1
|
Slominski AT, Kim TK, Janjetovic Z, Slominski RM, Li W, Jetten AM, Indra AK, Mason RS, Tuckey RC. Biological Effects of CYP11A1-Derived Vitamin D and Lumisterol Metabolites in the Skin. J Invest Dermatol 2024; 144:2145-2161. [PMID: 39001720 PMCID: PMC11416330 DOI: 10.1016/j.jid.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 07/15/2024]
Abstract
Novel pathways of vitamin D3, lumisterol 3 (L3), and tachysterol 3 (T3) activation have been discovered, initiated by CYP11A1 and/or CYP27A1 in the case of L3 and T3. The resulting hydroxymetabolites enhance protection of skin against DNA damage and oxidative stress; stimulate keratinocyte differentiation; exert anti-inflammatory, antifibrogenic, and anticancer activities; and inhibit cell proliferation in a structure-dependent manner. They act on nuclear receptors, including vitamin D receptor, aryl hydrocarbon receptor, LXRα/β, RAR-related orphan receptor α/γ, and peroxisome proliferator-activated receptor-γ, with selectivity defined by their core structure and distribution of hydroxyl groups. They can activate NRF2 and p53 and inhibit NF-κB, IL-17, Shh, and Wnt/β-catenin signaling. Thus, they protect skin integrity and physiology.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA; Cancer Chemoprevention Program, Comprehensive Cancer Center, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA; Veterans Administration Medical Center, Birmingham, Alabama, USA.
| | - Tae-Kang Kim
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zorica Janjetovic
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Radomir M Slominski
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wei Li
- Drug Discovery Center, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center College of Pharmacy, Memphis, Tennessee, USA
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon; USA
| | - Rebecca S Mason
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
2
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
3
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
4
|
Gorini F, Tonacci A. Vitamin D: An Essential Nutrient in the Dual Relationship between Autoimmune Thyroid Diseases and Celiac Disease-A Comprehensive Review. Nutrients 2024; 16:1762. [PMID: 38892695 PMCID: PMC11174782 DOI: 10.3390/nu16111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Autoimmune thyroid diseases (AITD) are among the most frequent autoimmune disorders, with a multifactorial etiology in which both genetic and environmental determinants are probably involved. Celiac disease (CeD) also represents a public concern, given its increasing prevalence due to the recent improvement of screening programs, leading to the detection of silent subtypes. The two conditions may be closely associated due to common risk factors, including genetic setting, changes in the composition and diversity of the gut microbiota, and deficiency of nutrients like vitamin D. This comprehensive review discussed the current evidence on the pivotal role of vitamin D in modulating both gut microbiota dysbiosis and immune system dysfunction, shedding light on the possible relevance of an adequate intake of this nutrient in the primary prevention of AITD and CeD. While future technology-based strategies for proper vitamin D supplementation could be attractive in the context of personalized medicine, several issues remain to be defined, including standardized assays for vitamin D determination, timely recommendations on vitamin D intake for immune system functioning, and longitudinal studies and randomized controlled trials to definitely establish a causal relationship between serum vitamin D levels and the onset of AITD and CeD.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
5
|
Faienza MF, Giardinelli S, Annicchiarico A, Chiarito M, Barile B, Corbo F, Brunetti G. Nutraceuticals and Functional Foods: A Comprehensive Review of Their Role in Bone Health. Int J Mol Sci 2024; 25:5873. [PMID: 38892062 PMCID: PMC11172758 DOI: 10.3390/ijms25115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Bone health is the result of a tightly regulated balance between bone modeling and bone remodeling, and alterations of these processes have been observed in several diseases both in adult and pediatric populations. The imbalance in bone remodeling can ultimately lead to osteoporosis, which is most often associated with aging, but contributing factors can already act during the developmental age, when over a third of bone mass is accumulated. The maintenance of an adequate bone mass is influenced by genetic and environmental factors, such as physical activity and diet, and particularly by an adequate intake of calcium and vitamin D. In addition, it has been claimed that the integration of specific nutraceuticals such as resveratrol, anthocyanins, isoflavones, lycopene, curcumin, lutein, and β-carotene and the intake of bioactive compounds from the diet such as honey, tea, dried plums, blueberry, and olive oil can be efficient strategies for bone loss prevention. Nutraceuticals and functional foods are largely used to provide medical or health benefits, but there is an urge to determine which products have adequate clinical evidence and a strong safety profile. The aim of this review is to explore the scientific and clinical evidence of the positive role of nutraceuticals and functional food in bone health, focusing both on molecular mechanisms and on real-world studies.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Silvia Giardinelli
- Department of Medical Sciences, Pediatrics, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Mariangela Chiarito
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, 70125 Bari, Italy;
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| |
Collapse
|
6
|
Slominski RM, Chen JY, Raman C, Slominski AT. Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc Natl Acad Sci U S A 2024; 121:e2308374121. [PMID: 38489380 PMCID: PMC10998607 DOI: 10.1073/pnas.2308374121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Ultraviolet radiation (UVR) is primarily recognized for its detrimental effects such as cancerogenesis, skin aging, eye damage, and autoimmune disorders. With exception of ultraviolet B (UVB) requirement in the production of vitamin D3, the positive role of UVR in modulation of homeostasis is underappreciated. Skin exposure to UVR triggers local responses secondary to the induction of chemical, hormonal, immune, and neural signals that are defined by the chromophores and extent of UVR penetration into skin compartments. These responses are not random and are coordinated by the cutaneous neuro-immuno-endocrine system, which counteracts the action of external stressors and accommodates local homeostasis to the changing environment. The UVR induces electrical, chemical, and biological signals to be sent to the brain, endocrine and immune systems, as well as other central organs, which in concert regulate body homeostasis. To achieve its central homeostatic goal, the UVR-induced signals are precisely computed locally with transmission through nerves or humoral signals release into the circulation to activate and/or modulate coordinating central centers or organs. Such modulatory effects will be dependent on UVA and UVB wavelengths. This leads to immunosuppression, the activation of brain and endocrine coordinating centers, and the modification of different organ functions. Therefore, it is imperative to understand the underlying mechanisms of UVR electromagnetic energy penetration deep into the body, with its impact on the brain and internal organs. Photo-neuro-immuno-endocrinology can offer novel therapeutic approaches in addiction and mood disorders; autoimmune, neurodegenerative, and chronic pain-generating disorders; or pathologies involving endocrine, cardiovascular, gastrointestinal, or reproductive systems.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Departments of Genetics, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Jake Y. Chen
- Department of Biomedical Informatics and Data Science, the University of Alabama at Birmingham, Birmingham, AL35294
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
| | - Chander Raman
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Andrzej T. Slominski
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
- Veteran Administration Medical Center, Birmingham, AL35294
| |
Collapse
|
7
|
Janjetovic Z, Qayyum S, Reddy SB, Podgorska E, Scott SG, Szpotan J, Mobley AA, Li W, Boda VK, Ravichandran S, Tuckey RC, Jetten AM, Slominski AT. Novel Vitamin D3 Hydroxymetabolites Require Involvement of the Vitamin D Receptor or Retinoic Acid-Related Orphan Receptors for Their Antifibrogenic Activities in Human Fibroblasts. Cells 2024; 13:239. [PMID: 38334631 PMCID: PMC10854953 DOI: 10.3390/cells13030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
We investigated multiple signaling pathways activated by CYP11A1-derived vitamin D3 hydroxymetabolites in human skin fibroblasts by assessing the actions of these molecules on their cognate receptors and by investigating the role of CYP27B1 in their biological activities. The actions of 20(OH)D3, 20,23(OH)2D3, 1,20(OH)2D3 and 1,20,23(OH)3D3 were compared to those of classical 1,25(OH)2D3. This was undertaken using wild type (WT) fibroblasts, as well as cells with VDR, RORs, or CYP27B1 genes knocked down with siRNA. Vitamin D3 hydroxymetabolites had an inhibitory effect on the proliferation of WT cells, but this effect was abrogated in cells with silenced VDR or RORs. The collagen expression by WT cells was reduced upon secosteroid treatment. This effect was reversed in cells where VDR or RORs were knocked down where the inhibition of collagen production and the expression of anti-fibrotic genes in response to the hydroxymetabolites was abrogated, along with ablation of their anti-inflammatory action. The knockdown of CYP27B1 did not change the effect of either 20(OH)D3 or 20,23(OH)2D3, indicating that their actions are independent of 1α-hydroxylation. In conclusion, the expression of the VDR and/or RORα/γ receptors in fibroblasts is necessary for the inhibition of both the proliferation and fibrogenic activity of hydroxymetabolites of vitamin D3, while CYP27B1 is not required.
Collapse
Affiliation(s)
- Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
- Brigham’s Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Sivani B. Reddy
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Ewa Podgorska
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - S. Gates Scott
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Justyna Szpotan
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Alisa A. Mobley
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Wei Li
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (W.L.); (V.K.B.)
| | - Vijay K. Boda
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (W.L.); (V.K.B.)
| | - Senthilkumar Ravichandran
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Robert C. Tuckey
- School of Molecular Science, The University of Western Australia, Perth 6009, Australia;
| | - Anton M. Jetten
- Cell Biology Section, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
- Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- VA Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Butler AE, Brennan E, Drage DS, Sathyapalan T, Atkin SL. Association of flame retardants, polybrominated diethyl ethers (PBDEs), with vitamin D in female subjects. CHEMOSPHERE 2023; 338:139488. [PMID: 37442384 DOI: 10.1016/j.chemosphere.2023.139488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
INTRODUCTION A class of flame retardants, polybrominated diethyl ethers (PBDEs), are known endocrine disrupters and may induce the hepatic enzymes CYP24 and CYP3A that promote 25-hydroxylation of vitamin D3. Therefore, this study examined the association of PBDEs with vitamin D3 (25(OH)D3) and the active 1,25-dihydrovitamin D3 (1,25(OH)2D3) in a cohort of non-obese women. METHODS 58 female participants (age:31.9 ± 4.6 years; body mass index (BMI):25.7 ± 3.7 kg/m2) had seven indicator PBDEs [PBDE28; PBDE47; PBDE99; PBDE100; PBDE153; PBDE154; PBDE183] measured using high resolution gas chromatography, with ƩPBDE level calculated. 25(OH)D3 and 1,25(OH)2D3 levels were determined by isotope-dilution liquid chromatography tandem mass spectrometry. Plasma level of calcium/calmodulin-dependent protein kinase type 1 (CaMK1) was measured by Somascan proteomics. RESULTS In this cohort, vitamin D3 (25(OH)D3) and 1,25(OH)2D3 levels were 22.9 ± 11.2 ng/mL and 0.05 ± 0.02 ng/mL, respectively. Of those, 28 had vitamin D deficiency [25(OH)D3 level <20 ng/mL (<50 nmol/L)]. For the whole group, individual PBDEs (PBDE28; PBDE47; PBDE99; PBDE100; PBDE153; PBDE154; PBDE183) and ƩPBDEs did not correlate with 25(OH)D3 or its active metabolite 1,25(OH)2D3 nor with BMI. For the subset who were 25(OH)D3 sufficient, negative correlations were found for 1,25(OH)2D3 with PBDE153 (ρ = -0.77; p = 0.02) and PBDE100 (ρ = -0.72; p = 0.005). In the subset of women who were 25(OH)D3 deficient, positive correlations were found for 1,25(OH)2D3 with PBDE153 (ρ = 0.68; p = 0.02) and ƩPBDEs (ρ = 0.57; p = 0.03). Using sufficient and deficient subset categories, no correlations were seen with 25(OH)D3 nor any of the PBDEs, and PBDEs did not correlate to renal function (estimated glomerular filtration rate, eGFR). 1,25(OH)2D3 was negatively associated with CaMK1 (r = -0.36; p = 0.03) as was PBDE153 (r = -0.31; p = 0.02). CONCLUSION PBDEs were not associated with 25(OH)D3, but PBDE100 and 153 correlated with its active 1,25(OH)2D3 metabolite and PBDE153 correlated to the calcium modulator CaMKI, suggesting that PBDE effects could either be mediated through vitamin D status or that functional inactivation or inhibition of 1,25(OH)2D3 may contribute to the impact of vitamin D deficiency.
Collapse
Affiliation(s)
- Alexandra E Butler
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain.
| | - Edwina Brennan
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain
| | - Daniel S Drage
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK; Queensland Alliance for Environmental Health Sciences, The University of Queensland, 39 Kessels Road, Coopers Plains, Qld, 4108, Australia
| | | | - Stephen L Atkin
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain
| |
Collapse
|
9
|
Huang D, Guo Y, Li X, Pan M, Liu J, Zhang W, Mai K. Vitamin D 3/VDR inhibits inflammation through NF-κB pathway accompanied by resisting apoptosis and inducing autophagy in abalone Haliotis discus hannai. Cell Biol Toxicol 2023; 39:885-906. [PMID: 34637036 DOI: 10.1007/s10565-021-09647-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023]
Abstract
Vitamin D3 is believed to be a contributing factor to innate immunity. Vitamin D receptor (VDR) has a positive effect on inhibiting nuclear factor κB (NF-κB)-mediated inflammation. The underlying molecular mechanisms remain unclear, particularly in mollusks. Consequently, this study will investigate the process of vitamin D3/VDR regulating NF-κB pathway and further explore their functions on inflammation, autophagy, and apoptosis in abalone Haliotis discus hannai. Results showed that knockdown of VDR by using siRNA and dsRNA of VDR in vitro and in vivo led to more intense response of NF-κB signaling to lipopolysaccharide and higher level of apoptosis and autophagy. In addition, 1,25(OH)2D3 stimulation after VDR silencing could partially alleviate apoptosis and induce autophagy. Overexpression of VDR restricted the K48-polyubiquitin chain-dependent inhibitor of κB (IκB) ubiquitination and apoptosis-associated speck-like protein containing CARD (ASC) oligomerization. Besides, VDR silencing resulted in increase of ASC speck formation. In further mechanistic studies, we showed that VDR can directly bind to IκB and IKK1 in vitro and in vivo. In the feeding trial, H&E staining, TUNEL, and electron microscope results showed that vitamin D3 deficiency (0 IU/kg) could recruit more basophilic cells and increase more TUNEL-positive apoptotic cells and lipid droplets (LDs) than vitamin D3 supplement (1000 IU/kg and 5000 IU/kg). In summary, abalone VDR plays a negative regulator role in NF-κB-mediated inflammation via interacting with IκB and inhibiting ubiquitin-dependent degradation of IκB. Vitamin D3 in combination with VDR is essential to establish a delicate balance between autophagy and apoptosis in response to inflammation.
Collapse
Affiliation(s)
- Dong Huang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Yanlin Guo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Li
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
10
|
Yoon JH, Park SH, Yoon SE, Hong SY, Lee JB, Lee J, Cho JY. Hydrangea serrata Hot Water Extract and Its Major Ingredient Hydrangenol Improve Skin Moisturization and Wrinkle Conditions via AP-1 and Akt/PI3K Pathway Upregulation. Nutrients 2023; 15:nu15112436. [PMID: 37299400 DOI: 10.3390/nu15112436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/12/2023] Open
Abstract
Hydrangea serrata is a plant grown in Korea and Japan with a particular natural compound, hydrangenol. H. serrata has been researched for its anti-fungal properties, and ability to attenuate allergies and promote muscle growth. Its ability to reduce skin dryness is poorly understood. For that reason, we investigated whether H. serrata hot water extracts (Hs-WE) can moisturize keratinocytes. In clinical studies (Approval Code: GIRB-21929-NY and approval Date: 5 October 2021), skin wrinkles and skin moisturizing levels were improved in subjects applying 0.5% Hs-WE compared to the placebo group. We confirmed the components of Hs-WE from the LC/MS-MS analysis. Hs-WE and hydrangenol did not show cytotoxicity in HaCaT cells at all concentrations. Cell growth was also promoted by Hs-WE (5-20 µg/mL) and hydrangenol (15-60 µM) in a wound healing assay. Skin moisturizing factors were upregulated by the presence of Hs-WE or hydrangenol, and the hyaluronidases (HYAL) were inhibited at the mRNA level. Meanwhile, COL1A1 was increased by the presence of Hs-WE or hydrangenol. MAPK, AP-1, and Akt/PI3k signaling proteins, which are associated with cell proliferation and moisturizing factors, were increased by the administration of Hs-WE and hydrangenol. Has-1, 2, and 3 levels were enhanced via JNK when using the inhibitors of MAPK proteins and Hs-WE and hydrangenol, respectively. Taken together, Hs-WE could be used as cosmeceutical materials for improving skin conditions.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Si Eun Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seong Yoon Hong
- Innovation Lab., Cosmax R&I Center, Seongnam 13486, Republic of Korea
| | - Jun Bae Lee
- Innovation Lab., Cosmax R&I Center, Seongnam 13486, Republic of Korea
| | - Jongsung Lee
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Martiniakova M, Kovacova V, Mondockova V, Zemanova N, Babikova M, Biro R, Ciernikova S, Omelka R. Honey: A Promising Therapeutic Supplement for the Prevention and Management of Osteoporosis and Breast Cancer. Antioxidants (Basel) 2023; 12:567. [PMID: 36978815 PMCID: PMC10045300 DOI: 10.3390/antiox12030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Osteoporosis and breast cancer are serious diseases that have become a significant socioeconomic burden. There are biochemical associations between the two disorders in terms of the amended function of estrogen, receptor activator of nuclear factor kappa beta ligand, oxidative stress, inflammation, and lipid accumulation. Honey as a functional food with high antioxidant and anti-inflammatory properties can contribute to the prevention of various diseases. Its health benefits are mainly related to the content of polyphenols. This review aims to summarize the current knowledge from in vitro, animal, and human studies on the use of honey as a potential therapeutic agent for osteoporosis and breast cancer. Preclinical studies have revealed a beneficial impact of honey on both bone health (microstructure, strength, oxidative stress) and breast tissue health (breast cancer cell proliferation and apoptosis, tumor growth rate, and volume). The limited number of clinical trials, especially in osteoporosis, indicates the need for further research to evaluate the potential benefits of honey in the treatment. Clinical studies related to breast cancer have revealed that honey is effective in increasing blood cell counts, interleukin-3 levels, and quality of life. In summary, honey may serve as a prospective therapeutic supplement for bone and breast tissue health.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| |
Collapse
|
12
|
Novel CYP11A1-Derived Vitamin D and Lumisterol Biometabolites for the Management of COVID-19. Nutrients 2022; 14:nu14224779. [PMID: 36432468 PMCID: PMC9698837 DOI: 10.3390/nu14224779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D deficiency is associated with a higher risk of SARS-CoV-2 infection and poor outcomes of the COVID-19 disease. However, a satisfactory mechanism explaining the vitamin D protective effects is missing. Based on the anti-inflammatory and anti-oxidative properties of classical and novel (CYP11A1-derived) vitamin D and lumisterol hydroxymetabolites, we have proposed that they would attenuate the self-amplifying damage in lungs and other organs through mechanisms initiated by interactions with corresponding nuclear receptors. These include the VDR mediated inhibition of NFκβ, inverse agonism on RORγ and the inhibition of ROS through activation of NRF2-dependent pathways. In addition, the non-receptor mediated actions of vitamin D and related lumisterol hydroxymetabolites would include interactions with the active sites of SARS-CoV-2 transcription machinery enzymes (Mpro;main protease and RdRp;RNA dependent RNA polymerase). Furthermore, these metabolites could interfere with the binding of SARS-CoV-2 RBD with ACE2 by interacting with ACE2 and TMPRSS2. These interactions can cause the conformational and dynamical motion changes in TMPRSS2, which would affect TMPRSS2 to prime SARS-CoV-2 spike proteins. Therefore, novel, CYP11A1-derived, active forms of vitamin D and lumisterol can restrain COVID-19 through both nuclear receptor-dependent and independent mechanisms, which identify them as excellent candidates for antiviral drug research and for the educated use of their precursors as nutrients or supplements in the prevention and attenuation of the COVID-19 disease.
Collapse
|
13
|
Wang YQ, Li GY, Li L, Song QS, Stanley D, Wei SJ, Zhu JY. Genome-wide and expression-profiling analyses of the cytochrome P450 genes in Tenebrionidea. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21954. [PMID: 36065122 DOI: 10.1002/arch.21954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) are present in almost all areas of the tree of life. As one of the largest and most diverse superfamilies of multifunctional enzymes, they play important roles in the metabolism of xenobiotics and biosynthesis of endogenous compounds, shaping the success of insects. In this study, the CYPome (an omics term for all the CYP genes in a genome) diversification was examined in the four Tenebrionidea species through genome-wide analysis. A total of 483 CYP genes were identified, of which 103, 157, 122, and 101 were respectively deciphered from the genomes of Tebebrio molitor, Asbolus verucosus, Hycleus cichorii and Hycleus phaleratus. These CYPs were classified into four major clans (mitochondrial, CYP2, CYP3, and CYP4), and clans CYP3 and CYP4 are most diverse. Phylogenetic analysis showed that most CYPs of these Tenebrionidea beetles from each clan had a very close 1:1 orthology to each other, suggesting that they originate closely and have evolutionally conserved function. Expression analysis at different developmental stages and in various tissues showed the life stage-, gut-, salivary gland-, fat body-, Malpighian tubule-, antennae-, ovary- and testis-specific expression patterns of T. molitor CYP genes, implying their various potential roles in development, detoxification, immune response, digestion, olfaction, and reproduction. Our studies provide a platform to understand the evolution of Tenebrionidea CYP gene superfamily, and a basis for further functional investigation of the T. molitor CYPs involved in various biological processes.
Collapse
Affiliation(s)
- Yu-Qin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Guang-Ya Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lu Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
14
|
Slominski AT, Brożyna AA, Kim TK, Elsayed MM, Janjetovic Z, Qayyum S, Slominski RM, Oak AS, Li C, Podgorska E, Li W, Jetten AM, Tuckey RC, Tang EK, Elmets C, Athar M. CYP11A1‑derived vitamin D hydroxyderivatives as candidates for therapy of basal and squamous cell carcinomas. Int J Oncol 2022; 61:96. [PMID: 35775377 PMCID: PMC9262157 DOI: 10.3892/ijo.2022.5386] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Hydroxyderivatives of vitamin D3, including classical 1,25(OH)2D3 and novel CYP11A1‑derived hydroxyderivatives, exert their biological activity by acting as agonists on the vitamin D receptor (VDR) and inverse agonists on retinoid‑related orphan receptors (ROR)α and γ. The anticancer activities of CYP11A1‑derived hydroxyderivatives were tested using cell biology, tumor biology and molecular biology methods in human A431 and SCC13 squamous (SCC)‑ and murine ASZ001 basal (BCC)‑cell carcinomas, in comparison with classical 1,25(OH)2D3. Vitamin D3‑hydroxyderivatives with or without a C1α(OH) inhibited cell proliferation in a dose‑dependent manner. While all the compounds tested had similar effects on spheroid formation by A431 and SCC13 cells, those with a C1α(OH) group were more potent in inhibiting colony and spheroid formation in the BCC line. Potent anti‑tumorigenic activity against the BCC line was exerted by 1,25(OH)2D3, 1,20(OH)2D3, 1,20,23(OH)3D3, 1,20,24(OH)3D3, 1,20,25(OH)3D3 and 1,20,26(OH)3D3, with smaller effects seen for 25(OH)D3, 20(OH)D3 and 20,23(OH)2D3. 1,25(OH)2D3, 1,20(OH)2D3 and 20(OH)D3 inhibited the expression of GLI1 and β‑catenin in ASZ001 cells. In A431 cells, these compounds also decreased the expression of GLI1 and stimulated involucrin expression. VDR, RORγ, RORα and CYP27B1 were detected in A431, SCC13 and ASZ001 lines, however, with different expression patterns. Immunohistochemistry performed on human skin with SCC and BCC showed nuclear expression of all three of these receptors, as well as megalin (transmembrane receptor for vitamin D‑binding protein), the level of which was dependent on the type of cancer and antigen tested in comparison with normal epidermis. Classical and CYP11A1‑derived vitamin D3‑derivatives exhibited anticancer‑activities on skin cancer cell lines and inhibited GLI1 and β‑catenin signaling in a manner that was dependent on the position of hydroxyl groups. The observed expression of VDR, RORγ, RORα and megalin in human SCC and BCC suggested that they might provide targets for endogenously produced or exogenously applied vitamin D hydroxyderivatives and provide excellent candidates for anti‑cancer therapy.
Collapse
Affiliation(s)
- Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
- VA Medical Center, Birmingham, AL 35233, USA
| | - Anna A. Brożyna
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń 87-100, Poland
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Mahmoud M. Elsayed
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Radomir M. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Allen S.W. Oak
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Ewa Podgorska
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Anton M. Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert C. Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Edith K.Y. Tang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35292, USA
| |
Collapse
|
15
|
Slominski AT, Kim TK, Slominski RM, Song Y, Janjetovic Z, Podgorska E, Reddy SB, Song Y, Raman C, Tang EKY, Fabisiak A, Brzeminski P, Sicinski RR, Atigadda V, Jetten AM, Holick MF, Tuckey RC. Metabolic activation of tachysterol 3 to biologically active hydroxyderivatives that act on VDR, AhR, LXRs, and PPARγ receptors. FASEB J 2022; 36:e22451. [PMID: 35838947 PMCID: PMC9345108 DOI: 10.1096/fj.202200578r] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
CYP11A1 and CYP27A1 hydroxylate tachysterol3 , a photoproduct of previtamin D3 , producing 20S-hydroxytachysterol3 [20S(OH)T3 ] and 25(OH)T3 , respectively. Both metabolites were detected in the human epidermis and serum. Tachysterol3 was also detected in human serum at a concentration of 7.3 ± 2.5 ng/ml. 20S(OH)T3 and 25(OH)T3 inhibited the proliferation of epidermal keratinocytes and dermal fibroblasts and stimulated the expression of differentiation and anti-oxidative genes in keratinocytes in a similar manner to 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ]. They acted on the vitamin D receptor (VDR) as demonstrated by image flow cytometry and the translocation of VDR coupled GFP from the cytoplasm to the nucleus of melanoma cells, as well as by the stimulation of CYP24A1 expression. Functional studies using a human aryl hydrocarbon receptor (AhR) reporter assay system revealed marked activation of AhR by 20S(OH)T3 , a smaller effect by 25(OH)T3 , and a minimal effect for their precursor, tachysterol3 . Tachysterol3 hydroxyderivatives showed high-affinity binding to the ligan-binding domain (LBD) of the liver X receptor (LXR) α and β, and the peroxisome proliferator-activated receptor γ (PPARγ) in LanthaScreen TR-FRET coactivator assays. Molecular docking using crystal structures of the LBDs of VDR, AhR, LXRs, and PPARγ revealed high docking scores for 20S(OH)T3 and 25(OH)T3 , comparable to their natural ligands. The scores for the non-genomic-binding site of the VDR were very low indicating a lack of interaction with tachysterol3 ligands. Our identification of endogenous production of 20S(OH)T3 and 25(OH)T3 that are biologically active and interact with VDR, AhR, LXRs, and PPARγ, provides a new understanding of the biological function of tachysterol3 .
Collapse
Affiliation(s)
- Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Radomir M. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ewa Podgorska
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sivani B. Reddy
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Edith K. Y. Tang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Adrian Fabisiak
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | | | | | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anton M. Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Michael F. Holick
- Department of Medicine, Boston University, Boston, Massachusetts, USA
| | - Robert C. Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
16
|
Brzeminski P, Fabisiak A, Slominski RM, Kim TK, Janjetovic Z, Podgorska E, Song Y, Saleem M, Reddy SB, Qayyum S, Song Y, Tuckey RC, Atigadda V, Jetten AM, Sicinski RR, Raman C, Slominski AT. Chemical synthesis, biological activities and action on nuclear receptors of 20S(OH)D3, 20S,25(OH)2D3, 20S,23S(OH)2D3 and 20S,23R(OH)2D3. Bioorg Chem 2022; 121:105660. [PMID: 35168121 PMCID: PMC8923993 DOI: 10.1016/j.bioorg.2022.105660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/06/2022] [Accepted: 02/05/2022] [Indexed: 12/14/2022]
Abstract
New and more efficient routes of chemical synthesis of vitamin D3 (D3) hydroxy (OH) metabolites, including 20S(OH)D3, 20S,23S(OH)2D3 and 20S,25(OH)2D3, that are endogenously produced in the human body by CYP11A1, and of 20S,23R(OH)2D3 were established. The biological evaluation showed that these compounds exhibited similar properties to each other regarding inhibition of cell proliferation and induction of cell differentiation but with subtle and quantitative differences. They showed both overlapping and differential effects on T-cell immune activity. They also showed similar interactions with nuclear receptors with all secosteroids activating vitamin D, liver X, retinoic acid orphan and aryl hydrocarbon receptors in functional assays and also as indicated by molecular modeling. They functioned as substrates for CYP27B1 with enzymatic activity being the highest towards 20S,25(OH)2D3 and the lowest towards 20S(OH)D3. In conclusion, defining new routes for large scale synthesis of endogenously produced D3-hydroxy derivatives by pathways initiated by CYP11A1 opens an exciting era to analyze their common and differential activities in vivo, particularly on the immune system and inflammatory diseases.
Collapse
|
17
|
Myers LK, Winstead M, Kee JD, Park JJ, Zhang S, Li W, Yi AK, Stuart JM, Rosloniec EF, Brand DD, Tuckey RC, Slominski AT, Postlethwaite AE, Kang AH. 1,25-Dihydroxyvitamin D3 and 20-Hydroxyvitamin D3 Upregulate LAIR-1 and Attenuate Collagen Induced Arthritis. Int J Mol Sci 2021; 22:ijms222413342. [PMID: 34948139 PMCID: PMC8709360 DOI: 10.3390/ijms222413342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
Vitamin D plays a crucial role in regulation of the immune response. However, treatment of autoimmune diseases with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] doses sufficient to be effective is prohibitive due to its calcemic and toxic effects. We use the collagen-induced arthritis (CIA) model to analyze the efficacy of the noncalcemic analog of vitamin D, 20S-hydroxyvitamin D3 [20S(OH)D3], as well as 1,25(OH)2D3, to attenuate arthritis and explore a potential mechanism of action. Mice fed a diet deficient in vitamin D developed a more severe arthritis characterized by enhanced secretion of T cell inflammatory cytokines, compared to mice fed a normal diet. The T cell inflammatory cytokines were effectively suppressed, however, by culture of the cells with 20S(OH)D3. Interestingly, one of the consequences of culture with 1,25(OH)2D3 or 20S(OH)D3, was upregulation of the natural inhibitory receptor leukocyte associated immunoglobulin-like receptor-1 (LAIR-1 or CD305). Polyclonal antibodies which activate LAIR-1 were also capable of attenuating arthritis. Moreover, oral therapy with active forms of vitamin D suppressed arthritis in LAIR-1 sufficient DR1 mice, but were ineffective in LAIR-1−/− deficient mice. Taken together, these data show that the effect of vitamin D on inflammation is at least, in part, mediated by LAIR-1 and that non-calcemic 20S(OH)D3 may be a promising therapeutic agent for the treatment of autoimmune diseases such as Rheumatoid Arthritis.
Collapse
Affiliation(s)
- Linda K. Myers
- Department of Pediatrics, University of Tennessee Health Science Center, 50 N. Dunlap, Rm. 461R, Memphis, TN 38103, USA
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA; (M.W.); (J.D.K.); (J.J.P.); (J.M.S.); (A.E.P.); (A.H.K.)
- Correspondence: ; Tel.: +1-(901)-448-5774; Fax: +1-(901)-448-7265
| | - Michael Winstead
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA; (M.W.); (J.D.K.); (J.J.P.); (J.M.S.); (A.E.P.); (A.H.K.)
| | - John D. Kee
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA; (M.W.); (J.D.K.); (J.J.P.); (J.M.S.); (A.E.P.); (A.H.K.)
| | - Jeoungeun J. Park
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA; (M.W.); (J.D.K.); (J.J.P.); (J.M.S.); (A.E.P.); (A.H.K.)
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38103, USA; (S.Z.); (W.L.)
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38103, USA; (S.Z.); (W.L.)
| | - Ae-Kyung Yi
- Department of Microbiology-Immunology-Biochemistry, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN 38163, USA;
| | - John M. Stuart
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA; (M.W.); (J.D.K.); (J.J.P.); (J.M.S.); (A.E.P.); (A.H.K.)
- Memphis Veterans Affairs Medical Center, 1030 Jefferson Ave., Memphis, TN 38104, USA; (E.F.R.); (D.D.B.)
| | - Edward F. Rosloniec
- Memphis Veterans Affairs Medical Center, 1030 Jefferson Ave., Memphis, TN 38104, USA; (E.F.R.); (D.D.B.)
| | - David D. Brand
- Memphis Veterans Affairs Medical Center, 1030 Jefferson Ave., Memphis, TN 38104, USA; (E.F.R.); (D.D.B.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia;
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham 500 22nd St. S, Birmingham, AL 35294, USA;
- Comprehensive Cancer Center, University of Alabama at Birmingham 1824 6th Ave., Birmingham, AL 35294, USA
- Birmingham Veterans Affairs Medical Center, 700 19th Street S., Birmingham, AL 35233, USA
| | - Arnold E. Postlethwaite
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA; (M.W.); (J.D.K.); (J.J.P.); (J.M.S.); (A.E.P.); (A.H.K.)
- Memphis Veterans Affairs Medical Center, 1030 Jefferson Ave., Memphis, TN 38104, USA; (E.F.R.); (D.D.B.)
| | - Andrew H. Kang
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA; (M.W.); (J.D.K.); (J.J.P.); (J.M.S.); (A.E.P.); (A.H.K.)
- Memphis Veterans Affairs Medical Center, 1030 Jefferson Ave., Memphis, TN 38104, USA; (E.F.R.); (D.D.B.)
| |
Collapse
|
18
|
Bocheva G, Slominski RM, Slominski AT. The Impact of Vitamin D on Skin Aging. Int J Mol Sci 2021; 22:ijms22169097. [PMID: 34445803 PMCID: PMC8396468 DOI: 10.3390/ijms22169097] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
The active metabolites of vitamin D3 (D3) and lumisterol (L3) exert a variety of antiaging and photoprotective effects on the skin. These are achieved through immunomodulation and include anti-inflammatory actions, regulation of keratinocytes proliferation, and differentiation programs to build the epidermal barrier necessary for maintaining skin homeostasis. In addition, they induce antioxidative responses, inhibit DNA damage and induce DNA repair mechanisms to attenuate premature skin aging and cancerogenesis. The mechanism of action would involve interaction with multiple nuclear receptors including VDR, AhR, LXR, reverse agonism on RORα and -γ, and nongenomic actions through 1,25D3-MARRS receptor and interaction with the nongenomic binding site of the VDR. Therefore, active forms of vitamin D3 including its canonical (1,25(OH)2D3) and noncanonical (CYP11A1-intitated) D3 derivatives as well as L3 derivatives are promising agents for the prevention, attenuation, or treatment of premature skin aging. They could be administrated orally and/or topically. Other forms of parenteral application of vitamin D3 precursor should be considered to avoid its predominant metabolism to 25(OH)D3 that is not recognized by CYP11A1 enzyme. The efficacy of topically applied vitamin D3 and L3 derivatives needs further clinical evaluation in future trials.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
- Correspondence: (G.B.); (A.T.S.)
| | - Radomir M. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
- Correspondence: (G.B.); (A.T.S.)
| |
Collapse
|
19
|
Kim TK, Atigadda VR, Brzeminski P, Fabisiak A, Tang EKY, Tuckey RC, Reiter RJ, Slominski AT. Detection of Serotonin, Melatonin, and Their Metabolites in Honey. ACS FOOD SCIENCE & TECHNOLOGY 2021; 1:1228-1235. [PMID: 35449872 PMCID: PMC9017714 DOI: 10.1021/acsfoodscitech.1c00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Melatonin and serotonin, products of tryptophan metabolism, are endogenous neurotransmitters and hormones. We have identified and quantified these metabolites in natural honey from Australia, USA, and Poland using a Xevo G2 XS qTof LC-MS. To help ensure correct product identification, some samples were prepurified by RP-HPLC based on the retention times of standards, prior to LC-MS. The concentrations of the metabolites of interest depended on the source of the honey. For Australian honey, levels for melatonin and 2-hydroxymelatonin were 0.91 and 0.68 ng/g, respectively. Melatonin was detected in one brand of US commercial honey at 0.48 ng/g, while a second brand contained serotonin at 88.2 ng/g. In Polish natural honey, 20.6 ng/g of serotonin and 40.8 ng/g of N-acetylserotonin (NAS) were detected, while in Polish commercial honey 25.9 ng/g of serotonin and 7.30 ng/g of NAS were present. We suggest that addictive and health-related properties of honey may be in part dependent on the presence of serotonin, melatonin, and their metabolites, and that these compounds may play a role in the colony activities of bees.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; VA Medical Center, Birmingham, Alabama 35294, United States
| | - Venkatram R Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Pawel Brzeminski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Adrian Fabisiak
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Edith K Y Tang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas 77030, United States
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; VA Medical Center, Birmingham, Alabama 35294, United States
| |
Collapse
|
20
|
Postlethwaite AE, Tuckey RC, Kim TK, Li W, Bhattacharya SK, Myers LK, Brand DD, Slominski AT. 20 S-Hydroxyvitamin D3, a Secosteroid Produced in Humans, Is Anti-Inflammatory and Inhibits Murine Autoimmune Arthritis. Front Immunol 2021; 12:678487. [PMID: 34276665 PMCID: PMC8278399 DOI: 10.3389/fimmu.2021.678487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
The ability to use large doses of vitamin D3 (D3) to chronically treat autoimmune diseases such as rheumatoid arthritis (RA) is prohibitive due to its calcemic effect which can damage vital organs. Cytochrome P450scc (CYP11A1) is able to convert D3 into the noncalcemic analog 20S-hydroxyvitamin D3 [20S(OH)D3]. We demonstrate that 20S(OH)D3 markedly suppresses clinical signs of arthritis and joint damage in a mouse model of RA. Furthermore, treatment with 20S(OH)D3 reduces lymphocyte subsets such as CD4+ T cells and CD19+ B cells leading to a significant reduction in inflammatory cytokines. The ratio of T reg cells (CD4+CD25+Foxp3+ T cells) to CD3+CD4+ T cells is increased while there is a decrease in critical complement-fixing anti-CII antibodies. Since pro-inflammatory cytokines and antibodies against type II collagen ordinarily lead to destruction of cartilage and bone, their decline explains why arthritis is attenuated by 20(OH) D3. These results provide a basis for further consideration of 20S(OH)D3 as a potential treatment for RA and other autoimmune disorders.
Collapse
Affiliation(s)
- Arnold E. Postlethwaite
- Research Service, Department of Veterans Affairs Medical Center, Memphis, TN, United States
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert C. Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Tae-Kang Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wei Li
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Syamal K. Bhattacharya
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Linda K. Myers
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - David D. Brand
- Research Service, Department of Veterans Affairs Medical Center, Memphis, TN, United States
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Andrzej T. Slominski
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Research Service, Department of Veterans Affairs Medical Center, Birmingham, AL, United States
| |
Collapse
|