1
|
Meyer M, Prescimone A, Constable EC, Housecroft CE. Introducing sterically demanding substituents and π-π-interactions into [Cu(P^P)(N^N)] + complexes. Dalton Trans 2024; 53:5453-5465. [PMID: 38414289 DOI: 10.1039/d4dt00276h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A series of ten N^N chelating ligands based on a 2,2'-bipyridine (bpy) metal-binding domain and featuring sterically hindering substituents in the 6- and 6,6'-positions has been synthesized and characterized. The ligands have been incorporated into a family of 15 heteroleptic complexes of type [Cu(P^P)(N^N)][PF6] where P^P is the wide bite-angle bisphosphane ligand bis(2(diphenylphosphanyl)phenyl)ether (POP) or (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane) (xantphos). Substituents in several of the N^N ligands ligands possess phenyl rings remotely tethered to enable intra- and intermolecular π-π-interactions in the [Cu(P^P)(N^N)]+ cations. Single crystal X-ray structures of 12 complexes are reported. The effects of the functional groups in the bpy ligand on the photophysical properties of the complexes have been studied; solid-state emission maxima range from 518 to 567 nm. Values of the solid-state photoluminescence quantum yields (PLQYs) of the [Cu(P^P)(N^N)][PF6] compounds respond to the nature of the N^N ligand. In general, we observed that the [Cu(P^P)(N^N)]+ complexes containing 6,6'-disubstituted complexes with phenyl moieties connected via a CH2CH2 or CH2CH2CH2 spacer to the bpy domain have the highest values of PLQY. The most significant compounds are [Cu(POP)((2-PhEt)2bpy)][PF6] (PLQY = 67%) and [Cu(POP)((3-PhPr)2bpy)][PF6] (PLQY = 72%) where (2-PhEt)2bpy = 6,6'-bis(2-phenylethyl)-2,2'-bipyridine and (3-PhPr)2bpy = 6,6'-bis(3-phenylpropyl)-2,2'-bipyridine. These PLQY values are among the best performing previously reported families of [Cu(P^P)(N^N)][PF6] compounds.
Collapse
Affiliation(s)
- Marco Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Edwin C Constable
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| |
Collapse
|
2
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
3
|
Paderina A, Melnikov A, Slavova S, Sizov V, Gurzhiy V, Petrovskii S, Luginin M, Levin O, Koshevoy I, Grachova E. The Tail Wags the Dog: The Far Periphery of the Coordination Environment Manipulates the Photophysical Properties of Heteroleptic Cu(I) Complexes. Molecules 2022; 27:2250. [PMID: 35408648 PMCID: PMC9000333 DOI: 10.3390/molecules27072250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
In this work we show, using the example of a series of [Cu(Xantphos)(N^N)]+ complexes (N^N being substituted 5-phenyl-bipyridine) with different peripheral N^N ligands, that substituents distant from the main action zone can have a significant effect on the physicochemical properties of the system. By using the C≡C bond on the periphery of the coordination environment, three hybrid molecular systems with -Si(CH3)3, -Au(PR3), and -C2HN3(CH2)C10H7 fragments were produced. The Cu(I) complexes thus obtained demonstrate complicated emission behaviour, which was investigated by spectroscopic, electrochemical, and computational methods in order to understand the mechanism of energy transfer. It was found that the -Si(CH3)3 fragment connected to the peripheral C≡C bond changes luminescence to long-lived intra-ligand phosphorescence, in contrast to MLCT phosphorescence or TADF. The obtained results can be used for the design of new materials based on Cu(I) complexes with controlled optoelectronic properties on the molecular level, as well as for the production of hybrid systems.
Collapse
Affiliation(s)
- Aleksandra Paderina
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Alexey Melnikov
- Centre for Nano- and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Sofia Slavova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vladimir Sizov
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Vladislav Gurzhiy
- Institute of Earth Sciences, St. Petersburg University, 199034 St. Petersburg, Russia;
| | - Stanislav Petrovskii
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Maksim Luginin
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Oleg Levin
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| | - Igor Koshevoy
- Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland;
| | - Elena Grachova
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia; (A.P.); (V.S.); (S.P.); (M.L.); (O.L.)
| |
Collapse
|
4
|
Cavinato LM, Wölfl S, Pöthig A, Fresta E, Garino C, Fernandez-Cestau J, Barolo C, Costa RD. Multivariate Analysis Identifying [Cu(N^N)(P^P)] + Design and Device Architecture Enables First-Class Blue and White Light-Emitting Electrochemical Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109228. [PMID: 35034407 DOI: 10.1002/adma.202109228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
White light-emitting electrochemical cells (LECs) comprising only [Cu(N^N)(P^P)]+ have not been reported yet, as all the attempts toward blue-emitting complexes failed. Multivariate analysis, based on prior-art [Cu(N^N)(P^P)]+ -based thin-film lighting (>90 papers) and refined with computational calculations, identifies the best blue-emitting [Cu(N^N)(P^P)]+ design for LECs, that is, N^N: 2-(4-(tert-butyl)phenyl)-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine and P^P: 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, to achieve predicted thin-film emission at 490 nm and device performance of 3.8 cd A-1 @170 cd m-2 . Validation comes from synthesis, X-ray structure, thin-film spectroscopic/microscopy/electrochemical characterization, and device optimization, realizing the first [Cu(N^N)(P^P)]+ -based blue-LEC with 3.6 cd A-1 @180 cd m-2 . This represents a record performance compared to the state-of-the-art tricoordinate Cu(I)-complexes blue-LECs (0.17 cd A-1 @20 cd m-2 ). Versatility is confirmed with the synthesis of the analogous complex with 2-(4-(tert-butyl)phenyl)-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyrazine (N^N), showing a close prediction/experiment match: λ = 590/580 nm; efficiency = 0.55/0.60 cd A-1 @30 cd m-2 . Finally, experimental design is applied to fabricate the best white multicomponent host:guest LEC, reducing the number of trial-error attempts toward the first white all-[Cu(N^N)(P^P)]+ -LECs with 0.6 cd A-1 @30 cd m-2 . This corresponds to approximately ten-fold enhancement compared to previous LECs (<0.05 cd A-1 @<12 cd m-2 ). Hence, this work sets in the first multivariate approach to design emitters/active layers, accomplishing first-class [Cu(N^N)(P^P)]+ -based blue/white LECs that were previously elusive.
Collapse
Affiliation(s)
- Luca M Cavinato
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Sarah Wölfl
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Alexander Pöthig
- Department of Chemistry & Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Elisa Fresta
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Claudio Garino
- Department of Chemistry, University of Turin, Via Giuria 7, Turin, 10125, Italy
- NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via Gioacchino Quarello 15/a, Turin, 10125, Italy
| | - Julio Fernandez-Cestau
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Claudia Barolo
- Department of Chemistry, University of Turin, Via Giuria 7, Turin, 10125, Italy
- NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via Gioacchino Quarello 15/a, Turin, 10125, Italy
- ICxT Interdepartmental Centre, University of Turin, Lungo Dora Siena 100, Turin, 10153, Italy
| | - Rubén D Costa
- Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| |
Collapse
|
5
|
Shekhovtsov N, Kokina TE, Vinogradova KA, Panarin AY, Rakhmanova MI, Naumov DY, Pervukhina NV, Nikolaenkova EB, Krivopalov VP, Czerwieniec R, Bushuev MB. Near-infrared emitting copper(I) complexes with a pyrazolylpyrimidine ligand: exploring relaxation pathways. Dalton Trans 2022; 51:2898-2911. [DOI: 10.1039/d1dt04325k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mononuclear copper(I) complexes [CuL2]I (1), [CuL2]2[Cu2I4]·2MeCN (2) and [CuL2]PF6 (3) with a new chelating pyrazolylpyrimidine ligand, 2-(3,5-dimethyl-1H-pyrazol-1-yl)-4,6-diphenylpyrimidine (L), were synthesized. In the structures of complex cations [CuL2]+, Cu+ ions coordinate...
Collapse
|
6
|
Mononuclear Copper(I) 3-(2-pyridyl)pyrazole Complexes: The Crucial Role of Phosphine on Photoluminescence. Molecules 2021; 26:molecules26226869. [PMID: 34833961 PMCID: PMC8620892 DOI: 10.3390/molecules26226869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/02/2022] Open
Abstract
A series of emissive Cu(I) cationic complexes with 3-(2-pyridyl)-5-phenyl-pyrazole and various phosphines: dppbz (1), Xantphos (2), DPEPhos (3), PPh3 (4), and BINAP (5) were designed and characterized. Complexes obtained exhibit bright yellow-green emission (ca. 520–650 nm) in the solid state with a wide range of QYs (1–78%) and lifetimes (19–119 µs) at 298 K. The photoluminescence efficiency dramatically depends on the phosphine ligand type. The theoretical calculations of buried volumes and excited states explained the emission behavior for 1–5 as well as their lifetimes. The bulky and rigid phosphines promote emission efficiency through the stabilization of singlet and triplet excited states.
Collapse
|
7
|
Synthesis, Structure, and Photophysical Properties of Yellow-Green and Blue Photoluminescent Dinuclear and Octanuclear Copper(I) Iodide Complexes with a Disilanylene-Bridged Bispyridine Ligand. Molecules 2021; 26:molecules26226852. [PMID: 34833948 PMCID: PMC8617906 DOI: 10.3390/molecules26226852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
The synthesis, structural, and photophysical investigations of CuI complexes with a disilanylene-bridged bispyridine ligand 1 are herein presented. Dinuclear (2) and ladder-like (3) octanuclear copper(I) complexes were straightforwardly prepared by exactly controlling the ratio of CuI/ligand 1. Single-crystal X-ray analysis confirmed that dinuclear complex 2 had no apparent π…π stacking whereas octanuclear complex 3 had π…π stacking in the crystal packing. In the solid state, the complexes display yellow-green (λem = 519 nm, Φ = 0.60, τ = 11 µs, 2) and blue (λem = 478 nm, Φ = 0.04, τ = 2.6 µs, 3) phosphorescence, respectively. The density functional theory calculations validate the differences in their optical properties. The difference in the luminescence efficiency between 2 and 3 is attributed to the presence of π…π stacking and the different luminescence processes.
Collapse
|
8
|
Zhang X, Wu Z, Xu JY, Li WX, Li XL. Synthesis, structures and naked-eye phosphorescence of 2-(6-Methoxynaphthyl)-1H-imidazo[4,5-f][1,10]phenanthroline-Cu(I) complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Li C, Mackenzie CFR, Said SA, Pal AK, Haghighatbin MA, Babaei A, Sessolo M, Cordes DB, Slawin AMZ, Kamer PCJ, Bolink HJ, Hogan CF, Zysman-Colman E. Wide-Bite-Angle Diphosphine Ligands in Thermally Activated Delayed Fluorescent Copper(I) Complexes: Impact on the Performance of Electroluminescence Applications. Inorg Chem 2021; 60:10323-10339. [PMID: 34197094 DOI: 10.1021/acs.inorgchem.1c00804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a series of seven cationic heteroleptic copper(I) complexes of the form [Cu(P^P)(dmphen)]BF4, where dmphen is 2,9-dimethyl-1,10-phenanthroline and P^P is a diphosphine chelate, in which the effect of the bite angle of the diphosphine ligand on the photophysical properties of the complexes was studied. Several of the complexes exhibit moderately high photoluminescence quantum yields in the solid state, with ΦPL of up to 35%, and in solution, with ΦPL of up to 98%. We were able to correlate the powder photoluminescence quantum yields with the % Vbur of the P^P ligand. The most emissive complexes were used to fabricate both organic light-emitting diodes and light-emitting electrochemical cells (LECs), both of which showed moderate performance. Compared to the benchmark copper(I)-based LECs, [Cu(dnbp)(DPEPhos)]+ (maximum external quantum efficiency, EQEmax = 16%), complex 3 (EQEmax = 1.85%) showed a much longer device lifetime (t1/2 = 1.25 h and >16.5 h for [Cu(dnbp)(DPEPhos)]+ and complex 3, respectively). The electrochemiluminescence (ECL) properties of several complexes were also studied, which, to the best of our knowledge, constitutes the first ECL study for heteroleptic copper(I) complexes. Notably, complexes exhibiting more reversible electrochemistry were associated with higher annihilation ECL as well as better performance in a LEC.
Collapse
Affiliation(s)
- Chenfei Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - Campbell F R Mackenzie
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - Said A Said
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - Amlan K Pal
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K.,Department of Chemistry, Indian Institute of Technology Jammu, Jagti Campus, Nagrota Bypass Road, Jammu, Jammu and Kashmir 181221, India
| | - Mohammad A Haghighatbin
- Department of Chemistry & Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Azin Babaei
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna 46980, Spain
| | - Michele Sessolo
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna 46980, Spain
| | - David B Cordes
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - Alexandra M Z Slawin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - Paul C J Kamer
- Leibniz Institute for Catalysis, Albert-Einstein-Strasse 29a, Rostock 18059, Germany
| | - Henk J Bolink
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna 46980, Spain
| | - Conor F Hogan
- Department of Chemistry & Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| |
Collapse
|
10
|
Meyer M, Brunner F, Prescimone A, Constable EC, Housecroft CE. Desymmetrizing Heteroleptic [Cu(P^P)(N^N)][PF 6] Compounds: Effects on Structural and Photophysical Properties, and Solution Dynamic Behavior. Molecules 2020; 26:molecules26010125. [PMID: 33383919 PMCID: PMC7796056 DOI: 10.3390/molecules26010125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
The preparation, characterization and electrochemical and photophysical properties of a series of desymmetrized heteroleptic [Cu(P^P)(N^N)][PF6] compounds are reported. The complexes incorporate the chelating P^P ligands bis(2-(diphenylphosphanyl)phenyl)ether (POP) and (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane) (xantphos), and 6-substituted 2,2′-bipyridine (bpy) derivatives with functional groups attached by –(CH2)n– spacers: 6-(2,2′-bipyridin-6-yl)hexanoic acid (1), 6-(5-phenylpentyl)-2,2′-bipyridine (2) and 6-[2-(4-phenyl-1H-1,2,3,triazol-1-yl)ethyl]-2,2′-bipyridine (3). [Cu(POP)(1)][PF6], [Cu(xantphos)(1)][PF6], [Cu(POP)(2)][PF6], [Cu(xantphos)(2)][PF6], and [Cu(xantphos)(3)][PF6] have been characterized in solution using multinuclear NMR spectroscopy, and the single crystal structure of [Cu(xantphos)(3)][PF6].0.5Et2O was determined. The conformation of the 6-[2-(4-phenyl-1H-1,2,3,triazol-1-yl)ethyl]-substituent in the [Cu(xantphos)(3)]+ cation is such that the α- and β-CH2 units reside in the xanthene ‘bowl’ of the xantphos ligand. The 6-substituent desymmetrizes the structure of the [Cu(P^P)(N^N)]+ cation and this has consequences for the interpretation of the solution NMR spectra of the five complexes. The NOESY spectra and EXSY cross-peaks provide insight into the dynamic processes operating in the different compounds. For powdered samples, emission maxima are in the range 542–555 nm and photoluminescence quantum yields (PLQYs) lie in the range 13–28%, and a comparison of PLQYs and decay lifetimes with those of [Cu(xantphos)(6-Mebpy)][PF6] indicate that the introduction of the 6-substituent is not detrimental in terms of the photophysical properties.
Collapse
|