and smac/DIABLO, and the reduction of mitochondrial membrane potential. Gene expression analysis and protein expression analysis via western blot showed an upregulation of the proapoptotic protein harakiri by 9%.
Collapse
Affiliation(s)
- Liliane Abodo Onambele
- Department of Pediatric Oncology/Hematology, Children's Hospital of the City of Cologne Amsterdamer Str. 59 50735 Cologne Germany
- Department of Pediatric Oncology/Hematology, University Medical Center Charité Campus Virchow, Augustenburger Pl. 1 13353 Berlin Germany
| | - Natalie Hoffmann
- Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Lisa Kater
- Department of Pediatric Oncology/Hematology, University Medical Center Charité Campus Virchow, Augustenburger Pl. 1 13353 Berlin Germany
| | - Lars Hemmersbach
- Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Jörg-Martin Neudörfl
- Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Nikolay Sitnikov
- Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Benjamin Kater
- Department of Pediatric Oncology/Hematology, University Medical Center Charité Campus Virchow, Augustenburger Pl. 1 13353 Berlin Germany
| | - Corazon Frias
- Department of Pediatric Oncology/Hematology, University Medical Center Charité Campus Virchow, Augustenburger Pl. 1 13353 Berlin Germany
- Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin 19055 Schwerin Germany
- MSH Medical School Hamburg Am Kaiserkai 1 20457 Hamburg Germany
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Aram Prokop
- Department of Pediatric Oncology/Hematology, Children's Hospital of the City of Cologne Amsterdamer Str. 59 50735 Cologne Germany
- Department of Pediatric Oncology/Hematology, University Medical Center Charité Campus Virchow, Augustenburger Pl. 1 13353 Berlin Germany
- Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin 19055 Schwerin Germany
- MSH Medical School Hamburg Am Kaiserkai 1 20457 Hamburg Germany
| |
Collapse
|